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A B S T R A C T

Cultured neuronal networks (CNNs) have recently achieved major relevance as an alternative to in vivo
models. While many works investigate the evolution of functional connectivity alone, experimental evidence
of the simultaneous change of the structural neuronal network substrate is scarce. In the present study, we
monitored the coevolution of structural and functional connectivities of neuronal cultures grown on top of
microelectrode arrays, in a setup that allows the simultaneous recording of electrophysiological signals and
microphotography detailed to the single-link level. During the observed 3 weeks lifespan, initially isolated
invertebrate neurons form an ex novo complex circuitry of neuronal aggregates characterized by a small-world
topology, with abundant neuronal loops (high clustering) and short distances. At the same time, the observation
of synchronization events among electrodes reaches a maximum, coinciding with the spatial percolation of
the neuronal network. At this stage, the correlation between the structural and the corresponding functional
network is the largest, with around 15% of the physical links relating electrodes that fire synchronously. As
the culture matures, this correlation smoothly declines but becomes more significant. Finally, at the local
level, we found that the electrodes supporting the most coherent activity, the functional hubs, are not hubs in
the physical circuitry but nodes with an average degree. This study demonstrates that functional networks of
self-organized neuronal systems are discreet proxies of the underlying structure. It paves the way for future
investigations to elucidate the intricate relationship between structure and function in other scenarios mediated
by external stimulation.
1. Introduction

The close interrelation between the structural conformation of a
network and its functional dynamics is one of the paradigms of Net-
work Science, and it is paramount to the study of the emergence of
coherent collective states [1–4]. An enormous effort has been devoted
to understanding this relationship, and the knowledge gathered so far
has driven the advances in crucial applications in biological systems,
especially in brain dynamics [5,6], the relationship between the central
nervous system areas [7] and many others where synchronization is
relevant [8,9]. A detailed, quantitative comprehension of this relation
and its temporal evolution is of foremost importance because changes
in the correlation can help trace pathological deviations as in the case
of Alzheimer’s or epilepsy [10].

However, the experimental study of this structure–function connec-
tion in biological networks is a challenging problem. In the case of
brain dynamics [11–13] in most of the studies, the functional data pro-
ceeds mainly from resting-state functional magnetic resonance imaging
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(fMRI), but also electroencephalography (EEG), magnetoencephalogra-
phy (MEG) or positron emission tomography (PET). The structural net-
work has two primary sources: non-invasive in vivo diffusion-weighted
MRI, which allows a large-scale indirect inference of the structure,
or the invasive tractography or neuronal tracers [14], which permits
a more direct mesoscale measurement of the neural paths [15]. The
results are very variable across studies, but most of them point to a
moderate positive correlation between structural and functional net-
works in several systems as the human [16], macaque [17], or rat [18]
connectomes.

In all the mentioned studies, the spatial resolution of both the
functional and the structural measurements corresponds to averages at
large to mesoscopic scale. At the microscale, neuroscience has found
an excellent tool in cultured neuron networks (CNNs) [13,19,20].
In particular, CNNs grown on devices capable of electrophysiologi-
cal recording as microelectrode arrays (MEAs) [21–26], high-density
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multielectrode arrays (CMOS) [27,28], or in an environment where
calcium waves can be measured [29,30], have provided a perfect plat-
form for the study of functional and effective connectivity. These ex-
periments, along with progressively more sophisticated correlation and
statistical techniques, have revealed very relevant aspects of the devel-
opment of the CNNs along their lifespan, as the self-organization of the
effective network [26], the role of effective hubs [31], or the emergence
of functional small-world properties [32,33] and rich-club [24].

Unfortunately, in all the studies performed on CNNs of mammal
neurons, the extreme density and complexity of the network [34,35]
make, in practice, impossible to have detailed information of the struc-
tural connectivity, and therefore the structure–function correlation at
this microscale had to be necessarily indirect. In those cases where the
topology of the network was specifically engineered to follow artificial
patterns [36–38], the knowledge of the topology is more detailed but
still far from the individual node level.

So far, the few studies tackling the node-to-node level in structural
connectivity are those based on invertebrate CNNs. Invertebrate models
have been used in Neuroscience as a simplified approach to studying
complex systems thanks to their basic neuronal features similar to
vertebrate ones [39–42]. Their usually large neuronal size (locust neu-
rons are ∼ 20–50 mm diameter) facilitates the observation at the node
neuron) and single-link (neurite) levels and thus the monitoring of
he circuitry’s development [39,43,44]. In Refs. [23,45–47] reported a
etailed analysis of the growing level of self-organization in the connec-
ivity of developing CNNs along their lifespan, revealing the emergence
f exponential scaling in the degree distribution and small-word prop-
rties. Neuronal density also influences the rate of maturation such
hat denser cultures matures faster and show activity earlier [48,49].
n the contrary, sparser cultures develop a network circuitry that is
asier to disentangle. For the present work, we grow medium-density
onolayer cultures, ∼ 1, 200 cells within the ∼ 2 mm2 recording

rea of microelectrode arrays (MEA) to have simultaneous access to
he detailed neuronal connectivity and electrophysiological dynamics.

e study the longitudinal evolution of the characteristics of both the
natomical and functional networks derived from microscopy and MEA
easures, respectively. Thus, this experimental study is among the

irst to investigate the direct correlation between the structure and its
imultaneous functional counterpart along the culture’s development.
ur results show that even when the electrical activity and average

evel of synchronization reduce as the CNNs network matures, the
ositive structure–function correlation increases as the network ages,
ecoming more efficient.

