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Abstract

The analysis of the human gait is a research area of great importance due to the impact
on the autonomy of people. This project proposes an alternative to gait analysis based
on data provided by inertial sensors for the prediction of lower limb angles. The decrease
in the number of sensors and their position for gait analysis is evaluated.

This work focuses on the application of Machine Learning (ML) models for the pre-
diction of lower extremity angles during gait. It is proposed as an alternative to the use
of the Kalman Filter (KF). These predictions are made from signals recorded by four
Inertial Measurement Units (IMUs), taking advantage of its low cost and its ease of use
on a day-to-day basis.

To carry out this study, five healthy volunteers data is used during gait in a controlled
environment. It is recorded with four sensors made up of accelerometers and gyroscopes.
They are located on each shin and thigh. Pitch and Roll angles are predicted. A Unscented
Kalman Filter (UKF) provides reference data, commonly used in gait monitoring. For
this, more or less data is used depending on the experiment to be carried out.

In the first two experiments, the quality of the prediction of the movements, that is,
the Euler angles from the inertial signals, is analyzed. The IMU Left Shin (LShin) and
Left Thigh (LThigh) angles are predicted separately knowing volunteer’s data. These
experiments are called Baseline experiments and are the starting point for the following
ones. The objective of the next three experiments is to optimize the number and position
of the IMUs to estimate the angles. The angles of an IMU knowing the data are predicted
using three, two and one IMU data. The last three focus on extrapolating ML models to
data from new volunteers. The results are validated with the UKF reference and compared
with the baseline.

The ML models that are used are Multiple Linear Regressor (MLR), Support Vector
Regressor (SVR) with Linear, Gaussian and Polynomial kernel, Treebagger (TB) and
Multilayer Perceptron (MLP). Furthermore, to overcome the limitation of having little
amount of data, a signal segmentation method called Temporal Window (TW) is applied.
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This method enlarges the available database. The TW sizes applied are 5, 10, 20, 40 and
60 samples.

The results obtained confirm that the number of IMUs and their position can be
optimized. Besides, knowing a person’s gait data improves its prediction. The smallest
error is obtained by predicting the angles of an IMU using the data from two IMUs.
Specifically, an Root Mean Square Error (RMSE) of 0.039 rads and 0.032 rad is obtained
for the Pitch and Roll angles respectively, for the IMU LShin; and RMSE of 0.034 rad
and 0.029 rad for the Pitch and Roll angles respectively, for the IMU LThigh using data
from the IMUs on the right leg. This is obtained with the TB algorithm and 60 samples
of TW size.

These results suggest that ML techniques have great potential to be applied in various
areas from clinical diagnosis to assistance and monitoring devices. It is worth mentioning
that in the state-of-the-art methods there is no study in which the aforementioned algo-
rithms are used as a contrast to the KF for the prediction of gait angles. These results
open new possibilities in the area of gait pattern generation, which can be used in mech-
anized and intelligent prostheses. The objective of optimizing the number of IMUs leads
to a reduction in the number of these, which reduces the amount of resources needed and,
therefore, reduces the cost.
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Chapter 1

Introduction

1.1 Context

Gait is a fundamental activity and, at first glance, easy to perform that is part of our daily
life. Walking allows us to move efficiently and perform various physical activities [1]. Our
locomotor system is set in motion through precise coordination of the nervous system,
muscles and bones. However, gait disturbances can have a significant impact on people’s
quality of life, especially those who suffer from neuromuscular disorders, or injuries, or
are elderly.

Gait prediction is a promising field of study that seeks to understand and predict
movement patterns associated with human gait [2]. Prediction serves to reduce the lim-
itations associated with sensory solutions, in addition to requiring a smaller number of
sensors to record information and measurements [3]. These measurements will be pro-
cessed to obtain gait parameters using different Machine Learning (ML) algorithms. The
applications of gait analysis can be for clinical purposes, such as rehabilitation, or for
non-clinical purposes, such as monitoring athletes recovering from injuries [4]. The abil-
ity to anticipate and predict gait can provide valuable information for designing more
efficient rehabilitation strategies, for evaluating the efficacy of therapeutic interventions,
and to generate custom gait patterns to be included in the development of prostheses and
exoskeletons.

Prostheses are artificial devices that replace or restore a body part that has been
amputated or is missing due to malformation or other causes [5]. This project focuses on
the lower extremities, in cases lower limb prostheses are used to replace the legs, feet, or
specific parts of them. Figure 1.1 shows an example of a lower limb prosthesis. They are
designed to provide support, improve mobility and allow amputees to lead a normal life [6].
Lower prostheses are classified according to the level of amputation: transtibial prostheses
(below the knee), transfemoral prostheses (above the knee), foot and ankle prostheses.

1
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The materials used are diverse and are also a great area of research. The materials are
intended to be biocompatible, such as scaffolds, metals, plastics or ceramics. It depends
on the characteristics of the person [7].

Figure 1.1: Example of leg prosthesis. Its parts are defined [8].

On the other hand, exoskeletons are wearable robotic devices that are attached exter-
nally to the human body [9]. They are designed to improve movement and functionality of
the extremities. They can be used both by people with physical disabilities and by people
without disabilities with the aim of improving their performance in different activities. In
the context of the lower extremities, exoskeletons provide support and assistance to the
legs and hips [10].

The use of exoskeletons and smart prostheses offers several significant advantages for
people with physical disabilities. These technologies have the potential to improve the
quality of life, mobility and independence of users. These smart devices are based on
gait prediction using algorithms and sensors integrated into these devices. They allow to
collect data and use that information to adjust the assistance provided [10].

The use of sensors in healthy people is relevant to be able to simulate movement in
people with amputated or damaged body parts. In addition, this would improve rehabili-
tation and functionality since more personalized solutions are offered [11]. Individualized
rehabilitation lies in recognizing the specific needs of the person suffering from a pathology.
The benefits are optimal treatment, improved results, patient motivation and prevention
of complications [12].

ML can pay a key role in these smart devices detecting gait patterns [13]. By harnessing
the power of ML algorithms, these algorithms can intelligently adjust to the individual
needs of users, improving gait prediction and providing efficient, personalized assistance.
The gait cycle is a repetitive movement, so from the movements of a leg or parts of it, it
is possible to estimate the movements that would be made in a healthy person in the part
to be predicted. In addition, in the literature there are discrepancies about the number of
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sensors to be used in gait analysis and their position [14], so this project seeks to optimize
the use of sensors.

1.2 Motivation

The predictive analysis of gait is a topic of great relevance, since the ability to walk
and move efficiently is essential for people’s independence and quality of life [15]. By
understanding and predicting gait patterns, this work can help in the improvement of the
care and treatment of patients with neuromusculoskeletal disorders, injuries, or disabilities
that affect their ability to walk.

This Bachelor’s Thesis aims to analyze the use of Inertial Measurement Units (IMUs)
for the prediction of angles of the lower extremities so that people with prostheses or
exoskeletons have a better individual and personalized adaptation of movement. This
prediction is analyze by using data from healthy people pulled from a publicly available
database, PHYTMO [16]. PHYTMO is a database with a wide variety of volunteers and
collected by four IMUs, one on each thigh and one on each shin. An Unscented Kalman
Filter (UKF) commonly used to estimate the angles with respect to the horizontal plane
is applied by using the IMU data [17]. The angles are used as a reference to train and
test the ML algorithms. These are the angles that are predicted by ML and by varying
the number of IMUs used.

Furthermore, this project gives the opportunity to apply and develop advanced tech-
nical skills in the field of biomechanics and data analysis in a real context. Besides,
cutting-edge technologies are applied, such as motion sensors, motion capture systems,
and ML algorithms.

