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a b s t r a c t

This research proposes the use of metaheuristics for solving the Target Set Selection (TSS) problem.
This problem emerges in the context of influence maximization problems, in which the objective is
to maximize the number of active users when spreading information throughout a social network.
Among all the influence maximization variants, TSS introduces the concept of reward of each user,
which is the benefit associated to its activation. Therefore, the problem tries to maximize the reward
obtained among all active users by selecting an initial set of users. Each user has also associated an
activation cost, and the total sum of activation costs of the initial set of selected users cannot exceed
a certain budget. In particular, two Path Relinking approaches are proposed, comparing them with the
best method found in the state of the art. Additionally, a more challenging set of instances are derived
from real-life social networks, where the best previous method is not able to find a feasible solution.
The experimental results show the efficiency and efficacy of the proposal, supported by non-parametric
statistical tests.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The evolution of Social Networks has been in continuous
rowth in the last years. Nowadays, almost everyone frequently
ses one or more Social Networks for both posting and gathering
nformation. Due to the relevance of Social Networks in several
ontexts, such as politics, marketing, or disease control, among
thers, scientists and practitioners have put all their efforts in
esigning and developing algorithms to automatically analyze
nd collect the most relevant information from them.
Among all the different problems that emerge from Social

etwork Analysis, this research is focused on Influence Maxi-
ization Problems. This is a large family of hard combinatorial
ptimization problems where it is necessary to select a set of
sers from a Social Network with the aim of maximizing the
pread of information throughout the network. In particular, this
tudy is focused on the Target Set Selection Problem in which,
iven a certain budget, it is necessary to select a subset of users
hose total cost is smaller than the given budget, with the aim of
aximizing the reach of information dissemination through the
etwork.
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In the context of Target Set Selection Problem (TSS), there are
two main variants: guaranteeing reaching the complete network
(or even a certain part of it) with the minimum number of initial
users or maximizing the number of users reached while not
exceeding an initial budget. This proposal is focused on solving
the latter, which is usually named Max-TSS.

Although the main application of this problem is to increase
the impact of advertising a product for a company [1,2], there
are several applications in different fields. For instance, in politics,
the Max-TSS can be used for reducing the impact of fake news
or misinformation from two opposite approaches: identifying the
individuals which are mostly spreading fake news through the
network, or to boost those individuals which are transmitting
reliable information [3]. Even more, this application is closely re-
lated to disease control, since it has been proven that the diseases
spreads following the same model as information through Social
Networks [4].

In this work, a metaheuristic algorithm based on a combina-
tion of Greedy Randomized Adaptive Search Procedure
and Path Relinking is presented with the aim of providing high-
quality solutions for the Max-TSS in reasonable computing times
when considering large real-life Social Networks. Metaheuris-
tics were originally defined by [5] as ‘‘a high-level problem-
independent algorithmic framework that provides a set of
guidelines or strategies to develop heuristic optimization algo-
rithms’’. In the last decades, metaheuristics have become one of
the most extended approximate type of algorithms for solving
hard and complex combinatorial optimization problems. These
are robust algorithms which are able to provide high-quality
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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olutions in reasonable computing times. However, they cannot
uarantee the optimality of the solution. Therefore, they are
ecommended when it is not possible to compute the optimal
olution with an exact algorithm. This algorithm is tested with
arge-scale graphs derived from real social networks, analyzing
he contribution of each part of the algorithm. This analysis will
llow researchers and practitioners to select and adapt some
arts of the proposed algorithm to other related problems. One of
he main issues when dealing with Target Set Selection consists
f getting stuck in local optima. The algorithm based on Dynamic
ath Relinking proposed in this research is able to escape from
ocal optima by creating a path between two high-quality solu-
ions, which will lead the algorithm to explore a wider portion
f the search space. In particular, Dynamic Path Relinking will be
ble to identify the most promising subsets of influential users
nd strategically combine them in a path to generate new diverse
nd high-quality solutions.
The main contributions of this research can be summed up as

ollows:

• A constructive procedure based on a novel heuristic is pro-
posed, being able to generate feasible solutions in small
computing times.
• The proposed local search is optimized by reducing the

evaluation of the objective function, which is the most com-
putationally demanding part of the algorithm.
• Dynamic Path Relinking is proposed with the aim of creating

paths between high-quality solutions and compared with
the classical Static Path Relinking, Simulated Annealing and
Cost-Effective Forward selection.
• The dataset of instances has been extended with real-life

networks where the previous methods are not able to pro-
vide a solution in reasonable computing times.

Rest of the manuscript is structured as follows. Section 2
hows the related work with Target Set Selection Problem; Sec-
ion 3 formally defines the Target Set Selection Problem; Section 4
horoughly describes the algorithmic proposal and all the com-
onents designed; Section 5 presents a detailed computational
xperimentation to evaluate the contribution of each compo-
ent and test the proposal with the best previous algorithm;
nd, finally, Section 6 draws some conclusions derived from the
esearch, as well as highlights some future research lines.

. Related work

In this section, we introduce some related work about TSS
s well as a brief survey of existing methods for solving this
roblem, either based on exact methods, approximation methods,
euristics or computational intelligence algorithms.
Richardson et al. [6] initially formulated the problem of select-

ng target nodes in SNs. The TSS was originally proposed in [7],
here it was proven to be NP-hard, and the authors proposed
polynomial-time approximation algorithm for a probabilistic
ariant of the problem.
Kempe et al. [7] proposed three influence diffusion models

hat play an important role in understanding the diffusion phe-
omenon: the independent cascade model (ICM), the weighted
ascade model (WCM), and the linear threshold model (LTM). In
ubsequent researches, several proofs of NP-hardness were pro-
osed [4,8–11], all of them supported by approximation results
or specific types of network topologies [12,13].

The research on Social Network Influence problems has been
ocused on finding exact methods under restricted conditions. In
articular, the TSS has been tackled from both exact [14–17], and
euristic perspectives [18,19].
2

The fact that the TSS problem when considering LTM as a
diffusion model can be described as a hard combinatorial opti-
mization problem has attracted the attention of both academic
and practitioners. In fact, the problem can be stated as an Integer
Linear Programming (ILP) problem, which is able to solve small
problem instances. Two models have been proposed: a time-
dependent ILP [20], which derives instantly from the definition,
and a time-independent one [14].

While the previous results are certainly of interest, allowing
researchers to extract information about graph properties which
are a key part of the complexity of the problem, all of them deal
with exactly solving the problem. This also holds for variations
of the problem, such as the latency-bounded TSS (which aims to
activate all the nodes of a graph in a bounded number of rounds),
for which recent research is focused on exact methods for specific
cases or making use of certain properties [21–23].

Additionally, some variants with specific constraints derived
from real applications have also been considered, tackled with
evolutionary metaheuristics [24,25]. Swarm intelligence algo-
rithms have been applied to a multi-objective problem dealing
with maximizing the spread of influence of a set while mini-
mizing its size [26]. An evolutionary algorithm (EA) was applied
in [19] to a variant of the TSS problem that was tackled in this
research.