. Results

The present study establishes a longitudinal comparison of the
opological properties of the anatomical and functional connectivity
f neuronal cultures throughout their different stages of development.
t comprises 19 primary neuronal cultures from dissociated frontal
anglia of dessert locusts (Schistocerca gregaria) [50] grown on top
f MEAs with a regular layout of 120 electrodes and kept for 21
ays in vitro (DIV). The experimental setup allows us to register the
pontaneous activity (without external stimulation) of each culture for
0 min every 1–2 DIV and to take a high spatial resolution image of the
ulture area (∼ 2 mm2). A detailed description of the culture protocol
nd of the image/data acquisition can be found in the Materials and
ethods Section.

Results are split into three sections. The first presents topological
nd morphological network statistics at the level of the physical neu-
onal circuitry. The second presents statistics on the spike activity at the
lectrode level and at the level of the functional network. In the third,
e statistically compare these two aspects of cultures, their structural

ircuitry and the underlying dynamical interactions using that circuitry.
s a proxy of the former, we will map the actual neuronal network to

he connectivity at the electrode level, while for the latter we will use
2

a straight-forward estimating pair-wise correlation of the spike times
recorded at the same potential nodes, that is, the 120 electrodes of the
MEA. In all cases, statistics have been performed at each age with all
those cultures monitored at that specific age.

2.1. Topological and spatial network analysis of the neuronal circuitry

Our neuronal cultures, grown on top of MEA plates, show similar
self-organization traits than those observed in Petri dishes [23] or in
chip devices [51], that is, randomly scattered neuronal bodies grow
new neurites reconnecting among them to finally form a spatial net-
work of interconnected neuronal aggregates similar to the one showed
in Fig. 1a.

The extraction of the topological network (adjacency matrix) from
the optical images is a delicate procedure that requires the isolation of
the neuronal bodies and neurites from other elements, like the MEA
electrical tracks and the electrodes themselves. We have developed an
ad hoc image segmentation algorithm that we summarize here, and
whose technical details are explained in Materials and Methods. The
different phases of the image processing are sketched in Fig. 1. From
the acquired image of the MEA culture (panel a), the first step is the
removal of the electrical wiring of the MEA layout (black grid) from
the image while preserving the continuity of the neurites. An example
of how this filter works is illustrated in panel b for just the area
enclosed with a white dashed frame in panel a. From this point on,
we can apply the algorithm we reported in Refs. [23,45] for images
taken from Petri dish cultures to segment the relevant elements from
the background (panel a): the neurons and neuronal aggregates (red)
and the neurites (green). This information is used to construct an
adjacency matrix 𝐴 = {𝑎𝑖𝑗} (blue lines) where the centroids of the red
areas representing single and neuronal aggregates are the nodes. Two
nodes are connected, that is 𝑎𝑖𝑗 = 1, if there is a direct neurite path
(green lines) between the red segmented areas (as nodes 12 and 15 in
panel c) or an indirect path through a neurite bifurcation (as the link
between nodes 1 and 3), otherwise 𝑎𝑖𝑗 = 0. Unsupervised algorithm-
detected links are represented in blue. The automatic detection is
afterwards supervised to ensure the completeness of the reconstruction.
For example, the dashed blue links in panel c were manually assigned.

To compare the functional connectivity among active electrodes
with the underlying neurite circuitry, we mapped this structural con-
nectivity into a second graph 𝑆 = {𝑎s𝑖𝑗}, with dimension 120 × 120,
describing the connectivity at the electrode level. In this description,
illustrated in Fig. 2d, and fully described in Materials and Methods, we
consider that two electrodes are connected, 𝑎s𝑖𝑗 = 1 (magenta links), if
near them there is at least one connected neuron or neuronal aggregate.
Hence, as a final result, from each image, we obtain two adjacency
matrices: the real-space one 𝐴 with the topological information of the
neuronal network, and the electrode-space 𝑆 as a proxy of the neuronal
circuitry resulting from the approximation of the neurons in 𝐴 to the
MEA electrode grid.