1.3 Objectives

The main objective of this work is to develop an estimator of the angles of a limb from
inertial measurements of other IMUs during walking. The estimator is based on ML
techniques and sensor location optimization. However, in order to apply ML, prior pre-
processing is needed, which are also part of the objectives to be achieved. The objectives
of this work are set out below:

1. Angle estimation. In the database used there is no reference for the measured
angles, so it is necessary to estimate them with respect to the horizontal plane using
a Bayesian Filter called UKF.
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2. Evaluation and selection of algorithms and Temporal Window (TW). The
algorithms to be initially tested are: Treebagger (TB), Support Vector Machine
(SVM) with Gaussian, Linear and Polynomical kernels, Multiple Linear Regressor
(MLR) and Multilayer Perceptron (MLP). The criterion to assess the results is Root
Mean Square Error (RMSE). The algorithms and the TW with the best performance
according to the criterion are chosen.

3. Angle prediction. Six experiments are carried out to predict the IMU angles
following two cross-validation methods. In the first, the data of the person to be
predicted is known what is called K-Fold cross-validation. In the second method, the
data of the person to be predicted is not known, so it is validated by leave-one-out
cross-validation.

4. IMUs Value. Data is provided by 4 IMUs located on the thighs and shins. In the
experiments, the number of IMUs used varies in order to obtain the number of these
and the optimal positions. Left Shin (LShin) is predicted, so it focuses on possible
knee exoskeletons, since thigh information is also available.

1.4 Structure

This project is composed of six chapters. However, this study is divided into two main
phases. The first phase is based on contextualizing and giving information on the topic
to be discussed, Chapters 1, 2 and 3. The second phase has to do with the experiments
carried out, Chapters 4, 5 and 6. The chapters are explained below.

• Chapter 1 - Introduction: This chapter explains the need to use ML algorithms for
gait prediction, the use of filters for orientation estimation, and the use of sensors
to record information.

• Chapter 2 - State-of-the-Art: In this chapter a compilation of academic and sci-
entific literature on the use of IMUs for gait prediction is presented, also adding
orientation estimation, angle prediction, evaluation criteria and validation meth-
ods. The state of the art provides a necessary context to understand the current
research landscape.

• Chapter 3 - Theoretical Framework: This chapter is dedicated to explaining the
different ML models used and the IMUs used to capture the data used in the ex-
periments.

• Chapter 4 - Methodology: This chapter is dedicated to explain the experiments
carried out using two cross-validation methods: knowing the data of the person to
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be predicted and without knowing them. In addition, the data processing from the
original database, its labeling, passed through the UKF and TW. Finally the RMSE
evaluation criterion is explained.

• Chapter 5 - Results and Discussion: Along this chapter, the results of previously
explained experiments are exposed with a brief description and discussion.

• Chapter 6 - Conclusion and Future Lines: This final chapter is a summary of the
results. The contribution of the project is discussed along with the limitations faced
during the study. Besides, future lines and impacts are exposed.



Chapter 2

State of the Art

Gait analysis involves the measurement and estimation of various parameters, depending
on the type of analysis. The analysis can include spatial-temporal parameters, Elec-
tromyogram (EMG) activity, kinematics, kinetic parameters during walking and parame-
ters obtained by carrying out motion analysis from various activities [18]; such as jumping
or doing squats. To carry out this analysis by obtaining objective measurements, tech-
nological solutions are needed. These technological solutions commonly are wearable
and non-wearable sensors. Wearable sensors include IMUs with accelerometers and gy-
roscopes. Sensors for EMG, Electroencephalogram (EEG), foot pressure sensors, among
others, can also be used. Non-wearable sensors include ground reaction forces, plates, and
motion capture systems [18] [19].

The measurements obtained with the wearable sensors are processed to obtain walk-
ing parameters. There are many algorithms to process that information. For example,
conventional algorithms using angular velocity [20], musculoskeletal models to estimate
intention using EMG [21], and ML and Deep Learning (DL) techniques.

The different prediction techniques used have been purchased and analyzed in many
works, as well as the advantages and disadvantages of using sensors. In addition, there
is controversy about the number of sensors to use, the location, the model, what pa-
rameters are the most important to measure, as well as the type of optimal prediction
model according to the type of sensor [22]. Some authors focus on studying one type of
gait analysis algorithm, such as DL algorithms, while others focus on a specific type of
algorithm and sensor, such as Artificial Intelligence (AI) using inertial sensors.

ML algorithms have advantages over conventional gait analysis methods. The gait is
temporal and has a nonlinear relationship with its parameters, so ML models can find
the relationships between the inputs and outputs of nonlinear systems [23] and are better
managing data variability. The use of ML models means greater accuracy in predictions
in less time mainly because parameter adjustment is done automatically. This allows

6
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devices that interact with humans, specifically those that help in gait, to adapt to the
needs of patients in real time [24]. This makes the rehabilitation more effective.

Nowadays, an immense number of portable robots that interact with humans are being
developed for various medical and therapeutic purposes [25]. Within these devices, the
most used are exoskeletons, orthoses and prostheses.

An exoskeleton is an electromechanical device made up of sensors, controllers and
actuators that guarantee torque to the joints [26]. The provision of a support torque
allows actions to be performed more easily and with less strain. The exoskeletons are
designed to support the lower and upper extremities, the whole body and can be passive,
active or semi-passive [27].

In the 1960s, exoskeletons were designed for military use [26]. General Electric Com-
pany developed Hardiman I to increase the strength of soldiers, creating what was de-
scribed as “the union of man and machine” [28]. Half a century later, exoskeletons evolved
to be used in different applications [29], such as in industry, rehabilitation and in the
restoration of gait in patients with spinal cord injuries [30], Multiple Sclerosis [31], neu-
rological disorders, among others.

One of the exoskeletons that stands out in the industry is the Berkeley Lower Ex-
tremity Exoskeleton (BLEEX) which has seven degrees of freedom [32]. It has hydraulic
systems, which allow lifting heavy loads. MIT exoskeleton is another semi-passive ex-
oskeleton for weight lifting, made up of springs and dampers instead of actuators. It acts
as an intermediary, transferring 80% of the load from the person to the ground. HAL-5,
Hybrid Assistive Limb, by the University of Tsukuba, is a full-body exoskeleton designed
for all types of people and allows paraplegics to walk by decoding their intentions [33].
MINDWALKER uses the paraplegic user’s EEG and EMG in real time to control the
exoskeleton [34].

Orthoses is another category of assistive technology, sometimes used interchangeably
with exoskeletons [35]. The purpose of orthoses is to help people with pre-existing patholo-
gies. However, exoskeletons can also be worn by healthy people to enhance human capa-
bilities. Orthoses can be passive or active [36].

Prostheses are devices designed to replace or enhance a body part that is missing or
not working properly [37]. These can be used to replace amputated limbs, such as arms
or legs, or to restore function to organs or body systems. Prostheses can be mechanical,
electrical, or a combination of both, and are designed to fit the individual needs of each
person. Thanks to advances in technology, modern prostheses offer greater functionality,
comfort and naturalness, allowing people to carry out daily activities and participate fully
in society.

Lower extremity exoskeletons and prostheses, when used as assistive devices, have
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two primary applications: (i) rehabilitation and gait training, or (ii) gait assistance to
perform daily activities [38]. The way in which these devices move and interact with the
user is controlled by a control strategy. Trajectory tracking is a type of control strategy
that allows the patient to walk with the device following a gait trajectory pattern, often
obtained from healthy people. Assist as needed, is another control strategy in which the
device provides the necessary help to the patient at all times. The level of assistance vary
depending on the gait phase, the force exerted by the patient and the patient’s recovery
period [38]. The most important part of the control strategy is given by the estimation
and detection of the gait.