Ravelo et al. [24] proposed a new TSS variant denoted as the
maximum effortreward GAP Target Set Selection problem (Max-
TSS), a new NP-hard version. To the best of our knowledge [27,
28], the best approach for solving the Max-TSS is based on binary
linear models and Lagrangian relaxations, which are solved by dy-
namic programming algorithms [19]. With the aim of improving
the bounds, authors embed the dynamic programming algorithms
in subgradient methods, which are used to generate feasible
solutions for the problem. In the research, the authors highlight
that their heuristic is able to reach near-optimal solutions in
almost all the considered instances. Although the approach is able
to find optimal solutions, its main drawback relies on the size of
real-life networks. In the original work, authors optimally solved
instances up to 58 nodes, while current social networks usually
have more than 1000 nodes. With the aim of evaluating the limits
of the exact proposal, this work tests the previous exact approach
with graphs derived from real social networks such as Twitch or
LastFM, among others.

Several works stated that metaheuristics scarce in the Social
Network Influence Problems [25,27]. The use of Path Relinking in
Graph Theory and Network Science has led to several successful
research in the last years [29–31].

3. Problem definition

As it was aforementioned, the objective of the Target Set
Selection Problem (TSS) is to find the most influential nodes in
a social network. Let us define a social network as a graph G =
V , E) where the set of vertices V , with |V | = n, represents the
sers of the social network and the set of edges E, with |E| = m,

is conformed with pairs (u, v), with u, v ∈ V , indicating that there
is any kind of relation between users u and v. Then, given a social
network modeled as a graph G = (V , E) and a maximum budget
K , the TSS problem tries to find a subset of users S ⊆ V whose
effort does not exceed the maximum value K , with the aim of
maximizing the number of influenced users in the social network.
Since the concept of influencing can be ambiguous, it is necessary
to perform some initial definitions to clarify it.

First of all, it is necessary to define how a node can potentially
influence another one. In the context of TSS, the influence of a
user follows a rational influence function ψ : V × V → [0, 1]
over every pair of users. This function measures the influence of
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user over another one. Notice that if two users u, v are not
onnected, then ψ(v, u) = 0. Then, a set of activated users St
influences a non-activated user u if and only if the sum of the
otential influence of all users in St is larger than or equal to 1,

i.e.,
∑

v∈St ψ(v, u) ≥ 1. This rational influence function was given
by several authors [8–10,19] and it tries to model a behavior in
which if several users simultaneously influence a certain user,
then it will be activated. The specific value of the function is
determined by [19], and it is based on the number of interactions
among users, i.e., the larger the number of interactions, the larger
the function value. We denote St as the set of activated users in
a certain iteration t . This model suggest a different approach to
the well-known Influence Diffusion Models which requires from
smaller computing times than probabilistic methods which are
rather time consuming to obtain robust solutions.

Having defined the process of influencing a node given a set of
activated nodes, it is necessary to define the influence propaga-
tion process. Starting from a set of initially activated nodes S, this
process consists of activating all those non-activated nodes which
are influenced by the activated ones. Without loss of generality,
a solution for the TSS is given by the set of initially activated
nodes S. Notice that this process is iteratively applied until no
new nodes are activated. Given a step t and a set of activated
nodes St , the set of nodes which are activated after applying a
single iteration of the influence propagation process is denoted
as St+1. The influence propagation process then stops when no
new nodes are activated, i.e., St = St−1.

In TSS, each node has an associated effort to activate it, which
is defined by the function α : V → Z+, as well as a reward
obtained when it is influenced or initially activated which is
defined by β : V → Z+. Thus, the effort α is only considered
for those nodes which are part of the set of the initially activated
users S, and the reward β is earned whether a user u is initially
activated or subsequently activated by the set of activated users.
Another fact in TSS is that, when a node is activated at step
t , it remains activated through the entire influence propagation
process. Let us denote xtv as a binary variable which takes the
value 1 if the node v is activated at step t and 0 otherwise (we
refer the reader to [19] to a more detailed description of the
model). Then,

xt−1v ≤ xtv, ∀v ∈ V , 1 ≤ t ≤ T

where T indicates the maximum number of steps in the influence
propagation process, i.e., number of iterations in which new
nodes are activated.

A solution S for the TSS is feasible if and only if the sum of the
efforts of the initially activated nodes is smaller than or equal to
K , which is a constraint of the problem, i.e.,

∑
v∈V α(v) · x

0
v ≤ K .

The objective function for the TSS is then evaluated as the sum of
rewards obtained by the active nodes in the last iteration of the
influence propagation process. In mathematical terms,

TSS(S) =
∑
v∈V

β(v) · xTv

Notice that evaluating the TSS is a computationally demanding
procedure. In particular, the computational complexity of this
evaluation is O

(
n2

)
since it is necessary to traverse all the nodes

and, for each new activated node, it is required to traverse again
the set of nodes searching for new potential nodes to be activated.
The TSS then seeks for a solution S⋆ with the maximum objective
function value. More formally,

S⋆ ← argmax
S∈SS

TSS(S)

where SS represents the set of all feasible solutions, i.e., all
possible combination of nodes whose sum of effort is smaller than
or equal to K .
 g

3

Fig. 1 depicts an example of the complete influence propa-
gation process over a network with 5 nodes and 10 edges. The
solution under evaluation is conformed by nodes C and E, i.e., S =
{C, E}. Without loss of generality, let us suppose that the sum of
costs α(C)+ α(E) is smaller than or equal to K .

Fig. 1(a) shows the initial step t = 0, where the activated
odes are the ones initially selected C and E, i.e., S = {C, E}. Then,
n the first iteration of the influence propagation process, de-
icted in Fig. 1(b), it is evaluated whether non-influenced nodes
, B, and D are influenced or not. Starting with node A, it is
ecessary to evaluate ψ(C, A)+ψ(E, A) = 0.8+ 0.1 = 0.9 < 1.0.
herefore, node A is not influenced in this step. A similar evalu-
tion is performed with node B, resulting in ψ(C, B)+ψ(E, B) =
.2 + 0.3 = 0.5 < 1.0, indicating that node B is not activated.
inally, when performing the evaluation of node D, we obtain
(C, B) + ψ(E, B) = 0.1 + 1.0 = 1.1 ≥ 1.0. Then, after the

irst iteration, node D is included in the set of activated nodes,
esulting in S1 = {C, D, E}.

Since S0 ̸= S1, it is necessary to continue with the influence
ropagation process. If we now evaluate the second iteration,
ig. 1(c), starting with node A,

∑
v∈S1 ψ(v, A) = 0.8 + 0.1 +

.3 = 1.2 ≥ 1.0. Then, node A will be included in the set of
ctivated nodes in the next iteration, S2. In the case of node B, the
valuation is

∑
v∈S1 ψ(v, B) = 0.2+0.3+0.0 = 0.5 < 1.0, so the

ode B is not activated. After this iteration, S2 = {A, C, D, E} ̸= S1,
o an additional iteration is required. Fig. 1(d) illustrates the last
teration of the influence propagation process. In this case, it is
nly required to evaluate node B, resulting in

∑
v∈S2 ψ(v, B) =

.3 + 0.2 + 0.3 + 0.0 = 0.8 < 1.0. Therefore, node B is not
ctivated. Since no new nodes are included in the set of activated
odes, i.e., S2 = S3, the influence propagation process stops in
his iteration, returning the reward associated to the activated
odes.