Fig. 2 shows the progression of various topological properties of
the two network representations, 𝐴 (panels a-c) and 𝑆 (panels d-f), of
the physical neural circuitry. The longitudinal analysis of the network
topology in both cases reveals similar features to those observed in
neuronal cultures on Petri dishes [23,45,47,51]. As shown in panels a
and d, the number of links increases throughout the maturation process
of the CNN, while the total number of nodes (with and without con-
nections) remains stable. Consequently, the average degree increases
over the course of the DIVs in both networks. To have an insight into
how the spatial network grows, we plot in Fig. 2b and e the number
of connected nodes 𝑁𝑐 (nodes with at least one link) and the sizes of
the first largest 𝑆1 and second largest 𝑆2 connected components (GCC
and GCC2 respectively). In both representations, 𝑁𝑐 starts to rapidly
increase at the same stage of development after DIV 5, when neurons
grow their neurites and establish new connections. At the same time,

as the GCC and GCC2 progressively recruit nodes, they increase their
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Fig. 1. Image processing steps and extraction of adjacency matrices. (a) Typical snapshot at DIV 9 of a neuronal culture grown on top of a microelectrode array (MEA) with
120 electrodes of 30 μm diameter and 200 μm interspacing. (b) Cut corresponding to the rectangle area framed in (a) after applying the image algorithm that removes the electrode
grid, leaving just the neuronal network to which the image segmentation algorithm is applied. (c) Neuronal graph and output of the image segmentation algorithm applied to the
region of interest shown in (b). It is superimposed on the electrode layout with the only purpose of showing the accuracy of the graph detection. Single neurons and aggregates are
highlighted in red while the processes (neurites) are colored in green. The graph representing the neuronal network is plot on top of the unsupervised (automatic) segmentation
result: nodes are the blue circles located at the centroid of each red cluster and links are the blue lines connecting two neuronal aggregates whenever there is a direct process
or a path through a bifurcation point. Blue dashed links connecting the pairs (7, 15), (7, 20), and (9, 6) are manually (not automatic) assigned. (d) Electrode graph. Electrodes
(magenta circles) are connected (magenta lines) as described in the main text. Red stars represent the centroids of the clusters covering the neuronal aggregate segmented area.
The green square represents a neuronal aggregate which has not been assigned to any electrode. See Materials and Methods for a detailed description of how this graph is built.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Basic and complex topological properties of the adjacency matrices at the neuronal and electrode levels as a function of the culture age. (a,d) Number of nodes
(red circles) and links (blue squares) for the adjacency matrices describing the neuronal (a) and electrode (d) connectivity. (b,e) Number of connected nodes 𝑁𝑐 (red circles, nodes
with at least one link), and sizes of the first (GCC, blue squares) and second (GCC2, green triangles) largest components of the neuronal (b) and electrode (e) graphs. (c,f) Clustering
coefficient 𝐶 (red circles), normalized shortest path 𝐿∕𝑆1 (blue squares) and modularity 𝑄 (green triangles) for both the neuronal (c) and electrode (f) graph representations. Mean
values are calculated for 19 cultures at each age from DIV (Days In Vitro) 1 to DIV 21 and error bars represent standard error of the mean.
size up to DIV 10 when the size of the GCC matched that of 𝑁𝑐 and the
GCC2 practically vanishes, a signature of network percolation in both
the real and electrode spaces.

To further assess changes in the network topological state as the
cultures mature, we computed the clustering coefficient 𝐶, the shortest
path 𝐿∕𝑆1 (normalized by the size 𝑆1 of the GCC), and the modularity
𝑄 of the extracted adjacency matrices 𝐴 and 𝑆 (see Refs. [52,53] for
definitions). Fig. 2c and f illustrate the complex evolution of the CNNs
architecture for the two types of adjacency matrices, with a significant
increase in the clustering coefficient, especially in the first DIVs. They
also show a simultaneous decrease in the normalized shortest path
𝐿∕𝑆 , whose very low values at the end of the culture’s monitorization
3

1

window indicate that a well-interconnected network has been formed.
In addition, since our CNNs are prone to form neuronal aggregates due
to tension forces along the neurites, we also calculate the modularity
𝑄 as a function of the age. We observe a fast increase in 𝑄 during
the percolation phase (up to DIV 5–6) and the modularity level is
maintained afterwards.

This combined evolution of an increased mean clustering and reduc-
tion of the mean shortest path length, supported by a modular struc-
ture, characterizes the emergence of a small-world behavior, featuring
high efficiency and good segregation-integration capabilities [54]. In
addition, since both network representations share the same structural
evolution, we feel confident of using the network description at the
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Fig. 3. Node degree and neuronal aggregate area distributions with culture maturation. (a) Semilog cumulative probability distribution 𝑃𝑐 (𝑘) of the node degree 𝑘 in the 𝐴
adjacency matrix for DIVs 4, 6, 12, and 19 (see legend for symbol encoding). Each straight line is the best exponential fit to ∼ exp(−𝑘∕𝑏) with 𝑏 ∼ ⟨𝑘⟩∕4 and ⟨𝑘⟩ the mean degrees
at each respective DIV (3.6, 7.8, 9.6, 13.3). (b) Log–log cumulative probability distribution 𝑃𝑐 (𝜎) of the neuronal cluster area 𝜎 for the same DIVs as in panel a. (c) Relationship
between the degree 𝑘 of a node in the topological network 𝐴 and the average area ⟨𝜎⟩ at any DIV. Areas are in square pixels.
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electrode-level as a good coarse-grain approximation to the actual
neuronal circuitry.