Controlling exoskeletons and intelligent prostheses is one of the most recent applica-
tions of gait analysis. In clinical applications, gait analysis is used for rehabilitation and
diagnosis of pathologies [39]. Among non-clinical applications, gait analysis has been used
in sports to monitor recovery after injury and to assess athlete activation [40]. Also, it has
been used in security, for biometric identification and authentication [41]. In the elderly,
to detect possible falls and in well-being, for the identification of the emotional state [42].

Regarding the literature of the mentioned devices, as additional information, before
2002 the number of papers published on exoskeletons and intelligent prostheses was less
than 30 per year and the cumulative number of articles was less than 500. Between 2016
and 2020, no paper focused on gait analysis for the control of exoskeletons and prostheses
in the lower extremities. In mid-2019, the total number of papers on the subject was close
to 4000 [43].

2.1 Gait Features and Related Parameters

According to Whittle, the gait is the terminology used to describe “the way or the style
with which we walk in” [44]. When studying the gait, several parameters can be observed.
For a healthy gait, these parameters have to be within a normal range, with variations
caused by the anthropomorphic characteristics of people [45]. When the parameters are
outside these normal ranges, it is said that there is a pathological gait. The different
types of gait parameters are explained below:

2.1.1 Gait Cycle Phases

The action of walking consists of cycles of events that are repeated periodically. Each
cycle is made up of a stance phase, where the lower extremities are in contact with the
ground; and the swing phase, where there is no contact, see Figure 2.1.

The stance phase begins with an initial contact called “heel strike”. Then, the foot is
fully supported on the ground as a result of dorsiflexion. Then, the heel begins to separate
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Figure 2.1: Phases of the gait cycle [46].

from the ground, starting the pre-swing phase, which is the last moment of the foot in
contact with the ground to start the swing phase. The swing phase is divided into three
simple phases: (i) initial swing or toe-off, (ii) mid-swing and (iii) terminal swing. This
sequence occurs for the left and right foot alternately, resulting in movement [45]. Gait
phases are part of the spatial-temporal parameters [18].

2.1.2 Joint Angle

The angles of the joints change during the gait cycle. The angles of the hip, knee and
ankle are usually measured mostly in the sagittal plane since it is where most movement
occurs [45]. Joint angles are considered kinematic parameters of gait [47]. The first and
second derivatives correspond to angular velocity and angular acceleration, respectively.

2.1.3 Torque / Moment

The moment of force refers to the rotation caused by the application of a force, the
magnitude of which depends on the applied force and the shortest distance between the
location of the applied force and the pivot. This distance is called the lever arm. There
is a certain difference between moment and torque. The moment results in bending and
the torque in rotating. Since the mathematical formula is the same, they are often used
interchangeably [48].

In biomechanics, the moment of force depends on when muscles contract, causing a
pivot to rotate (for example, the knee). Internal moments can be passive due to soft
tissue tension and active due to muscle contraction (eccentric, concentric and isometric
contraction). On the other hand, external moments are due to external forces such as
gravity [45]. The moment belongs to the kinetic parameters of gait [18].
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2.1.4 Locomotion Mode

Modes of locomotion refers to different activities such as walking, standing, going up
a ramp, or climbing stairs. Various authors use ML classification models according to
different modes that the same authors choose, see Rai et al. paper [49], which objective
is to predict ankle trajectory angles in unstructured activities and assess whether the rest
of the body is involved in the biomechanics of the foot. The disadvantage of the modes
is that they cannot be adapted to the specific needs of each patient and that there are
terrains and activities that are difficult to categorize.

2.1.5 Intention

Intention is defined as “the need for the robot to have knowledge of some aspect of the
human’s planned action in order for the robot to appropriately assist toward achieving
that action” [50]. The intention can be measured from the central nervous system with
the brain activity, from the peripheral nervous system with the electrical activity of the
muscles or from the forces of interaction between the human and the robot that can be
measured with force sensors [50]. The intention can have discrete states that can be used
to trigger the initiation of certain movements or to transition between discrete control
modes or transition between continuous states, such as the desired position trajectory.

2.2 Literature Research

A search for scientific articles focused on the prediction of gait has been carried out.
PubMed database is the online library chosen for applying the following command filter.
We look for papers that focused on the implementation of ML algorithms for gait analysis
to be used in exoskeletons and lower limb prosthesis. The keywords selected to extract
the desired papers is aimed at being general enough not to leave any valuable papers.
The query rule introduced is the following:

(exoskeleton OR orthosis OR orthotic OR prosthesis) AND (gait OR locomotion) AND
(recognition OR classification OR prediction OR intention OR selection OR detection
OR discrimination OR partitioning OR segmentation OR estimation) AND (“machine
learning” OR “deep learning” OR “artificial intelligence” OR “neural” OR "decision trees")

The AND conditional operator is used for the article to bring the words it joins; and
the OR conditional operator is used for the article to bring at least one of the words it
joins.
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2.2.1 Article Selection

With the application of the explained search filter, 585 papers are obtained. As an
inclusion method, only papers with free full text were included, leaving us with 253
papers. The relationship of the publications with the year they were published can be
seen in Figure 2.2. The increase in studies related to this topic in recent years is notable,
with 2020 being the year in which the largest number of works were carried out.

Figure 2.2: Distribution of 253 publications along the time.

These papers have been analysed based on abstract only. Less relevant or irrelevant
papers are manually removed; for example, because the scope of these papers has no
significance in our review. Figure 2.3 shows the flowchart for article selection. Some
reasons for excluding papers include the use of upper limbs instead of lower limbs; or the
absence of ML algorithms of interest. Besides, only clinical trials, reviews, systematic
reviews, meta-analysis, books and documents were chosen as article type. Finally, there
are 30 papers of interest. Furthermore, a complementary search on IEEE, ScienceDirect
and Google Scholar to complete this chapter. In this complement search, papers are
manually chosen when they are related with this work.

2.2.2 Research Results

In this Section, the results of the performance of the algorithms and the sensors used to
obtain the predictions are explained. The discussed parameters are: (1) joint angle and
trajectory, (2) gait phase and (3) locomotion mode.
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Figure 2.3: Flowchart on the methodology of article selection.
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2.2.2.1 Joint Angle and Trajectory Estimation

Joint angle and trajectory are considered parameters of motion kinematics. The use of
sensors is key to obtain data from the subjects to be predicted. Studies related to these
parameters are shown below.

In [51], an Artificial Neural Network (ANN) is implemented by Kutilek and Farkasova,
to predict joint angles using cyclograms. The authors used a backpropagation-trained
Neural Network (NN) to predict future limb angles. The NN inputs were the actual
angles for a single joint, angular acceleration, weight and height of the person. Hip-knee
prediction showed more accurate visual results than ankle-knee prediction according to the
comparison between the real cyclogram and the predicted one. There are no quantitative
results. The cyclograms they are compared to are from past research on the gait cycle.

Mazumder et al. [52] present a method to generate lower limb gait pattern by judging
human intention using a wearable sensor system. Data is measured from users with vary-
ing anthropomorphic features. Contribution of this paper is in development of a wearable
sensor system, multi-channel redundant fusion to calculate stride time and an adaptive
gait trajectory generation algorithm. The proposed method of trajectory generation is
used to regenerate lower limb joint motion in sagittal plane for wearable robotic devices
like prosthesis and active lower limb exoskeleton.