. Algorithmic approach

This work presents an algorithm based on Path Relinking
PR) [32] for solving the TSS problem. Path Relinking was origi-
ally presented as a framework for combining intensification and
iversification strategies in the context of Tabu Search [33]. PR re-
ies on the idea of connecting two high-quality solutions creating
path between them, with the expectation of finding promising
olutions during the exploration of the path. The algorithm tries
o include in the first solution, usually named as initial solution,
ttributes of the second solution, named as guiding solution. Both
he initial and the guiding solutions present a high quality and,
herefore, it is expected that the path created between them
xplores new promising regions of the search space. It has been
raditionally combined with Greedy Randomized Adaptive Search
rocedure (GRASP) since Laguna and Marti [34] adapted PR to
ncrease the intensification phase of GRASP. There are two main
R strategies extended in the literature: Static PR and Dynamic
R. In this work, both strategies are tested in the context of
SS. First of all, it is necessary to design a specific path-creation
ethod between two solutions in the context of TSS. Given two
olutions Si and Sg , which are initial and guiding solutions, the
bjective is to create a path from Si to Sg by removing attributes
rom the initial solution which are not present in the guiding
ne, and replacing them with attributes which are in the guiding
olution but not in the initial one.
The path-creation method designed for the TSS problem iter-

tively removes nodes belonging to Si but not to Sg , i.e., Si \ Sg ,
nd includes nodes which are in Sg but not in Si, i.e., Sg \ Si. The
rocess of selecting the node to be removed and included in each
teration can be performed randomly (Random Path Relinking),

reedily (Greedy Path Relinking), or in a more elaborated manner
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Fig. 1. Influence propagation process over a network with 5 nodes and 10 edges, considering the solution S = {C, E}.
Fig. 2. Example of a path between solutions Si = {B, G, I} and Sg = {D, A, C, F}.
f
i
t
S
1
S
s
w
s
p
d
a
i

Greedy Randomized Path Relinking). Notice that both Greedy
ath Relinking and Greedy Randomized Path Relinking are more
omputationally demanding than Random Path Relinking. This
s mainly because they require to generate the complete set of
easible solutions in each step of the path, and also evaluate
ach one of them. Since the computational effort is a critical part
f TSS, we have selected Random Path Relinking (RPR) which,
dditionally, increases the diversity of the search. Fig. 2 shows a
ossible path between the initial solution Si = {B, G, I}, with an
bjective function value of TSS(Si) = 21, and the guiding solution
g = {D, A, C, F}, with an objective function value of TSS(Sg ) = 23.
The path starts by selecting the elements which need to be

ncluded during the path as Sg \ Si = {D, A, C, F}, since Si and Sg
o not have any element in common. Then, it is required to select
hose elements which will be removed during the path creation,
hich are Si \ Sg = {B, G, I}. Then, in each iteration, an element

s removed from the incumbent solution, and a new element is
ncluded in the solution if the maximum allowed budget K is
ot exceeded. Since Random Path Relinking is considered, the
4

element to be removed and the one to be included is selected
at random.

In the path created in the figure, the first step generates the
solution S1 = (Si \ {B})∪ {D} = {D, G, I}, resulting in an objective
function value of 19. In the next step, solution S2 is created by
removing node G, S2 = S1 \ {G} = {D, I}, with an objective
unction value of 15. Notice that, in this case, no new element is
ncluded in the incumbent solution, assuming that, in this point,
he available budget would be exceeded. Then, S3 is generated as
3 = (S2 \ {I}) ∪ {A} = {D, A}, with an objective function value of
6. At this point, there are no nodes to be removed from solution
3, i.e., S3 \ Sg = ∅. However, there are still nodes to be included,
electing in this stage node C, resulting in S4 = S3∪{C} = {D, A, C}
ith an objective function value of 17. In the last step, the guiding
olution is reached by including the last node F, finishing the
ath. It is worth mentioning that none of the solutions created
uring the path are necessarily a local optimum with respect to
ny neighborhood. Therefore, the local search method described
n Section 4.3 is applied to the best solution found in the path (ties
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re broken randomly), excluding the initial and guiding solutions,
.e., S1 in the figure. Once the path creation has been described,
t is necessary to present the Path Relinking variants considered
n this work. In particular, two of the most extended variants
ave been studied: Static Path Relinking (see Section 4.1) and
ynamic Path Relinking (see Section 4.2). The proposed algorithm
ill leverage the path creating of Path Relinking to select the
ost promising subsets of influential users of two different so-

utions and combine them to generate an eventually better set of
nfluential users.

.1. Static path relinking

Static Path Relinking (SPR) [35] is the most basic version of
ath Relinking. SPR requires from an Elite Set (ES) of high quality
nd diverse solutions that can be generated either at random or
y using a more elaborated procedure. In this problem, the ES is
enerated by using the GRASP algorithm presented in Section 4.3
hich balances intensification and diversification. The number of
olutions generated will be discussed later in the experimental
esults section (Section 5). Then, the ES is conformed with the
est solutions found with GRASP. Again, the size of the ES is a
arameter of the algorithm which will be adjusted in Section 5.
inally, all the solutions in the ES are combined with the Random
ath Relinking method. Algorithm 1 shows the pseudocode of the
ethod.

Algorithm 1 SPR(G = (V , E),∆, δ)

1: P ← ∅
2: for i = 1 . . .∆ do
3: S ← Construct(G)
4: S ′ ← Improve(S)
5: if S ′ /∈ P then
6: P ← P ∪ {S ′}
7: end if
8: end for
9: ES← SelectBest(P, δ)

10: Sb ← argmaxS∈ES TSS(S)
11: for i = 1 . . . δ − 1 do
12: for j = i+ 1 . . . δ do
13: S ← RPR(ESi, ESj)
14: S ′ ← Improve(S)
15: if TSS(S ′) > TSS(Sb) then
16: Sb ← S ′
17: end if
18: end for
19: end for
20: return Sb

The method starts by creating the initial population of solu-
ions P (step 1). Then, SPR iterates until generating a set of ∆
olutions (steps 2–8). In each iteration, a solution is generated
step 3) and then improved (step 4) using the constructive and
ocal search methods presented in Section 4.3. The generated
olution is then added to the initial population if and only if it
as not been explored yet (steps 5–7).
The Elite Set ES is generated with the δ most promising so-

utions of P (step 9), and the best solution found is initialized
step 10). Then, all the solutions in the ES are combined using
he Random Path Relinking method (step 13). The combined
olution is later improved (step 14) and compared with the best
olution found so far, updating it if necessary (steps 15–17). The
ethod ends returning the best solution found during the search

step 20).
The analysis of computational complexity of SPR can be di-

ided into two different phases: the one corresponding to GRASP
5

hase (steps 2–8) and the one corresponding to the path cre-
tion itself (steps 11–19). The complexity of the GRASP phase
s detailed in Section 4.3. The complexity of the second phase is
valuated as O

(
δ · δ ·

(
n+ n3 log n+ n2

+ n2
))
. In particular, the

irst two δ factors indicate the loops in steps 11 and 12. Then, the
omplexity of RPR is O(n) since, in the worst case (two completely
ifferent solutions), it will perform n iterations. Then, the com-
lexity of the local search is O

(
n3 log n

)
as stated in Section 4.3

nd, finally, the complexity of comparing two solutions is O
(
n2

)
or each solution evaluation. Therefore, the final complexity of
his method is O

(
δ2 · n3 log n

)
.