Beyond the previous network-wide statistics, we assess the relative
influence of the nodes and their spatial organization by looking at their
node degree 𝑘 and their spatial size 𝜎 (measured as the number of
pixels a given neuron or neuronal aggregate occupies in the image). In
Fig. 3a we plot the cumulative node degree distributions for DIV 4, 6,
12 and 19 on a linear-logarithmic scale. We see a clear increase in the
number of high-degree nodes with the age of the culture, leading to a
fatter-tailed shape. The data fit an exponential model ∼ exp(−𝑘∕𝑏) with
large confidence levels (> 95%) (continuous lines in Fig. 3a), a signature
commonly observed in planar spatial networks whose growth is limited
by physical costs [23,47,55,56]. The exponent 𝑏 scales with the mean
degree of all cultures at each age as ⟨𝑘⟩ ∼ 𝑏∕4, which monotonously
increases in the lifespan of the cultures.

Along with the deployment of the connectivity, neurons can migrate
due to tension forces, creating aggregates of variable size 𝜎 (red areas
in Fig. 1c). Fig. 3b shows the cumulative distributions of the areas
𝑃𝑐 (𝜎) on a log–log scale for the same DIVs as in panel a. Contrary
to the single-scale distributions exhibited by the node degrees with
very well-defined characteristic mean degrees, the areas of the neuronal
aggregates seem to follow multiscale dynamics with a stretching of the
descending tails to a scale-free power-law decay.

One could expect the hubs to be the neuronal aggregates having the
largest areas but, counterintuitively, the nodes with medium connec-
tivity are those covering larger areas of the culture. This relationship is
shown in Fig. 3c, plotting the average value of the area ⟨𝜎⟩ as a function
of 𝑘, at any DIV of the development of the cultures. This relation is due
to the aggregation dynamics, driven by the competition between the
adhesion force of neuronal bodies to the substrate and the tension along
the neurites. Whenever two neuronal clusters aggregate into one, the
resulting area increases at the expense of missing the links in common.
As a result, the new aggregate has a lower ratio area/connections than
the original clusters.

2.2. Spike activity and functional connectivity analysis of the MEA data

Cultures’ electrical activity was recorded for 30 min every 1–2 days
during their first 3 weeks of development, always before the daily
large-scale microscope image was taken. For each detected spike, its
peak amplitude, timestamp and electrode number were stored (see
Materials and Methods for the definition of spike). Fig. 4 summarizes
the global activity dynamics within all recorded preparations during
their development in terms of the number of active electrodes (Fig. 4a)
and the spike rate frequency (Fig. 4b). Each point reflects the cor-
responding activity level for each culture measured at a given DIV.
Despite the variability inherent to the use of multiple preparations [48],
there are common trends in the 3 weeks of observation. It can be
4

observed that in the initial days of network development (DIVs 0 − 3), p
the cultures are silent with just a few electrodes (≤ 15) detecting
extracellular potentials. Concurring with the growth of the GCC (as
seen in Fig. 2a), the number of active electrodes increases in most
of the cultures reaching a maximum of 60 active electrodes around
DIV 5 with spiking frequencies up to 0.15 Hz in some of the cultures
(panel b). Beyond this point, there is an optimization process of the
network circuitry with the formation of neuronal aggregates and fusion
of parallel neurites as shown in Fig. 2a, where the formation of new
links is slowed down together with a slight decrease of the number of
nodes due to the neuronal aggregation. This stage of development is
prolonged up to DIV 15. From this point to the end of the observation
period (DIV 21), there is high variability in the cultures’ activity. This
observation is consistent with previous studies on invertebrate neuronal
cultures that reported pronounced changes in the neural firing patterns
along this morphological rearrangement during the first two weeks,
with a transition from sporadic firing to alternations between active
and non-active periods during the recordings [49].