An Elman NN is implemented by Wang et al. [53], to establish a relationship between
surface EMG and knee joint angles. The signals were recorded during leg extension
exercises at various speeds, with and without load. The results were assessed according
to RMSE. The authors report that the higher the leg extension speed, the RMSE is higher.
However, when compared to loaded and unloaded exercises at constant speeds, having a
load results in a lower RMSE. At low speed with load gets a RMSE(%) of 3.5534.

Another study carried out by Mundt et al. [54] tries to overcome the limitation of
measurement discrepancies and the missing information on kinetic motion parameters
using a machine learning application based on ANNs. For this purpose, inertial sensor
data linear acceleration and angular rate was simulated from a database of optical motion
tracking data and used as input for a Feedforward Neural Network (FFNN) and Long-
Short Term Memory (LSTM) NN to predict the joint angles and moments of the lower
limbs during gait. Both networks achieved mean correlation coefficients higher than 0.80
in the minor motion planes, and correlation coefficients higher than 0.98 in the sagittal
plane. These results encourage further applications of AI to support gait analysis.

The position of sensors to obtain data can determine the quality of the results and
is a topic of great controversy. In the study carried out by Findlow et al. [55], two
inertial sensors are used on the shin and the foot. The objective of this study is to
estimate sagittal plane ankle, knee and hip gait kinematics using 3D angular velocity and
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linear acceleration. Data is collected using reflective markers. They explore the accuracy
of intra-subject predictions, i.e., where training and testing uses trials from the same
subject, and inter-subject, where testing uses subjects different from the ones used for
training. A generalized regression networks algorithm was used to predict obtaining that
the best results are from intra-subjects predictions, with correlations 0.93–0.99 and with
an mean absolute deviation less than or equal to 2.3° between measured kinematic joint
angles and predicted angles. The inter-subject case produced correlations between 0.70
and 0.89; and larger absolute differences between measured and predicted angles, ranging
from 4.91° for the left ankle to 9.06° for the right hip. The angular velocity data added
little to the accuracy of predictions and there was also minimal benefit to using sensor
data from the shin. Thus, a wearable system based only on footwear mounted sensors
and a simpler sensor set providing only acceleration data shows potential.

Another use case for a single IMU is the study by Lim et al. [56]. They propose the
sensor to be placed at the Center of Mass (CoM) of the subject to predict data from
the lower extremities, using an ANN. Data from seven subjects walking on a treadmill
at various speeds were collected from a single IMU worn near the sacrum. The data was
segmented by step and numerically processed for integration. Six segment angles of the
stance and swing leg, three joint torques, and two ground reaction forces were estimated
from the single sensor, with fair accuracy. In all cases, the prediction with the lowest
error is obtained in the shin at fast speed, with an Normalized Root Mean Square Error
(NRMSE) of 3.46±0.66%, 4.99±1.43% and 9.33±3.42% for segment angles of stance leg,
segment angles of joint torques of stance leg, respectively. For ground reaction forces a
normalized error of 6.16±1.76% is obtained at moderate speed in anteroposterior axis and
6.26±1.24% in the vertical axis. These results indicate the importance of the CoM as a
dynamic determinant of multi-segment kinetics during walking. The trade-off between
data quantity and wearable convenience can be solved by utilizing a machine learning
algorithm based on the dynamic characteristics of human walking.

In [57] an accelerometer placed on the foot is used for sagittal plane lower extremity
angle measurement. The study seeks to validate the sensor measurements during running
based on a deep learning approach. A Convolutional Neural Network (CNN) is used with
data from 10 participants while they run the same course at five different speeds. An
optical motion capture system measures the reference angles of the joints. The CNN
model predictions deviated from the reference angles with a RMSE of less than 3.5° and
6.5° in intra- and inter-participant scenarios, respectively. Furthermore, they provide an
estimation of six important gait events with a Mean Absolute Error (MAE) of less than
2.5° and 6.5° in intra- and inter-participants scenarios, respectively. This study highlights
an appealing minimal sensor setup approach for gait analysis purposes.

A concern similar to the one that led to this work is the one proposed by Hernandez et
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al. [58]. They wanted to find out if DL models accurately predict the angles of the joints of
the lower limbs with data from the IMUs during walking. Lower-limb kinematic data were
simultaneously measured with a marker-based optical motion capture system and running
leggings with 5 integrated IMUs measuring acceleration and angular velocity at the pelvis,
thighs and shins. Data was recorded from 27 participants with means of 26.5±3.9 years,
1.75±0.07 m and 68.3±10.0 kg while walking at 4 and 6 km/h and running at 8, 10,
12 and 14 km/h on a treadmill. The model input consists of raw IMU data, while the
output estimates the joint angles of the lower body. The model was trained with a nested-
fold cross-validation and tested considering a user-independent approach. MAE for the
Degrees of Freedom (DoF) ranged from 2.2±0.9° to 5.1±2.7° with an average of 3.6±2.1°.
The results of this study show that the proposed model can predict the kinematics of
the joints for walking, running and changes in gait without the need to discriminate the
subjects wearing the sensors. These results have been validated with treadmill walking
and have not yet been confirmed for walking in other environments.

On the other hand, the works face limitations, the small available database being
common. So, it is necessary to use methods to extend said data in order to improve
predictions. In this work we use a method called TW is used which is the same as
one used in [59] but with some modifications. In this paper a linear time-series-based
prediction models have been proposed for joint movement for the lower extremity. The
joint movement data is collected at RAMAN Lab, MNIT Jaipur. Experimental results
indicate that this approach is better than FFNN in the case of linearly correlated data,
considering MAE as an evaluation measure. The proposed prediction model could be
used for efficient control of lower extremity robot-assisted device for a smooth gait for the
patients.

There are other methods for increasing dataset size, such as the one used in [60] where
the objective is to analyze the estimation of 3D joint angles and joint moments of the
lower limbs based on IMU data using a FFNN. The dataset summarizes optical motion
capture data of former studies and additional newly collected IMU data. Based on the
optical data, the acceleration and angular rate of inertial sensors was simulated. The data
was augmented by simulating different sensor positions and orientations. Gait analysis is
performed on 30 participants using an optoelectronic system and force plates in parallel
with five IMUs. A mean correlation coefficient of 0.85 for the joint angles and 0.95 for
the joint moments was achieved. The RMSE for the joint angle prediction was smaller
than 4.8°. The results are good in the sagittal plane and reflect that lengthening the data
set improves the prediction of joint angles. This indicates that research on appropriate
augmentation techniques for biomechanical data is useful to further improve machine
learning applications.

On the other hand, a drawback of using wearable sensors is their dependence on a
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battery. Trying to minimize this problem, Sung et al. [61] thought about using a single
low-frequency IMU (23 Hz) to estimate multi-joint angles based on LSTM NN. The IMU
is located on the side of the shin during a walking exercise in which each of the 30 healthy
volunteers chooses the speed at which to go. The results show a comparatively good
accuracy level, similar to previous studies using high-frequency IMU sensors. Compared
to the reference results obtained from the motion capture system, the estimated angle
coefficient of determination (R2) is greater than 0.74, and the RMSE is less than 7° and
9.87%, respectively. The knee joint showed the best estimation performance in terms of
the RMSE and R2 among the hip, knee, and ankle joints.