.2. Dynamic path relinking

Dynamic Path Relinking (DPR) [36] avoids the generation of
complete population of solutions and then combine them by
ynamically creating new solutions and paths between them.
n particular, the method starts by creating the ES with a fixed
umber of solutions created with GRASP, which is in continuous
volution during the process. Algorithm 2 details the proposed
ynamic Path Relinking method.

Algorithm 2 DPR(G = (V , E),Γ , γ )

1: ES← ∅
2: for i = 1 . . .Γ do
3: S ← Construct(G)
4: S ′ ← Improve(S)
5: if S ′ /∈ ES then
6: ES← ES ∪ {S ′}
7: end if
8: end for
9: for i = 1 . . . γ do
0: S ← Construct(G)
1: S ′ ← Improve(S)
2: PS← {S ′}
3: for SES ∈ ES do

14: SC ← RPR(SES, S ′)
15: S ′C ← Improve(SC )
16: PS← PS ∪ {S ′C }
17: end for
18: UpdateES(ES, PS)
19: end for
20: Sb ← argmaxS∈ES TSS(S)
21: return Sb

Similarly to SPR, DPR starts by creating the Elite Set ES (steps
–8). However, contrary to SPR, the ES is initialized with the
irst Γ solutions generated by applying the constructive and local
mprovement methods. Then, for a fixed number of iterations
(which is an input parameter of DPR), a new solution S ′ is

onstructed and improved (steps 10–11). The set PS will contain
ll the new solutions explored during the current iteration, and it
s initialized with solution S ′ (step 12). The method then iterates
ver every solution SES ∈ ES (steps 13–17), creating a path from
ES to the newly generated solution S ′ using RPR (step 14). The
est solution found in the path is then improved and added to PS
steps 15–16). Once all the paths have been created, the method
pdateES(ES, PS) tries to insert every generated solution into the
lite Set (step 18). In particular, if the solution under evaluation
P is better than the worst solution found in the ES, then SP is
ncluded in the ES, replacing the most similar solution to SP of
he ES among those with worse objective function value than Sp
i.e., the one with the minimum distance to SP ).

In this point, it is important to define a distance metric be-
ween two solutions. Since the solution representation for the TSS
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s a set of nodes, the distance between two solutions S1 and S2 is
measured as the number of different nodes. More formally,

d(S1, S2) = |S1 \ S2| + |S2 \ S1|

The algorithm ends with the best solution included in the Elite
et, which is also the best solution found in the search (step 21).
Having described the proposal, it is interesting to highlight

he dynamic feature of this variant of Path Relinking. In the
ase of SPR, the initial set of solutions is generated and then
ombined, but the new solutions found in the path are never
onsidered neither as initial nor guiding solutions. However, DPR
ynamically generates new solutions which are considered in
uture paths, thus leading to a wider exploration of the search
pace. Section 5 will detailedly analyze the effect of this dynamic
eature on the quality of the solutions found.

The computational complexity of this method is evaluated
imilarly to SPR. The first phase, which generates the ES, has the
ame complexity as GRASP, O

(
Γ · n3 log n

)
. In the second phase,

he dynamic feature of DPR increases the complexity since the lo-
al search is performed in each iteration, resulting in a final com-
lexity of O

(
γ ·

(
n+ n3 log n+ Γ ·

(
n+ n3 log n

)))
, which can be

educed to O
(
γ · Γ ·

(
n3 log n

))
.

.3. GRASP

Path Relinking requires from a method to generate high-
uality and diverse solutions in order to create promising paths
uring the search in both static and dynamic variants. Although
hese solutions can be generated at random, it has been ex-
erimentally shown in several works that designing a specific
onstructive and local improvement method for the problem
nder consideration usually leads to better results [29–31,37].
n the context of influence maximization problems, the Greedy
andomized Adaptive Search Procedure (GRASP) has been shown
o be an effective and efficient method to generate them [38].

GRASP is a trajectory-based metaheuristic originally proposed
n [39], and formally defined in [40]. The metaheuristic is di-
ided into two well-differenced phases: construction and local
mprovement. The key part of GRASP is the construction method,
hich is able to generate not only high-quality solutions but
lso diverse ones. Then, the local improvement method is re-
ponsible for finding a local optimum with respect to the initial
olution. These two phases are iteratively applied until a certain
ermination criterion is reached, which is usually a maximum
umber of iterations. Notice that the computational complexity
f GRASP directly depends on the complexity of the constructive
rocedure and the local search method, resulting in the maximum
omplexity between both of them.
Fig. 3 shows a general view of the main advantages of this

etaheuristic. In particular, Fig. 3(a) shows the performance of a
ompletely greedy algorithm, including the local search method.
n this case, solution S1 is generated and, then, the local search
s able to reach a local optimum with respect to the consid-
red neighborhood. However, the method stagnates in the local
ptimum, and it is not able to escape from it.
The advantage of GRASP is shown in Fig. 3(b). In this case, the

onstruction phase of GRASP generates seven diverse and high-
uality solutions instead of a single one. The diversification of
RASP increases the probability of reaching different regions of
he search space. In the graphical example, this diversification
inds solutions S6 and S7 which are not the best initial solutions
indeed, S6 is the worst initial solution in terms of quality), but the
pplication of the local search method ends in a better solution
han the one found with the greedy approach.
6

onstructive method
The constructive method proposed for TSS problem follows

he GRASP philosophy of diversification by avoiding totally greedy
ecisions. Algorithm 3 shows the pseudocode of the proposed
ethod.

Algorithm 3 Construct(G = (V , E), K , ω)
1: v← Random(V )
2: S ← {v}
3: CL← V \ {v}
4: while

∑
v∈S α(v) ≤ K and CL ̸= ∅ do

5: gmin ← minc∈CL g(c, S)
6: gmax ← maxc∈CL g(c, S)
7: µ← gmax − ω · (gmax − gmin)
8: RCL← {c ∈ CL : g(c) ≥ µ ∧

∑
v∈S α(v)+ α(c) ≤ K }

9: v← Random(RCL)
0: S ← S ∪ {v}
1: CL← CL \ {v}
2: end while
3: return S

The algorithm requires from three input parameters: the input
SN, G = (V , E); the maximum allowed budget, K , and the
parameter that controls the greediness/randomness of the search,
ω. Notice that in the GRASP literature this parameter is usually
referred as α. However, we have changed the notation to avoid
confusion with the effort of a node, which is named as α.