Once we have characterized the topological properties of the struc-
tural connectivity, in this section we tackle the analysis of the func-
tional connectivity, which in our case is determined by the pair-wise
correlation of the spike time series recorded by the MEA electrodes.
There are many techniques to estimate the relationship between sig-
nals, being cross-correlation and coherence the most used [57–61].
Here, due to the event nature of the signal, defined by the timestamps
whenever a spike is detected, we opted for a simple method based on
the relative timings of the events that measure the degree of simul-
taneity of the appearance of events in different electrodes [57,58] and
the main steps involved in the calculation of the weighted correlation
matrix 𝑊 = {𝑤𝑖𝑗} are sketched in Materials and Methods. The strength
𝑤𝑖𝑗 of the event synchronization between electrodes 𝑖 and 𝑗 accounts for
the number of spike pairs detected by electrodes 𝑖 and 𝑗 simultaneously
(allowing a time window tolerance of 𝛥 = 0.1 s), such that 0 ≤ 𝑤𝑖𝑗 ≤ 1,
eing 𝑤𝑖𝑗 = 1 when all the spikes in both signals are fully synchronized.
ue to the observed low-frequency activity (Fig. 2b), we use long time

eries (25 min) for calculating the functional correlation matrix 𝑊 .
To account for the global level of synchronous activity through the

ulture development, in Fig. 4c we plot the average value of the syn-
chronization event matrix ⟨𝑊 ⟩ for every culture as a function of DIV. A
systematic increase of the network-synchronization level starts at DIV
5, a couple of days after cultures become active, and lasts up to DIV
12 where it drops despite spike activity is still relatively high (panels a
and b). Low levels of synchronization are often related to excitatory–
inhibitory imbalances [62,63]. On the other hand, structurally, this lack
of synchronization patterns coincides indeed with an appreciable rise
in the formation of new physical links around DIV 15 (see Fig. 2a)
fter the rearrangement period of two weeks from a state of isolated
eurons into a network of neuronal aggregates. It is not clear whether
change in the activity patterns could drive a transformation of the

hysical circuitry or the other way around.
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Fig. 4. Spike activity and network-synchronization with culture development.
catter plots of (a) the number of active electrodes and (b) spike frequency (total
umber of spikes per active electrode and recording time ratio) for each culture as a
unction of the culture age. (c) Scatter plot of the mean values of the weighted event
ynchronization matrices 𝑊 for each of the 19 cultures monitored over 3 weeks.

.3. Correlation between structural and functional connectivities

Results presented thus far have focused on two separate aspects of
he CNNs evolution: on one hand, identifying changes in the network
nfrastructure through various topological measures, and on the other
and, considering the evolution of the electrophysiological activity
nd global synchronization of the cultures. Here, the results focus on
ow both features compare along the maturation process. Structure–
unction correlation in neural systems is a controversial question that
as attracted attention for a long time [64–67]. However, most studies
ave only partial evidence of structural connectivity and/or an indirect
nd coarse measure of neural activity. To our knowledge, our setup
s the first experimental case where detailed and longitudinal struc-
ural measures at the individual neuron level are paired with direct
lectrophysiological measures.

To simplify this comparison, we define the functional network 𝐹 =
{𝑎f𝑖𝑗} as the binarized version of the event-synchronization matrix, such
that there is functional link 𝑎f𝑖𝑗 = 1 between nodes 𝑖 and 𝑗 if 𝑤𝑖𝑗 > 0, and
f
𝑖𝑗 = 0 otherwise. Fig. 5a–b shows the structural 𝑆 = {𝑎s𝑖𝑗} (panel a) and
he corresponding binarized event-synchronization functional 𝐹 = {𝑎f𝑖𝑗}
atrices (panel b) at the electrode level for a representative culture at
IV 11. Panels c and d depict the corresponding spatial arrangements in

he MEA of the same matrices, revealing the existence of links between
istant electrodes in both the structural and functional descriptions,
s well as a high level of modularity as corresponds at this stage
f the culture maturation (see Fig. 2f). To quantify the comparison,
e computed the ratio 𝑅 of structural links that are actually used to
enerate synchronized events between different electrodes defined as:

= 1
𝐿s

𝑁
∑

𝑖

𝑁
∑

𝑗>𝑖
𝑎s𝑖𝑗 𝑎

f
𝑖𝑗 (1)

here 𝑁 = 120, and 𝐿s =
∑

𝑖
∑

𝑗>𝑖 𝑎
s
𝑖𝑗 is the total number of structural

inks. For those pair of electrodes (𝑖, 𝑗) such that 𝑎f𝑖𝑗 𝑎
s
𝑖𝑗 = 1, it means

that an existing structural link supports some degree of coordination,
whereas a null contribution means that either the physical link does not
exist (𝑎s𝑖𝑗 = 0), or that it exists but has not resulted in any synchronous
event (𝑎f𝑖𝑗 = 0).