Finally, the most important factor when predicting is the choice of ML model. There
are many algorithms that can be used to estimate, but finding the one that produces the
optimal results can be complex. This is why several models are often used for comparison.
An example of this can be seen in the study by Moghadam et al. [62] where four non-
linear regression models are used to estimate muscle kinematics, kinetics and muscle forces
using IMUs and EMG data. Seventeen healthy volunteers (9F, 28±5 years) had to walk
on a flat surface for a minimum of 16 trials. For each trial, marker trajectories and
three force-plates data were recorded to calculate pelvis, hip, knee, and ankle kinematics
and kinetics, and muscle forces (the targets), as well as 7 IMUs and 16 EMGs. Marker
trajectories from a 12-camera optical motion capture system (Vicon Motion Systems Ltd.,
UK), ground reaction forces from three gound embedded force plates (Bertec, Columbus,
Ohio), EMG (Mini-Wave, Italy), and IMUs (Vicon IMeasureU Ltd., NZ). The features
from sensors’ data were extracted using the Tsfresh python package and fed into 4 ML
models; CNN, Random Forest (RF), SVM, and Multivariate Adaptive Regression Spline
for targets’ prediction. The RF and CNN models outperformed the other ML models
by providing lower prediction errors in all intended targets with a lower computational
cost. Only kinematics are parameters of interest for this project. The lowest RMSE was
obtained with RF model having an error equal to 0.74° related to pelvic obliquity for
intra-subject examination and 2.95° for inter-subject examinations. This study suggested
that a combination of wearable sensors’ data with an RF or a CNN model is a promising
tool to overcome the limitations of traditional optical motion capture for 3D gait analysis.

2.2.2.2 Gait Phase Estimation

Another relevant parameter is the classification and identification of gait phases. The
magnitude of the torque offered by an active exoskeleton or orthoses varies depending on
the phase of gait. A wide variety of sensors and algorithms are used, but only those that
are of interest for this project are detailed.

A MLP is implemented by Jung et al. [63] to detect both gait phases: stance and
swing. By detecting the phases, they can control the ROBIN-H1 exoskeleton for the
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rehabilitation of stroke patients. The inputs in the MLP are the pitch angle orientation
and angular velocities measured by various sensors. It had one hidden layer with growing
nodes that increased from 5 to 50. Ground truth labels were obtained using force plates.
To analyze the results, the Classification Success Ratio (CSR) was used for three types
of errors: early classification, delayed classification, and miss-classification. Online and
offline tests were carried out with an average CSR rate of 90.75% and 97.75%, respectively.

Ma et al. [64] implemented an MLP, as a comparison with the Kernel Recursive Least
Square (KRLS) method and SVM to detect 4 gait phases: heel, flat foot, heel out and
swing. MLP has an average qualify ratio for 3, 5 and 10-fold cross-validation of 83.17%,
82.42%, 83.23%. MLP has worse results compared to KRLS, with 2.33%, 3.62% and
3.04% classification ratios for 3, 5 and 10-fold cross-validation. The SVM had a Gaussian
kernel function and was optimised using particle swarm optimization. The performance
was lower than KRLS too, with 83.00%, 82.69% and 83.29%.

Another NN is implemented by Kang et al. [65] to estimate the percentage of the gait
cycle, to control a bilateral hip exoskeleton. The phases were treated as continuous. MLP
of a hidden layer and 20 neurons. It turned out that using a single thigh IMU better
results were achieved than combining the rest of the sensors.

Farah et al. [66] implemented a logistic Decision Tree (DT) model for the detection of
4 swing phases: loading response, swing, terminal swing and push off using knee angles,
thigh angular velocity and acceleration. The chosen model was J-48 following the C4.5
node division criteria, with 1643 containing 822 nodes. Training and validation accuracy
were 98.76% and 98.61%, respectively.

On the other hand, Pasinetti et al. [67] implements a RF algorithm to detect stance
and swing. Cameras embedded in crutches used when walking with the exoskeleton were
used. Each of the cameras monitors the contralateral leg. An algorithm detects the floor
surface to be able to measure the distances. Two variations of algorithms are used: DT
random forest and sigma-z random forest. The RF and sigma-z RF had accuracy values
of 81% and 87.3%.

A study using SVM has been previously mentioned, but it is also used by Zhen et
al. [68] for the detection of two gait phases. It uses four different kernels: linear, Radial
Basis Function (RBF), sigmoid and polynomial, RBF being the one with the best results.
Even so, the results are improved by LSTM algorithm. Zhang et al. [69] also imple-
ment SVM, but it does not achieve as good results as Back Propagation Neural Network
(BPNN).
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2.2.2.3 Locomotion Mode Estimation

Finally, knowing the classification of locomotion modes is essential to assist in daily ac-
tivities. Identifying this parameter allows for a less abrupt transition between activities.
The modes of locomotion can be classified as static: sitting and standing; and in dynam-
ics: ascending and descending starts and slopes, and straight level walking. Often, the
identification of the mode of locomotion is performed together with the detection of the
gait phase.

To carry out the detection of locomotion modes, a BPNN is implemented by Song
et al. [70]. They detected 4 static modes and 11 dynamic ones. They used IMUs and
foot pressure sensors to acquire the signals and extract features, 141 in all. Three NNs
were developed with three layers each. The first classified whether the mode was static or
dynamic, with 5 input neurons, 25 neurons in the eye layer, and 1 neuron in the output
layer. The neurons in the second model depended on the output. For the static output,
20, 100 and 1 neurons were used, respectively. And in the dynamic output 40, 200 and
1 neurons were used, respectively. The authors found it easier to qualify the dynamic
modes. For the single mode classification, the accuracy was 98.28%, higher than the
multi-mode classification because involves the transition between modes.

BPNN and Radial Basis Function Neural Network (RBFNN) are implemented by
Wang et al. [71], to detect 6 modes of locomotion with IMUs and plantar pressure sensors.
The architecture consisted of 3 layers, with 20, 12 and 6 neurons. Results with BPNN
were superior with 93.3% accuracy compared to 91.2%. However, these two models were
outperformed by SVM, with an accuracy of 96.5%, achieving these results with linear
kernel. Polynomial kernel was also used.

An SVM with Gaussian kernel is implemented by Villa-Parra et al. [72], to predict
the intention of locomotion based on EMG. The authors used trunk muscle activity to
compare it with leg muscle activity. Accuracy range between 76%-83% and 71%-77% for
lower limb and trunk muscles respectively. This comparison was made to see the ability
of the trunk muscles to predict the intention of locomotion, as an alternative, because the
lower limbs are more prone to pathologies and weaknesses.

DT are implemented by Novak et al. [73] to predict the intention to start and finish
walking, without using physiological signals. IMUs and pressure insoles were used. Gait
initiation occurs when a standing person begins to walk. The termination of the march
occurs when a person walks and decides to stand still. IMUs and pressure sensors were
analyzed separately. For gait termination, the IMUs predicted better.
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2.2.3 Starting point of this project

According to the literature review presented, different studies focus on joint angles and
trajectory prediction, gait phases identification and classification of locomotion modes.
Knowing these parameters and estimating their characteristics is essential for the future
of smart prostheses and exoskeletons. In the reviewed works, the key points are ML
algorithms and sensors.

Several ideas have been extracted from the literature as a guide for the completion
of this work, especially from Section 2.2.2.1. Regarding the number of IMUs and their
position, most of the studies presented propose them to be located in the pelvis, thighs,
shins and feet, with the exception of one that proposes the sacral area. Various prediction
models are used, both DL and simple regressors. It is of great value to know the results
obtained with RF or Support Vector Regressor (SVR), among others, since they are
models that are used in the experiments of this study. Regarding the validation methods,
there are several that use the two that are also be applied in this study: Train-Test Split
and Leave-One-Out. In both studies, better results are obtained when the data of the
person being predicted is used, that is, with Train-Test Split, which further accentuates
the challenge of extrapolating regressors. Regarding the evaluation methods, RMSE, R2,
accuracy, MAE, Pearson, among others, are used, which gives credibility to the use of
any of these methods to obtain the results of the experiments. Besides, depending on the
study, volunteers have to do tests of walking, running at different speeds, leg extension
with or without weight; and with different anthropomorphic characteristics. Finally, in
one of the studies a method is used to make the database longer by simulating angles,
obtaining that with a quality elongation of data, better results are obtained. This idea is
of great value for this project.