With the aim of increasing diversity, the method selects the
first node to be included at random from the set of users V
(step 1), initializing the solution under construction S (step 2).
Then, the candidate list CL is created with all the nodes but v
(step 3). The constructive method iteratively adds a node to the
solution while the budget is not exceeded and the candidate
list is not empty (steps 4–12). In each iteration, the minimum
and maximum value of a certain greedy function are computed
(steps 5–6). The aim of the greedy function is to evaluate how
promising a candidate is, and it is a key part of the constructive
procedure. The proposed greedy functions will be described be-
low. Then, a threshold µ is evaluated in order to establish a limit
to consider whether a node is promising or not, which depends on
the value of gmin and gmax. Notice that the threshold completely
depends on the value of the input parameter ω ∈ [0, 1]. In
particular, if ω = 0, then µ = gmax and the method becomes
completely greedy, while if ω = 1, then µ = gmin and the method
is totally random. Having this in mind, it is important to find
a balance between randomness and greediness, so the value of
this input parameter will be adjusted in the experiments (see
Section 5.1). With this threshold, the restricted candidate list RCL
is created (step 8), containing all the nodes whose greedy function
value is larger than or equal to the threshold µ, considering
that they do not exceed the maximum budget. Once the RCL is
constructed, the next element is selected at random from it (since
all the nodes in RCL are promising) to favor diversity (step 9). The
selected node is then added to the incumbent solution (step 10),
updating the CL by removing it (step 11). Finally, the method
returns the constructed solution S (step 13). The computational
complexity of this method is O (n · O(g)), where O(g) indicates the
complexity of the considered greedy function.

Having defined the constructive procedure, it is necessary to
present the considered greedy functions. Specifically, two dif-
ferent greedy functions are evaluated in this research. The first
greedy function is traditionally considered in the GRASP litera-
ture, and it consists of directly evaluating the objective function
value if the node under evaluation were added to the incumbent
solution. More formally,

g (c, S)← TSS(S ∪ {c})
of
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Fig. 3. Comparison between a greedy construction with local search and GRASP algorithm.
hich has a computational complexity of O
(
n2

)
since it is directly

the complexity of the objective function evaluation.
However, as it was stated in Section 3, the evaluation of

the objective function for the TSS is a rather computationally
demanding process, so a new greedy function is proposed with
the aim of reducing the computational effort of the evaluation,
since it will be performed in each iteration of the construction
process.

The second greedy function proposed, named gdg (c, S), con-
siders that the relevance of a node is directly proportional to its
degree. In other words, if a node is connected to several nodes,
then it will probably influence a large amount of its adjacent
nodes. Then, this greedy function is evaluated as the degree of
the evaluated node:

gdg (c, S)← |u ∈ V : (c, u) ∈ E|

with a computational complexity of O(1) since it only requires to
evaluate the degree of a node.

Therefore, the constructive method considering gof has a com-
putational complexity of O

(
n3

)
, while considering gdg reduces

its complexity to O (n). Both greedy functions will be tested in
Section 5.1.

Local search
The solution generated with the constructive procedure is not

necessarily a local optimum with respect to any neighborhood.
For that reason, the second phase of GRASP consists of a local
improvement method that finds a local optimum starting from
the initial solution. In order to define a local search method,
it is necessary to establish three main components: the move
operator, the neighborhood explored, and the order in which it
is explored.

Starting from the initial solution S, it is not possible to add
new nodes, since the constructive procedure stops when the
maximum budget is exceeded with any of the remaining nodes.
Therefore, the proposed move operator is defined in two steps:
remove and add. In particular, the move operator removes a
node from the solution and then iteratively adds nodes until the
maximum budget is reached:

move(S, u, V , K )

= (S \ {u}) ∪

⎧⎨⎩v ∈ V \ (S ∪ {u}) :
∑

s∈S∪{u}

α(s)+ α(v) ≤ K

⎫⎬⎭
Having defined the move operator, the next step to propose

a local search method is to define the neighborhood that will be
explored during the search. In the case of TSS, the neighborhood is
defined as the set of solutions that can be reached by performing
a single move operator. More formally,

N(S)← {S ′ ← move(S, u, V , K ) ∀u ∈ S}
7

Finally, it is necessary to indicate the order in which the
neighborhood is explored. There are two main search strategies
in local search methods: the first and best improvement. The
former performs the first move that leads to an improvement in
the current neighborhood, while the latter explores the complete
neighborhood, performing the move that results in the best so-
lution of the neighborhood. Best improvement is usually more
computationally demanding than the first improvement, since it
requires to explore the complete neighborhood in each iteration,
although they have been shown to provide similar results for
several combinatorial optimization problems [41,42].

In the context of TSS, the computational effort is a critical part
of the algorithm, so we have decided to use the first improvement
method with the aim of reducing the computing time to perform
a local search method. With the aim of avoiding biasing the
search, the neighborhood is explored at random, performing the
first movement that results in a better solution.

To sum up, the local search method, denoted as Standard
Local Search (SLS), follows a first improvement strategy based on
a move operator which removes a node from the solution and
replaces it with all the nodes that can be added without exceeding
the allowed budget. The computational complexity of a single
iteration of SLS is O

(
|S| · n · n2

)
= O

(
n4

)
since for each element

in S, it tries to perform the move operator with a non-selected
node and, finally, it requires to evaluate the resulting solution
to check if an improvement is found, which has a complexity of
O

(
n2

)
as stated in Section 3.

With the aim of further reducing the computational effort
of the local search method, three improvements are proposed,
resulting in an Advanced Local Search (ALS). The first improve-
ment tries to escape from cycling the search by avoiding the
exploration of already visited solutions. In order to do so, each
visited solution is associated with a unique number, i.e., hash
code, evaluated following a hash function. Then, every time a
solution is visited, it is evaluated if its corresponding hash code
has not already been included in the set of visited solutions. If
so, the method undoes the move and continues with the next
iteration, avoiding repeating the exploration of the same region
of the search space.

The second improvement is devoted to limit the nodes ex-
plored during the search, discarding those nodes which will result
in an unfeasible solution. In order to do so, the candidate nodes to
be added are sorted with respect to their effort value in ascending
order. Then, only those nodes whose effort value is smaller than
or equal to the available budget are explored. Additionally, to
favor diversity, the exploration is performed at random among
all nodes that satisfy this constraint.

The objective of the last improvement is to reduce the com-
puting time required to evaluate the influence of a node by
caching it. Specifically, the influence of a node (i.e., those nodes
that are affected by its activation), is calculated at the beginning
of the local search method. Then, every time a node is selected to
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e removed or added to the solution, the influence of that node
ver the other nodes of the graph is updated. As a result, it is not
ecessary to completely evaluate the objective function in each
teration but to check the corresponding pre-calculated influence.

In order to evaluate the optimization of ALS with respect
o SLS, the computational complexity of ALS is calculated. In
his case, the traversed nodes are sorted with a complexity of
(n log n) in each iteration. The last improvement reduces the

complexity of evaluating a solution, from O
(
n2

)
to O(n), since

t only requires to traverse the nodes once for updating the
alue of ψ . Therefore, the final complexity of this method is
(|S| · n log n · n) = O

(
n3 log n

)
. It is worth mentioning that this

complexity refers to the worst case which, in the case of ALS, is
hard to reach, since the second improvement limits the number
of nodes explored during the search.