This structural/functional correlation 𝑅 is plotted in Fig. 5e as a
5

function of DIV, where each black dot corresponds to a daily register
of each culture, and the red stars to the average values for each DIV.
We begin the comparison at DIV 5 since before that stage the structural
network is mostly unconnected and, therefore, we find a too-low event
synchronization register. As it has often been reported, the global
correlation is never too high [66,67]. In our neuronal cultures, we
find a maximum ratio of about 15% of structural links registering syn-
chronous activity. Longitudinally, we can observe a clear dependence
on the DIV: the correlation peaks around DIV 5–6, which corresponds
to the stage of network percolation and maximal synchronization, as
shown in Fig. 2e and Fig. 4c respectively. After that stage, the network
s still active, but probably, the formation of neuronal aggregates
orsens the synchrony and delayed temporal correlations should be

onsidered instead. To check the significance of this correlation, we
ompared the obtained values of 𝑅 against those expected in equivalent
andom null networks for the functional network 𝐹 with the same

number of nodes and links. In Fig. 5f we plot the ratio 𝑅∕𝑅null as a
function of DIV, where 𝑅null is the average value of 𝑅 over 100 instances
of randomized version 𝐹 for each experiment. We observe that most of
the cultures are well above the threshold 𝑅∕𝑅null = 1 (dashed black
line) and, thus, the significance of the functional connectivity as a
(discreet) proxy of the underlying structural network, even for low
values of 𝑅, is consistent. We also notice that even when the average 𝑅
slightly decreases with DIV, its significance grows along the maturation
process.

From Fig. 5a similarity can be glimpsed between connected mod-
ules of electrodes in 𝑆 and 𝐹 . To have a deeper insight into this
relationship at the local electrode level over the culture lifespan, in
Fig. 6, we compare, for three representative days, the electrode activity
(registered spikes) to its structural 𝑘̂s and functional 𝑘̂f normalized
degrees in the respective 𝑆 and 𝐹 adjacency matrices. All the measures
have been normalized to compare different stages of CNN’s maturation.
As expected, there is a clear positive correlation between the firing
activity of an electrode and its functional degree 𝑘𝑓 (bottom row in
Fig. 6), which is strengthened as the culture matures. However, we find
that, in general, the most active electrodes are those with intermediate
values of physical links, as shown in the upper panels of Fig. 6. This
correlation is maintained even in the later stages of the evolution (DIV
18, last column) with a very reduced activity and mostly sustained
exclusively by those medium-degree electrodes. Additional mesoscale
measures, such as betweenness or eigenvector centrality, could give
further information about the central role of those nodes.

3. Discussion and conclusions

The present study compares the CNNs evolution derived from elec-
trophysiological recordings and images capturing the neuronal physical
circuitry. From the very first days up to their mature state, neuronal
cultures develop a self-organized network structure and a spontaneous
firing activity that mutually interact. Although network state evolution
can differ depending on multiple factors like the type of neuronal cul-
ture or neuronal density, the formation of a giant connected component
is crucial for the emergence of higher firing rates and synchronous
activity. This network percolation takes place around the second week
in rodent cultures [26], whereas in our locust cultures occurs at the
end of the first week and coincides with the maximum activity. Syn-
chronization events among electrode recordings mainly occur at this
stage, in agreement with data reported in the literature [26,32,68].

After the percolation point, where the networks show a random
architecture, our CNNs self-organize into a stable small-world structure
with similar topological properties to those previously observed in
the literature [23,32]. This mature configuration implies a change in
activity patterns. As the culture matures further, electrodes detect less
activity, which might be due to the existence of silent neurons, cellular
death, or the formation of large neuronal aggregates.

We face the construction of our functional networks using the
extracellular signals recorded on each electrode which may be from



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 173 (2023) 113764L.M. Ballesteros-Esteban et al.
Fig. 5. Structure–function relationship. (a–d) Representative illustration of the comparison between (a) the structural 𝑆 and (b) functional 𝐹 connectivity matrices at the electrode
level and their corresponding (c) and (d) spatial arrangements on the MEA layouts of one culture at DIV 11. (e) Structure–function correlation 𝑅 and (f) its null-normalized correlation
𝑅∕𝑅null (see the main text for definitions). Each black dot corresponds to a daily measure of each culture and stars are mean values for each DIV. Red straight lines are linear
fits. In panel (f) the black dashed line marks the significance threshold of 1.
multi-neuron activity, aggregated or not, bringing up another possible
source of discrepancies with other studies [49]. In the presented re-
sults, we have implemented our synchronization measure as a simple
scheme of event synchronization within a time tolerance, but other
more sophisticated measures, such as symmetric mutual information
or adaptive event synchronization, provide similar results.

To the authors’ knowledge, this is the first study of the coevo-
lution of structure and dynamics in self-organized cultured neuronal
networks to the level of single links. We find evidence that the link-by-
link correlation between structure and persistent functional networks
(estimated over 25 min) shows the use of around 10% of the physical
links and becomes more significant with the age of the culture. We
inspected the degree of connectivity of the active nodes in both the
structural and functional layers along the culture lifespan, concluding
that the functional hubs that mainly sustain the coherent activity are
not the structural hubs but nodes with intermediate degrees. This result
suggests that even in very simple cases such as the CNNs cultures, one
should be cautious when extrapolating the functional features to the
underlying unknown topology [60,69].
6

Future work will focus on assessing the influence of stimulation
on shaping the network structure through culture development and
investigating the role of anatomical hubs on self-organized structures in
controlling the functional interactions when they are being externally
forced.