This Bachelor’s Thesis focuses on the prediction of lower limb angles, especially those
formed by the knee joint. Four IMUs placed on the legs are used: on each shin and on
each thigh. They are placed on the legs because they monitor leg exercises. Then, a UKF
provides the reference data. Besides, different TW sizes are applied on the inertial data
to predict the position of the LShin and Left Thigh (LThigh). Knowing the orientation
of both sensors, the orientation of LShin with respect to LThigh can be directly obtained,
which corresponds to the orientation of the knee. Previously, works have been presented in
which different ML methods are used, such as [62]. Based on these studies, the models that
are evaluated and compared are MLR, SVR with kernel lineal, polynomial and Gaussian,
TB and MLP. However, not only the angles are predicted, but the number of IMUs is
also intended to be optimized. All this information is relevant for its application in an
intelligent prosthesis or exoskeleton for the knee joint.
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Theoretical Framework

This chapter explains the concepts and tools used to carry out the experiments of this
work. Firstly, Section 3.1 briefly explains the concepts related to the biomechanics of
human gait. Then, Section 3.2 provides an overview of AI, including the existing types of
machine learning and the different algorithms used in the experiments. The two validation
methods of the experiments are explained in Section 3.3. Section 3.4 summarizes the uses
and composition of IMUs. Then, Section 3.5 explains Bayesian filters and specifically the
Kalman Filter (KF). Finally, Section 3.6 a signal segmentation method based on TWs.

3.1 Human gait biomechanics

Human biomechanics is a discipline that combines the principles of biomechanics with
human anatomy and physiology to understand how body structures work during move-
ment [74]. Some of the structures involved are the following:

• Leg bones: femur, tibia and fibula. On the other hand, the bones of the foot. They
act as movement levers, provide support and stability while walking.

• Hip, knee and ankle joints. They are points where two or more bones meet. The
shape and type of joint determine the types of movements that are possible.

• Leg muscles. They are the motors of movement, they provide stability and balance.

• Musculature and bones of the upper extremities. Rocking is performed to maintain
balance and achieve a symmetrical and stable gait.

• Nervous system. Coordinate movements while walking.

The gait is made up of a cycle that can be seen in Figure 2.1.This gait cycle includes
the time the heel makes contact with the ground until the same heel touches the ground
again.

20
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3.2 Artificial Intelligence

Artificial Intelligence refers to the ability of machines to simulate human thought processes
and perform tasks that would normally require human intelligence [75]. The main goal
of AI is to create systems that can perform cognitive tasks such as reasoning, problem
solving, decision making, and understanding human language.

ML is a subdiscipline of AI that focuses on the development of algorithms and models
that allow computers to learn from data. Rather than being explicitly programmed,
machines can improve their performance on a specific task as they are provided with
more data and experience. ML is based on the idea that computers can learn patterns
and make predictions or decisions based on those patterns.

On the other hand, DL is a more complex subset within ML that uses Deep Neural
Network (DNN). These networks are characterized by having multiple hidden layers capa-
ble of finding relationships between the input variables and the variables to be predicted,
so they are capable of tackling more complex problems.

3.2.1 Machine Learning Paradigms

Machine learning algorithms rely on using input and output data to train a model and
make predictions or classifications [76]. The input is a set of features, usually called x, that
are given to the algorithm to learn. The output data forms a response variable, often called
y, which represents the expected response that the algorithm should produce from the
input data. The algorithm adjusts the model parameters using the data. After training,
the algorithm can take new input data and make predictions based on the knowledge
gained during training [77].

Machine learning is divided into two types depending on whether the data is labelled:
supervised learning and unsupervised learning. Supervised learning involves training with
labeled data to predict new outcomes. Depending on the relationship of the labels to the
data, two subtypes of machine learning can be distinguished: classification and regression.
In classification, the set of labels is countable and the goal is to assign categories, while
in regression, the set of labels is uncountable and the goal is to predict continuous values.
On the other hand, unsupervised learning involves training with unlabeled data, searching
for patterns and characteristic structures. One of the most common techniques of this
type is clustering, a technique used to group similar data together [78].

There is a third type within machine learning, reinforcement learning. In reinforce-
ment learning, an agent interacts with the environment by making sequential decisions to
maximize a reward obtained based on the correct set of actions. The agent learns through
trial and error, through continuous interaction with the environment.
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In this work, different supervised learning methods are used, since the data in the
database used is labelled. All the models used are regression models and one DL model.

3.2.2 Machine learning algorithms

This section explains the models used to carry out the experiments of this work: MLR,
SVR, TB and MLP.

3.2.2.1 Multiple Linear Regression

Multiple linear regression is a supervised machine learning technique used to predict a
continuous numeric value based on multiple input variables. One seeks to establish a linear
relationship between two or more independent input variables and one output variable.
The goal is to find a line or hyperplane that best fits the data, minimizing the difference
between the model predictions and the actual values [79].

The multiple linear regression model can be represented mathematically as:

y = b0 + b1x1 + b2x2 + ...+ bnxn + ϵ (3.1)

where y is the output variable to be predicted; x1, x2, ..., xn are the input variables or
features; b0, b1, b2, ..., bn are the coefficients or weights associated with each input variable
and ϵ is the model error (a.k.a. how much variation there is in our estimate of y).

To train the model, training data containing the values of the input variables and the
corresponding output variables are used. Through optimization techniques, such as the
method of least squares, the coefficients that best fit the data are estimated.

Once the model is trained, predictions can be made on new data. Given a set of values
of the input variables, the model calculates the predicted value of the output variable
using the coefficients learned during training.

3.2.2.2 Support Vector Machine

Support Vector Machine is used both for classification with the Support Vector Classifier
(SVC) model and for regression with the SVR. Intuitively, the SVM is a model that
represents the sample points in space, separating the classes into two spaces as wide as
possible by means of a separation hyperplane, which is defined as the vector between
the two points of the two largest classes are close, and this vector is called the support
vector [80]. In this sense, an SVM builds a hyperplane or a set of hyperplanes in a very
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high or even infinite dimensional space that can be used in classification or regression
problems.

The SVC chooses a hyperplane to separate the groups, with the greatest possible
distance. A good margin is one in which you have the maximum distance from the
support vectors to the two classes. The representation of this algorithm can be seen in
Figure 3.1. Through optimization and the use of kernel functions, the algorithm can
handle non-linearly separable data.

Figure 3.1: Support Vector Classifier graph [81].

On the other hand, SVR uses the same principles as the SVM for classification, with
only a few minor differences. First of all, because output is a real number it becomes
very difficult to predict the information at hand, which has infinite possibilities. In the
case of regression, a margin of tolerance (ϵ) is set in approximation to the SVM which
would have already requested from the problem [80]. But besides this fact, there is also
a more complicated reason, the algorithm is more complicated therefore to be taken in
consideration. However, the main idea is always the same: to minimize error, individual-
izing the hyperplane which maximizes the margin, keeping in mind that part of the error
is tolerated. The representation of an SVR with the margins maximized can be seen in
Figure 3.2, whose equation of the hyperplane is:

y = wx+ b (3.2)

where w is the slope and b the distance of the hyperplane from the origin.