5. Results

This section is devoted to providing a detailed analysis of the
performance of the proposed algorithm. In particular, the section
is divided into two different subsets of experiments: preliminary
and final. The former is designed to select the best configura-
tion for the proposed algorithms in terms of components and
parameter values, while the latter performs a competitive testing
with the best algorithm found in the literature to analyze the
efficiency and efficacy of the proposal. All experiments have been
performed on an AMD EPYC 7282 16-core virtual CPU with 32 GB
of RAM, using Java 17. All instances and source codes have been
made publicly available at https://grafo.etsii.urjc.es/TSS.

The dataset used to perform the experiments has been derived
from the best algorithm found in the literature to provide a fair
comparison. This set of instances is conformed with 82 instances
derived from real-life social networks which have been exten-
sively used in social network analysis. The main drawback of this
dataset is that the largest network is conformed with 58 nodes,
which might not be challenging enough considering the current
size of social networks. To mitigate this drawback, we have added
8 additional instances, with sizes from 67 to 10,312 nodes. The
size of each instance is included in Table 8 in Appendix.

Given a node v, its effort α(v) and reward β(v) is also given
by the instance. The value of the effort and the reward for the
original instances have been directly derived from the original
dataset. For the new instances, we would like to thank the authors
for kindly sending us the code [19] to calculate all the required
parameters to generate the instance. Following this definition,
the users with larger influence has a larger associated reward.
Regarding the effort, those users which are easily influenced has
a smaller effort.

5.1. Preliminary results

The preliminary experiments are designed to adjust the pa-
rameters of the proposal and to select the best configuration of
elements to be included in the algorithm. The experiments have
been designed to incrementally configure the algorithm following
a sequential design. Although a full-factorial experimentation
may better adjust the parameters, it has been shown that the
results are usually equivalent [43].

With the aim of avoiding overfitting, the preliminary experi-
ments are performed over a subset of 18 representative instances,
which is a 20% of the complete set of 90 instances. All the exper-
iments report the following metrics: Avg., the average objective
function value; Dev. (%), the average deviation with respect to
the best solution found in the experiment; Time (s), the average
computing time required to execute the algorithm measured in

seconds; and, # Best, the number of times that the algorithm

8

Table 1
Comparison of the two proposed greedy functions when considering different
values for ω.
Constructive ω Avg. Dev. (%) Time (s) #Best

gof

0.25 47.28 4604.56 400.07 15
0.50 46.94 3985.67 400.04 15
0.75 44.61 7259.96 400.03 14
RND 45.00 5435.67 400.04 15

gdg

0.25 3530.56 1.08 160.89 15
0.50 3551.00 2.06 137.62 12
0.75 3571.39 1.37 121.09 14
RND 3637.94 0.40 122.42 17

Table 2
Comparison between the two proposed local search strategies.
Algorithm Avg. Dev. (%) Time (s) #Best

SLS 3546.22 0.95 1202.26 16
ALS 3828.61 0.00 285.79 18

reaches the best solution found in the experiment. Notice that in
the tables in which the optimal value is known, # Best is replaced
by # Optima.

The first experiment is designed to select the greedy function
to be considered in the constructive phase of GRASP, as well
as to select the best value for the ω parameter, which controls
the greediness of the construction. In particular, greedy functions
gof and gdg are tested, each one of them considering the values
= {0.25, 0.50, 0.75, RND}, with a fixed number of 100 itera-

tions. Table 1 shows the results obtained by each combination
of parameters. Notice that the maximum time allowed to each
constructive is set to 3600 s.

The most remarkable thing about the results is that the greedy
function based on the objective function value, gof , consistently
produces drastically worse results than the ones provided by gdg .
The rationale behind this is the inclusion of more challenging
instances, in which gof only generates a small number of solutions
in the maximum allowed time, thus resulting in low-quality
solutions.

If we now analyze the results obtained by gdg , the computing
time is clearly smaller than gof , being able to solve all the in-
stances without reaching the maximum allowed time. It is worth
mentioning that the differences in computing time among the
ω values are negligible. The best results in terms of quality are
obtained with ω = RND, with the smallest deviation (0.40%)
and the largest number of best solutions found (17 out of 18).
Therefore, we select gdg and ω = RND for the constructive
procedure.

The second experiment is designed for evaluating the per-
formance of ALS with respect to SLS. Since the SLS is rather
computationally demanding, the maximum allowed computing
time is set to three hours per instance (10,800 s). Table 2 shows
the results obtained when comparing both local search strategies.

Analyzing the quality of the local search methods, both are
equivalent when considering the smallest instances. However, the
differences appear when including the most challenging ones. In
this case, SLS is not able to finish, so it is not able to reach the best
solution in 2 out of 18 instances. Regarding the computing time,
ALS is more than four times faster than SLS. Therefore, we select
ALS for the remaining experiments as the local search method.

Having configured the constructive and local search methods,
the next experiment is devoted to establishing the size of the
initial population, ∆, and the Elite Set, δ, for the SPR. In order
to do so, we have fixed δ = 10 and vary ∆ in the range [10, 50]
with a step of 10. Table 3 shows the results obtained.

It can be derived from the results that even considering the
smallest initial population of ∆ = 10 results in high-quality so-
lutions. However, it can be seen how the efficacy of the algorithm

https://grafo.etsii.urjc.es/TSS
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Table 3
Comparison of different sizes for the initial population of Static Path
Relinking when fixing the Elite Set size to δ = 10.
∆ Avg. Dev. (%) Time (s) #Best

10 3799.50 0.51 86.61 15
20 3845.00 0.59 94.93 15
30 3845.61 0.01 115.51 17
40 3846.78 0.00 165.64 18
50 3846.78 0.00 206.36 18

Table 4
Comparison of GRASP isolated and coupled with SPR to analyze the contribution
of each part of the algorithm.
Algorithm Avg. Dev. (%) Time (s) #Best

GRASP 3637.94 1.97 122.42 15
SPR 3846.78 0.00 165.64 18

Table 5
Comparison between different size of the Dynamic Path Relinking Elite Set and
the new solutions.
Γ γ Avg. Dev. (%) Time (s) #Best

10 10 3842.78 25.05 192.66 16
10 20 3846.78 0.00 417.30 18
20 10 3846.78 0.00 411.66 18
20 20 3846.78 0.00 1098.50 18

increases with the size of the initial population, stagnating when
∆ = 40. In particular, ∆ = 50 provides the same results but
requires almost 30% more computing time. Therefore, we select
∆ = 40 for the final configuration of SPR. We have performed
the same experimentation for the value of δ fixing the initial
population size to ∆ = 40, but there are no differences in quality
among the different values. For this reason, we have selected an
Elite Set size of δ = 10.

Having selected the best GRASP configuration, i.e., constructive
method using the greedy function gdg and ALS as a local search,
and the best SPR configuration, i.e., initial population size of
40, it is necessary to analyze the contribution of SPR to GRASP.
In order to do so, an experiment is performed comparing the
results obtained by GRASP isolated and then coupled with SPR.
The results are shown in Table 4.

As expected, SPR is able to reach all the best solutions of
the experiments, with a deviation of 0%. Furthermore, it does
not considerably increase the computing time, being an efficient
method for the TSS. On the contrary, GRASP fails to reach 3 out
of 18 best solutions, remaining at a deviation of nearly 2% with
respect to the solution found by SPR. These results confirms the
contribution of SPR to the final algorithm.