4. Materials and methods

4.1. Culture protocol

In this work, we used primary neuron cultures from the frontal
ganglion of desert locust invertebrates. This nervous structure is in-
volved in the motor functioning of foregut muscles, feeding and molting
behavior, and has a well-known cytoarchitecture with approximately
100 neurons [70]. We kept the adult locusts under a 12 − 12 light-
dark cycle and fed them daily with organic spinach. After having them
anesthetized with CO2, we dissect the frontal ganglion [70] of 15 locusts
to obtain an intermediate neuron density (1200 neurons per culture),
following the protocol described in Ref. [40].
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The extracted ganglia are immersed in an enzymatic treatment with
500 𝜇l collagenase/dispase (Merck, COLLDISP-RO) mixture (2mg/ml)
for 1h, after which the enzyme is replaced with Leibowitz 15 medium
(Merck, L1518). Then the ganglia are mechanically dissociated by pass-
ing them through a 200 μl pipette tip to separate the neurons and
remove any remaining connection. The resulting suspension of neu-
ronal soma is placed on a Concanavalin-A (Merck, C0412, 0.2 mg/ml)
and Poly-D-Lysine (Merck, mol wt 70 K–150 K, 0.016 mg/ml) pre-coated
area of 2 mm2 on the glass surface of a microelectrode array with 120
electrodes (Multichannel Systems, 120MEA200/30iR-Ti-pr). After 2 h
at dark, seeded neurons adhered to the surface. At that moment, we
added 2 ml of Leibowitz 15 enriched with 5% hemolymph extracted
rom adult specimens and filtered twice (using 0.45 μm and 0.20 μm
ilters) to enhance neurite growth and covered the culture with a gas-
ermeable transparent film. The cultures were kept in darkness at 30 ◦C
nder controlled humidity (70%), and the medium was not changed at
ny moment.

Cultures were kept in vitro for a maximum of 21 days after platting
DIV 21). The data analyzed in this work are from 19 different cultures

and only those lasting at least 12 days were considered in this study.

.2. Data acquisition

CNNs were measured daily by acquiring an optical microscopy im-
ge and recording the electrophysiological signal during their lifespan.

Large-scale images were taken with a phase contrast inverted micro-
cope (Eclipse Ti-S, Nikon) equipped with a 10x air objective (Achro-

mat, ADL, NA 0.25), an automated motorized 𝑋𝑌𝑍 stage controller
(H117 ProScan, Prior Scientific) and a charge-coupled device camera
(DS-Fi1, Nikon) controlled by the NIS-Elements software (Nikon Instru-
ments Software, Nikon). The high-resolution mosaic images are stored
in .jp2 files.

Before each image acquisition, the MEA (12 × 12 layout of 120 elec-
trodes of 30 mm diameter and 200 mm spacing) electrophysiological
ignals were recorded for 30 min (except for DIV 0, which was only
0 min) at dark and at constant temperature of 30 ◦C and humidity of

70% using a climate chamber (Multichannel Systems, MEA2100-CO2-
C) and a temperature controller (MSC, MEA2100-TC02). No chemical
or electrical stimulation was applied. Data acquisition was recorded,
preprocessed, and stored using the Multi Channel Experimenter V2.20.0
software. Raw signals are preprocessed using a 200–1000 Hz Butter-
worth Order 2 filter to reduce the noise. Then, the filtered signal is
stored as H5 files using Micro Channel Data Manager V 1.14.6.
7
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For the data analysis, we discarded the first 5 min of the signal to
eliminate noise and artefacts induced by the culture transfer to the MEA
headstage [68,71]. Spikes timestamps were detected offline at each
electrode using an adaptive threshold of ±6𝜎 calculated in a moving
window of 1 s as done in Ref. [49] and an electrode was considered
active if more than 5 spikes were detected in the 25-min recording
segment used. The ad hoc code was written for Matlab R2020b. In this
study, we considered only negative amplitude spikes.

Data statistics for each day were obtained from at least 3 cultures.
Potential outliers were filtered using the standard criterion of median
absolute deviation from the median.