The optimization problem is established in the Equation (3.3) with its constraints.
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Figure 3.2: Ideal Support Vector Regressor graph [81].

min
1

2
∥ w ∥2

s.t. yi − wxi − b ≤ ϵ

wxi + b− yi ≤ ϵ

(3.3)

However, that would be the ideal case, but dealing with data in common would have
data that does not fall within the margins, as shown in Figure 3.3. The function of the
hyperplane is the same as in Equation (3.2). But, in this case, Equation (3.4) must be
minimized.

Figure 3.3: Linear Support Vector Regressor graph [81].
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min
1

2
∥ w ∥2 +C

N∑
i=1

(℘+ ℘′)

s.t. yi − wxi − b ≤ ϵ+ ℘i

wxi + b− yi ≤ ϵ+ ℘′
i

℘i, ℘
′
i ≥ 0

(3.4)

In the case of a linear kernel, the SVR is given by:

y =
N∑
i=1

(αi + α′
i)⟨xi, x⟩+ b (3.5)

When the problem is not linear, the kernel function transforms the data into a higher
dimensional feature space to make it possible to perform linear separation (Equation 3.6
and Equation (3.7). A representation of this process is shown in Figure 3.4.

Figure 3.4: Transformation of SVR kernel data [81].

y =
N∑
i=1

(αi + α′
i)⟨φ(xi), φ(x)⟩+ b (3.6)

y =
N∑
i=1

(αi + α′
i)K(xi, x) + b (3.7)
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When the problem is nonlinear, the kernel can be polynomial:

K(xi, xj) = (xi, xj)
d (3.8)

or Gaussian:

K(xi, xj) = exp

(
−∥ xi − xj ∥2

2σ2

)
(3.9)

In this work the SVR used for the experiments are Linear, Polynomial and Gaussian.

3.2.2.3 Regression Trees (Treebagging)

Treebagging, also known as Bagged Decision Trees or Bootstrap Aggregating [82], is
an assembly technique used in machine learning to improve the accuracy, performance,
and robustness of DT models. This technique is especially useful when working with
models that tend to overfit the training data. The central idea behind this technique is
the combination of multiple DTs, each one training on a slightly different version of the
original training set.

For classification, the button would be obtained by the majority of each algorithm (the
mode) and for regression, the mean of the predictions. An example of this is represented
in the Figure 3.5. The Treebagging process involves the following steps:

1. Bootstrap Sampling: A series of training sets are generated through a process
known as bootstrap sampling. In this process, samples are randomly selected from
the original training set with replacement. Due to this sampling with replacement,
each bootstrap training set is slightly different, which introduces variability in the
training data.

2. Tree training: A DT is trained on each bootstrap training set. Each tree is built
using a different subset of training data and may have different structures due to
the variability introduced by bootstrap sampling.

3. Combined prediction: Once all the trees have been trained, a combined predic-
tion is performed. In the case of classification problems, the final prediction could
be the result of a majority vote among the individual trees. In regression problems,
the final prediction might be the average of the predictions of all the trees.

The main advantage of Treebagging lies in its ability to reduce overfitting. By intro-
ducing variability into the training data through bootstrap sampling and by combining
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Figure 3.5: How Bagging Tree works.

multiple models, a more robust prediction is obtained that generalizes better to unseen
data. Also, because each tree is trained on a different subset of data, all trees are less
likely to make the same errors, further improving the overall accuracy of the model.

3.2.2.4 Multilayer Perceptron

Multilayer Perceptron is a basic artificial neural network architecture consisting of multiple
layers of neurons [83]. The three main types of layers are: an input layer, one or more
hidden layers, and an output layer [84]. Each layer contains a series of interconnected
neurons as shown in Figure 3.6. Besides, the structure of a neuron is detailed in Figure 3.7.

The inputs are the features of the model, let say x1, x2, x3..., xn. Then, each weight
is associated with an input and determines its importance in relation to the output.
They are denoted as (ω1, ω2, ..., ωn) composing the vector ω. The transfer function is the
mathematical operation performed to combine the inputs of the model with the weights
associated with each input. It is calculated by multiplying each input by its corresponding
weight and adding the results. It is a weighted sum. Then, another mathematical function,
the activation function, transforms the weighted input of the perceptron into a nonlinear
output. Some of the most common activation functions are the sigmoid, hyperbolic or
Rectified Linear Unit (ReLu). Finally, the output is the results of the estimation.
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Figure 3.6: Representation of the structure of the multilayer perceptron [83].

Figure 3.7: Representation of the structure of a neuron [85].
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During the MLP training process, the weights are fit iteratively using optimization
algorithms, such as error backpropagation, to minimize the difference between the pre-
dicted and actual outputs. The MLP is capable of learning and representing complex
nonlinear functions due to the presence of multiple hidden layers and nonlinear activation
functions. This allows you to model more sophisticated relationships between the input
variables and the output variable.

3.3 ML model validation

Validating ML models is a critical step in evaluating the performance and generalization
ability of a model before putting it into production or using it in real-world situations.
Validation helps ensure that the model is not only memorizing the training data, but is
also capable of making accurate predictions on new, previously unseen data. Based on
the performance of the model with unknown data, you can determine if it still needs to
be adjusted, has been overfitted, or is well generalized.

One of the most used techniques to test the effectiveness of an ML model is “cross-
validation”. This method is also a re-sampling procedure that allows a model to be
evaluated even with limited data. To carry out cross-validation, it is necessary to previ-
ously separate a part of the data from the training data set. That data is not used to
train the model, but later to test and validate it.

Cross-validation is often used in ML to compare different models and select the most
suitable one for the specific problem. Next, the two types of validation that have been
used in this project are explained depending on whether or not the data of the person to
be predicted is known.

3.3.1 K-Fold cross-validation

The K-Fold technique involves dividing the data set into k approximately equal segments
or folds and then performing multiple iterations of the model training and evaluation
process using different combinations of these folds. For example, if there are 1000 samples
and k equals 5, each fold would contain about 200 samples.

The process is repeated k times. In each iteration, a different fold is used as the test
set, while the other k − 1 folds are used as the training set. This means that in each
iteration, the model is trained k − 1 times on different training sets and evaluated on a
different test set.

For each iteration, evaluation metrics, such as precision, RMSE, or any other relevant
metrics, are calculated using the corresponding test set. These metrics are stored or
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averaged to obtain an overall measure of model performance.

After completing the k iterations, the evaluation metrics from all iterations are av-
eraged to obtain a single measure of model performance. This provides a more robust
and generalizable evaluation of the model as it has been tested on different subsets of
data. An example of this technique is shown in Figure 3.8 where k equals 5, dividing the
data into five sets. In this work, in experiments in which subjects with known data are
predicted, k equals 5 is also used.

Figure 3.8: Example of 5-Fold cross-validation [86].

The error estimate is highly variable depending on which observations are included as
the training set and which as the validation set. This type of cross-validation is useful to
obtain a more reliable evaluation of the model and reduce the risk of overfitting.

3.3.2 Leave-One-Out cross-validation

The leave-one-out method is an iterative method that begins using all available obser-
vations as a training set except one, which is excluded for use as validation. If a single
observation is used to calculate the error, it varies greatly depending on which observation
has been selected. To avoid this, the process is repeated as many times as observation
available are, excluding a different observation in each iteration, adjusting the model with
the rest and calculating the error with said observation. Finally, the error estimated is the
average of all the errors calculated. An example of this technique is shown in Figure 3.9
dividing the data into N sets.

This method allows us to reduce the variability that arises if the observations are
randomly divided into only two groups. This is because at the end of the process all the
available data is used for both training and validation. As there is no random separation
of the data, the results are fully reproducible. The main disadvantage of this method is
its computational cost.
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In this project, this method is applied to predict subjects with unknown data. As five
volunteers are used, there are five iterations to obtain the absolute error. This method
allows to test the extrapolability of the regressors.