The last preliminary experiment is designed to configure the
dynamic variant of Path Relinking, DPR. In this case, there are two
input parameters to adjust: Γ , the size of the Elite Set, and γ ,
the number of new solutions generated to combine with each
solution of the Elite Set. The tested values are Γ = {10, 20}
and γ = {10, 20}, evaluating all possible combinations of these
values. The results are shown in Table 5.

As expected, the computing time increases drastically with
the size of the Elite Set and the initial population. However,
the quality does not vary when considering pairs (∆, δ) =
(10, 20), (20, 10), (20, 20)}. The combination (10, 10) can be di-
ectly discarded due to the large deviation of 25% provided.
herefore, we select the configuration that provides the smallest
omputing time, which is ∆ = 20 and δ = 10.

5.2. Final results

Since the dataset has been increased with more complex and

challenging instances, it is necessary to establish a time limit for

9

Table 6
Comparison of SPR, DPR, SA, CELF and Gurobi solver when considering the
original dataset in which Gurobi is able to reach the optimal value.
Algorithm Avg. Dev. (%) Time (s) #Optimal

Gurobi 45.38 0.00 117.14 82
DPR 44.34 2.58 0.01 76
SPR 44.54 1.82 0.01 79
SA 46.31 4.86 0.01 76
CELF 42.07 12.19 0.01 61

the exact algorithm. If the Gurobi solver reaches that time limit,
it returns the best solution found so far, which is not necessarily
the optimal value. In particular, the time limit given to the Gurobi
solver is set to 108 000 s (approximately 30 h).

The best previous approach is an exact method which shows
its limits when dealing with larger and more complex instances.
In order to evaluate the contribution of our proposal, we have also
included an additional metaheuristic algorithm for performing a
comparison with SPR and DPR. In particular, we have selected
Simulated Annealing (SA), which is a metaheuristic based on the
analogy between an optimization process and a thermodynamic
process known as annealing. It is a search method which tries to
escape from local optima allowing to explore worse solutions if
those solutions satisfy certain criteria. SA was originally proposed
by Kirkpatrick et al. [44] and it has been successfully applied in a
wide variety of hard combinatorial optimization problems. SA has
been successfully applied in several works related to influence
maximization problems [45,46].

Additionally, the well-known Cost-Effective Lazy Forward
(CELF) selection algorithm [47], which has been widely used in
the context of influence maximization problems and, in par-
ticular, in TSS [48], is included in the comparison. CELF is a
greedy procedure which leverages the submodularity property
of the network to considerably reduce the computational effort
of the greedy hill-climbing algorithm. The main objective of this
optimization is to scale to large problems, reaching near optimal
placements. This improvement makes CELF approximately 700
times faster than the original procedure.

There exists several implementation of SA which are pub-
licly available. For this work, we have selected the one provided
by the Metaheuristic Optimization FramewoRK [49], which has
been tested over several hard optimization problems [50,51] SA
requires from several parameters, which has been set to the
values recommended in the literature. The parameters used are:
cooldown (C), which indicates the temperature variation, is set
to 0.98; the initial temperature (Ti), which represents the worst
value that can be found in the neighborhood, set to 100 000; the
maximum number of iterations (I), set to 100; and the neighbor-
hood considered during the search, which is based on the move
operator defined in this work. The complexity of this implemen-
tation is divided into the construction phase and the proper SA
algorithm. The complexity of the constructive phase is equal to
GRASP complexity described in Section 4.3, while the complexity
of SA is evaluated as O

(
Ti · I · n2

)
. We refer the reader to [52] to

a deeper analysis of the complexity of SA.
The results are divided into two different experiments. First

of all, SPR and DPR are tests when considering the set of original
instances in which the exact method is able to reach the optimal
value. Table 6 shows the results obtained.

As it can be derived from the results, SPR performs slightly
better than DPR in this set of instances, being able to reach 79 out
of 82 optimal solutions, while DPR reaches 76. It is important to
remark that the average deviation of both methods, smaller than
0.05, indicates that in those instances in which neither SPR nor
DPR are able to reach the optimal value, they stay really close
to it. In order to confirm this hypothesis, we have conducted a
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Table 7
Comparison of CELF, SA, SPR and DPR over the set of largest and most complex instances.
Instance CELF SA

Avg. Dev. (%) Time (s) #Best Avg. Dev. (%) Time (s) #Best

PRISON* 240 11.11 0.02 0 270 0.00 0.34 1
EMAIL-EU-CORE* 4672 1.79 22.71 0 4757 0.00 267.78 1
EGO-FACEBOOK 19462 0.00 3609.75 1 19462 0.00 1044.35 1
CA-GRQC 22487 5.05 12441.33 0 23684 0.00 5364.14 1
TWITCH_EN 25060 0.22 16833.33 0 23853 5.03 5885.88 0
LASTFM_ASIA 25005 0.00 26017.00 1 23000 8.02 6160.10 0
CA-HEPTH 44451 1.16 165624.79 0 44972 0.00 9105.73 1
BLOG_CATALOG3 46732 0.00 44674.80 1 46418 0.67 8407.40 0

Summary 23514.13 2.23 33652.97 3 23302.00 1.71 4534.97 5

Instance SPR DPR

Avg. Dev. (%) Time (s) #Best Avg. Dev. (%) Time (s) #Best

PRISON* 270 0.00 0.07 1 270 0.00 0.16 1
EMAIL-EU-CORE* 4757 0.00 84.48 1 4757 0.00 262.59 1
EGO-FACEBOOK 19462 0.00 279.47 1 19462 0.00 769.70 1
CA-GRQC 23630 0.23 442.07 0 23684 0.00 2166.29 1
TWITCH_EN 24853 1.06 680.77 0 25116 0.00 2230.12 1
LASTFM_ASIA 24556 1.80 760.97 0 24780 0.90 2409.55 0
CA-HEPTH 44909 0.14 2140.92 0 44972 0.00 7743.06 1
BLOG_CATALOG3 46595 0.29 1336.91 0 46692 0.09 8705.44 0

Summary 23629.00 0.44 715.71 3 23716.63 0.12 3035.87 6
pairwise non-parametric Wilcoxon statistical test between SPR
and Gurobi solver, obtaining a p-value equal to 0.109, which
ndicates that, with a confidence interval of 95%, there are not
tatistically significant differences between those methods. Re-
arding the SA, it is worth mentioning that it is able to reach 76
ut of 82 instances with a deviation of 4.86%, requiring negligible
ime such as SPR and DPR. With respect to CELF, the algorithm
equires from negligible computing times as DPR, SPR and SA, but
t only reaches 61 out of 82 optimal solutions, with a deviation of
2.19%. From these results, we can obtain two main conclusions:
A is a competitive algorithm for the TSS, and the proposed DPR
nd SPR significantly contribute to the quality of the obtained
olutions, as it can be seen in the smaller deviation with respect
o the optimal value.

The last experiment is devoted to evaluate the performance of
he proposed algorithms and the Gurobi solver when considering
he most challenging and realistic instances. Table 7 shows the
esults obtained in the set of large instances. In this case, we show
he results disaggregated, since it is conformed with 8 instances
hat can be individually analyzed.