4.3. Correlation matrix 𝑊

To quantify the pair-wise event synchronization between electrode
signals, we calculate the coherence between electrodes 𝑖 and 𝑗 as the
correlation between the time series of spikes. Once the timestamps are
determined, the total time 𝑇 = 1500 s is divided into 𝛤 time bins of size
𝛥 s. Each spiking sequence is converted into a binary series by assigning
the value 𝐵𝑖(𝜏) = 1 if node 𝑖 spiked within the 𝜏-th bin, and 0 otherwise.
The correlation matrix 𝑊 = {𝑤𝑖𝑗} accounts for the event coherence
between electrodes 𝑖 and 𝑗, allowing for a tolerance of ±𝛥 as [58]:

𝑤𝑖𝑗 =
∑𝛤

𝜏=1 𝐵𝑖(𝜏)𝐵𝑗 (𝜏) +
∑𝛤−1

𝜏=1 𝐵𝑖(𝜏)𝐵𝑗 (𝜏 + 1) +
∑𝛤

𝜏=2 𝐵𝑖(𝜏)𝐵𝑗 (𝜏 − 1)

3max(
∑𝛤

𝜏=1 𝐵𝑖(𝜏),
∑𝛤

𝜏=1 𝐵𝑗 (𝜏))
(2)

The bin size 𝛥 = 0.1 s is chosen according to the spiking statistics of
he experiment to avoid two spikes in the same time bin. As previously
tated in the main text, we have tested other common measures to
uantify the pair-wise coherence, such as symmetric mutual informa-
ion [72] or adaptive event synchronization [57], but those measures
rovide similar results. Therefore, we have opted for presenting the
implest of them.

.4. Image segmentation

We used a homemade image segmentation algorithm previously
eveloped in Ref. [45] to extract the neuronal network. Since the
lgorithm was developed for CNNs grown in Petri dishes, for the
resent study we had to introduce a new filter to remove the artefacts
aused by the MEA grid. It is not possible to reconstruct the neuronal
etwork without first eliminating the electrical tracks, as any detection
lgorithm tends to mislead the tracks with the neurite processes.
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The idea behind the filter to remove the MEA grid layout is to fill
the black tracks with adjacent pixels. More in detail, the original image
Fig. 1a is first read by columns trying to locate the vertical paths,
which will become coded as one-dimensional blocks of typically 50
lack pixels (in this step, horizontal paths are avoided). The next step
s to replace the half-right of the block with the information adjacent
o the half-right and the same for the left half of the block. Then, the
ame process is repeated row by row to detect the horizontal tracks
nd replace each block with the information above and below the
locks. These two scans are sufficient to remove all the tracks, even
he diagonal ones as seen in the image cut shown in Fig. 1b. Using this
rocedure, we can recover, at least partially, the continuity of those
lements of interest (neurons and neurites) located on top of the layout
rid.

Although the tracks and some regions with ripple artefacts are
till visible, they do not interfere significantly with the next step:
he automatic segmentation process fully described in Ref. [46]. The
egmentation algorithm starts from the red layer of the filtered full RGB
mage, which is segmented and thresholded to separate the background
rom the foreground containing the neurons and neurites. Then neu-
ons, aggregates and neurites are identified separately [red areas and
reen paths respectively in Fig. 1c]. As mentioned above, the image
s segmented with the filtered electrodes. The result is superimposed
n the culture image with the grid layout to illustrate how well the
lgorithm correctly detects neurites and neurons.

.5. Projection of the neuronal network (𝐴) into the electrode network (𝑆)

To compare the functional connectivity among active electrodes
ith the underlying neurite circuitry 𝐴 = {𝑎𝑖𝑗}, we have to project

the latter into a graph of the same dimension as the electrode array,
that is, 𝑆 = {𝑎𝑠𝑖𝑗} has dimension 120 × 120. We consider that two
electrodes 𝑖, 𝑗 are connected 𝑎𝑠𝑖𝑗 = 1 if close to them there are neurons
or neuronal aggregates mutually connected. If a neuronal aggregate
covers a large extension, it can be close to two or more electrodes,
as node 15 in Fig. 1c. In those cases, we decide that the two (or
more electrodes) are connected, even when there is only one neuronal
aggregate. Therefore, in this step, we need the connectivity matrix 𝑆
nd the size and pixels conforming to the neuronal aggregates (red
reas). Using this information, we can identify one or more centroids
n each neuronal aggregate using a 𝑘-means algorithm. These centroids

are marked with red stars in Fig. 1d. The number of centroids depends
n the size of the segmented area. Individual neurons, typically hav-
ng 5000–10 000 pixels, will have one centroid and aggregates with
0 000–20 000 pixels, two centroids, and so on. Once the new set of
entroids of each neuronal aggregate is placed, we define the electrode
onnectivity using their distance to these centroids such that two
lectrodes are connected if there are centroids closer than the 60% the
lectrode separation (200 μm) that are connected themselves. With this
efinition, if the centroids closest to the electrodes belong to the same
euronal aggregate, the two electrodes are consequently connected.
his criterion justifies the observation given above. For example, a large
ggregate with two centroids can induce the connection between two
lectrodes if each centroid is near each electrode. Moreover, a given
euronal aggregate may be far from any electrode, as is the case of
ode 6 in Fig. 1c, which has four centroids and none of them is close
o any electrode. That node is shown as a green square because it does
ot contribute to the connectivity between electrodes despite the large
ize of the associated neuronal aggregate.
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