It is worth mentioning that the Gurobi solver is only able to
rovide the optimal solution for 2 out of 8 instances derived from
he new set of complex instances marked with an asterisk in
he corresponding instance name. For the remaining instances,
urobi is not even able to load the model in memory, which high-
ights the need to consider metaheuristic algorithms for this set
f challenging instances. In particular, in those instances where
urobi reaches the optimal value, SA, SPR and DPR are also able
o find it. However, CELF is not able to reach the optimal value
or these two instances. Additionally, for the instance EMAIL-EU-
ORE, Gurobi requires almost 30 h to find the optimal value, while
A requires 268 s, DPR 262 s and SPR only 85 s.
Analyzing the instances in which Gurobi is not able to even

oad the model, SPR requires from smaller computing time than
PR in general, but it provides worse results in terms of quality.
egarding SA, it is able to provide competitive results in these
hallenging instances. Specifically, SPR reaches the best solution
n 3 out of 8 instances, SA reaches 5 out of 8 best solutions, and,
inally, DPR reaches all the best solutions but for two instances in
hich CELF is able to provide slightly better results. It is worth
entioning that CELF requires from approximately five times the
10
computing time required by DPR, thus being DPR much more
scalable for large scale networks. In terms of deviation, CELF
provides the worst results with a 2.23%, followed by SA with
1.71%, but it is considerably larger than the one obtained by SPR
and DPR. Specifically, the average deviation obtained by SPR is
considerably small (0.44%), and DPR is able to reach a deviation of
0.12%. Since the deviation of SPR is really close to 0%, we conduct
a pairwise non-parametric Wilcoxon statistical test to evaluate
if there are statistically significant differences between SPR and
DPR. The resulting p-value of 0.04, smaller than 0.05, indicates
that DPR is statistically better than SPR. These results highlights
the contribution of SPR and DPR to the state of the art of TSS.

6. Conclusions

This research presents two different Path Relinking
approaches for solving the Target Set Selection problem. In par-
ticular, the Static Path Relinking variant is compared with the
Dynamic Path Relinking variant over a set of challenging in-
stances derived from real-life social networks. Both methods are
compared with the best approach found in the literature, which
is an exact algorithm implemented in the Gurobi commercial
solver. In the comparison, the limits of the exact approach are
shown, being unable to even load the most complex instances,
while SPR and DPR are able to provide high-quality solutions in
reasonable computing time. Additionally, a complexity analysis
has been included for each algorithm with the aim of analyzing
the computational effort required to execute each one of them.

As a conclusion, both SPR and DPR are able to provide promis-
ing solutions for the TSS, each one of them being suitable for
different situations. On the one hand, if the computing time is
a hard constraint, we do recommend considering SPR since the
quality of the solutions is not drastically worse. On the other
hand, if the maximum computing time is not a critical part of the
problem, DPR is able to provide better results in terms of quality.

The proposed algorithms have been compared with a Sim-
ulated Annealing implementation, which has been successfully
applied in several influence maximization problems, and with
CELF, which is a widely used method in the context of influence
maximization and, particularly, in TSS. The results obtained high-
light the appropriateness of designing an specific algorithm for
solving the TSS such as the proposal of this research.
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Table 8
Size of each instance considered in this work.
ID Datasets N ID Datasets N

1 Knoke Bureaucracies
KNOKI

10 73 Zachary Karate Club
ZACHE

34

2 Knoke Bureaucracies
KNOKM

10 74 Zachary Karate Club
ZACHC

34

3 Roethlisberger & Dickson Bank
RDGAM

14 75 Bernard & Killworth Technical
BKTECC

34

4 Roethlisberger & Dickson Bank
RDPOS

14 76–77 Kapferer Tailor Shop
KAPFTI1 and KAPFTI2

39

5 Roethlisberger & Dickson Bank
RDHLP

14 78–79 Kapferer Tailor Shop
KAPFTS1 and KAPFTS2

39

6 Kapferer Mine
KAPFMU

15 80 Bernard & Killworth Office
BKOFFC

40

7 Kapferer Mine
KAPFMM

15 81 Bernard & Killworth Ham Radio
BKHAMC

44

8 Thurman Office
THURA

15 82 Bernard & Killworth Fraternity
BKFRAC

58

9 Thurman Office
THURM

15 83 Gagnon & Macrae Prision 67

10–24 Newcomb Fraternity
NEWC1...NEWC15

17 84 email-Eu-core network 1005

25 Davis Southern Club Women
DAVIS

18 85 Social circles: Facebook 4039

26–28 Sampson Monastery
SAMPLK1...SAMPLK3

18 86 General Relativity and
Quantum Cosmology
collaboration network

5242

29 Sampson Monastery
SAMPES

18 87 Twitch EN 7126

30 Sampson Monastery
SAMPIN

18 88 LastFM Asia Social Network 7624

31–51 Krackhardt Office css
KRACKAD1...KRACKAD21

21 89 High Energy Physics
Theory collaboration network

9877

52–72 Krackhardt Office css
KRACKFR1...KRACKFR21

21 90 BlogCatalog3 10312
The successful application of Path Relinking metaheuristic to
SS lead us to propose several future lines of research. First
f all, it would be interesting to evaluate the Path Relinking
roposal over the opposite problem: minimization of information
preading, which is interesting in topics such as misinformation
iffusion or disease control, among others. Another interesting
ine of research is the adaptation of Path Relinking to other
ell-known influence maximization problems, such as Budgeted

nfluence Maximization or Influence Spectrum Problem.
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Appendix

This Appendix shows the detailed size of each considered
social network in Table 8. In particular, each instance is associ-
ated with an identification number (column ID), a name (column
Datasets), and the number of nodes (column N). The subset of
instances used in the preliminary experiments are those high-
lighted in bold font, specifically: [2, 5, 10, 20, 24, 31, 38, 43, 47,
51, 57, 65, 70, 75, 78, 82, 86, 89].

Instances with ID from 1 to 82 are directly derived from the
best method found in the literature [19]. The remaining instances,
which will also be included in our public repository https://
grafo.etsii.urjc.es/TSS, have been derived from the following social
network repositories:

• Instance 83: Same repository as the original dataset, http:
//vlado.fmf.uni-lj.si/pub/networks/data/UciNet/UciData.htm
• Instances from 84 to 89: SNAP dataset, https://snap.stanford.

edu/data/
• Instance 90: BlogCatalog, http://datasets.syr.edu/datasets/

BlogCatalog3.html

https://grafo.etsii.urjc.es/TSS/
https://grafo.etsii.urjc.es/TSS
https://grafo.etsii.urjc.es/TSS
https://grafo.etsii.urjc.es/TSS
http://vlado.fmf.uni-lj.si/pub/networks/data/UciNet/UciData.htm
http://vlado.fmf.uni-lj.si/pub/networks/data/UciNet/UciData.htm
http://vlado.fmf.uni-lj.si/pub/networks/data/UciNet/UciData.htm
https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
http://datasets.syr.edu/datasets/BlogCatalog3.html
http://datasets.syr.edu/datasets/BlogCatalog3.html
http://datasets.syr.edu/datasets/BlogCatalog3.html
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