Figure 3.9: Schematic representation of the leave-one-out cross-validation method. The
indices refer to individual subjects [87].

3.4 Inertial measurement units: IMUs

An IMU is an electronic device that allows to obtain measurements of angular and linear
velocity, orientation and gravitational forces. This is achieved by combining accelerome-
ters, gyroscopes and sometimes magnetometers. These devices are used in mobile phones,
navigation systems or study movement [88]. These types of units internally implement
three orthogonal axes on which the uniaxial sensors are mounted, so that each axis is
assigned an accelerometer, a magnetometer and a gyroscope, as shown in Figure 3.10.

These IMUs work according to Newton’s first two laws. The motion of a body remains
constant until an external force acts on it, according to Newton’s first law. On the
contrary, Newton’s second law states that the applied force generates an acceleration
equivalent to it with Equation (3.10):

F = m · a (3.10)

where F is the force, m is the mass and a is the acceleration.

By measuring the instantaneous linear acceleration (a) of the body at a specific mo-
ment and gravity (g), the accelerometer provides the linear acceleration that corresponds
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Figure 3.10: The inertial measurement unit body coordinate system. Each axis has an
accelerometer and a gyroscope. Rotation of angles in their corresponding axes [89].

to the second derivative of its position. On the other hand, the gyroscope allows to mea-
sure the angular velocity (ω) of the body with respect to the reference system, with which
it is possible to know the rotation of the body in 3D space. Finally, the magnetometer
provides information on the orientation of the body with respect to the terrestrial mag-
netic north. It acts like a compass, so it is sensitive to the magnetic field. This sensitivity
to magnetic fields is the reason why the magnetometer data is not used in this work.

Currently there are many IMUs of different sizes and with different combination of
sensors depending on the function to be developed. This allows its use in different parts
of the body for the monitoring and estimation of data of interest [90].

3.4.1 Orientation Estimation

Sensor orientation estimation using a KF is a common approach in navigation and signal
processing to determine the orientation of an object or system, such as a vehicle, drone, or
mobile device [91]. The KF is a best estimation algorithm that combines noisy measure-
ments and predictions of the system state to provide an accurate estimate of the actual
state.

In the context of orientation estimation, a quaternion representation is typically consid-
ered to describe three-dimensional orientation. Quaternions are an extension of complex
numbers and are used to represent rotations in 3D space efficiently and without singularity
issues found in other representations, such as Euler angles.
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3.4.2 Quaternions

Quaternions are a mathematical extension of complex numbers. Unlike complex numbers,
which have a real part and an imaginary part, quaternions have four components: a scalar
part and three vector parts [92]. They are usually represented as:

a+ bi+ cj + dk (3.11)

where a is the scalar part and b, c and d are the vector parts in the directions i, j and
k, respectively.

Quaternions are especially useful for representing rotations in 3D space. They can
compactly and unambiguously describe any rotation without suffering from singularity
problems, such as those found in Euler angle representations. Also, calculations of rota-
tions and combinations of rotations are done efficiently with quaternions.

In the context of orientation estimation and navigation, quaternions are used to repre-
sent an object’s orientation in 3D space. Orientation changes are expressed as quaternion
multiplications, making it easy to combine and merge rotations.

3.4.3 Euler Angles

Orientation estimation with Euler angles is a common approach to describe the three-
dimensional orientation of an object or system. In order to represent the angles of rotation
on the three-dimensional axes, it is necessary to know how Euler angles work [93]. Said
angles form a set of three angular coordinates that are used to determine the orientation
of a reference system, normally mobile, with respect to another fixed reference system.

An angle is represented as the sequence of three angles, each of them rotated about a
certain axis, always following a previous established order: the angle of rotation about the
Z axis is defined as ψ or α (Yaw), about the Y axis it is θ or β (Pitch) and on the X axis is
ϕ or γ (Roll). Figure 3.10 shows the rotation of these angles on their corresponding axes.
To better understand the name of each turn, you can see a rule of thumb in Figure 3.11.

Figure 3.11: Mnemonic rule for Euler angles [94].
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However, working directly with Euler angles can lead to certain problems, such as
gimbal-lock singularities, where a rotation can lose a degree of freedom and cause unex-
pected results. This is due to the way the Euler angles interact with each other as is
shown in Figure 3.12.

For orientation estimation with Euler angles, the process typically involves the follow-
ing steps:

1. Representation of Euler angles: Euler angles can be represented in different
ways, such as Tait-Bryan or XYZ, ZXZ, among others. Each representation defines
a specific set of rotations around the axes.

2. Measurements and Sensors: Measurements from sensors such as gyroscopes, ac-
celerometers, and magnetometers provide information about the object’s orientation
in space.

3. Orientation update: Using the current Euler angles and sensor measurements, a
new orientation estimate is calculated. This is typically done using sensor fusion
algorithms that combine information from multiple sources to improve accuracy.

4. Singularities and Gimbal-Lock: One of the disadvantages of working with Euler
angles is that singularities, such as gimbal-lock, can occur in certain configurations.
This limits the range of rotations that can be described without problems.

5. Conversion to other representations: Sometimes, to avoid singularity problems
and improve stability, it is useful to convert Euler angles to other representations,
such as quaternions or rotation matrices, for calculations and estimations.

Figure 3.12: The six degrees of freedom: forward/back, up/down, left/right, pitch, yaw,
roll [95]
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3.5 Bayesian Filters: The filtering problem

Bayesian filters play a critical role in sensor fusion, which is the process of combining
information from multiple sensors to obtain a more accurate and reliable estimate of a
variable or state of interest [96]. A classic example of an application is the fusion of
data from gyroscopes, accelerometers and magnetometers to estimate the orientation of
an object in space.

Sensors provide measurements of the same or different aspects of the state of the sys-
tem. These measurements may be subject to noise and errors. A model is established that
relates the measurements of the sensors with the true state of the system. This includes
the characteristics of the sensors and the uncertainty associated with their measurements.

A dynamic model is defined that describes how the state of the system evolves over
time. This model can be a mathematical representation of physical interactions and
relationships between variables. A Bayesian filter, such as the KF or particle filter, is used
to combine the sensor measurements with the state model to produce a more accurate
and up-to-date estimate of the actual state of the system.

In the prediction stage, the filter uses the state model to predict how the state of the
system changes in the next time step. In the update stage, the filter adjusts the state
estimate using current sensor measurements and compares them with the state model
predictions. The measurement and model uncertainty are used to calculate a weighted
estimate that optimizes the data fusion.

As new measurements are received, the filter adjusts the estimate and the associated
uncertainty. This allows the system to take into account the quality and reliability of the
measurements over time.

In sensor fusion, Bayesian filters make it possible to take advantage of complementary
information from multiple sensors and improve the robustness and precision of the esti-
mates, even in situations where some sensors may be subject to noise or errors. In this
work, the Bayesian filter to be used is the UKF, which is a derivation of the KF.

3.5.1 Kalman Filter

The Kalman filter is an estimation algorithm that combines observed measurements and
dynamic models to provide optimal estimates of the state of a system. It works in two
stages: prediction and update [97]. In the prediction stage, the state model is used to
predict how the state of the system changes in the next time step. In the update stage, the
estimate is adjusted using current measurements and compare them with the predictions.
The KF minimizes the RMSE and is especially useful for linear and Gaussian systems.
However, it may face challenges in non-linear systems or with non-Gaussian noise.
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In this work, a variation of the KF, UKF, are used. The UKF is an extension of the
KF that addresses the estimation problem in nonlinear systems. In nonlinear systems, the
propagation of uncertainty through nonlinear transformations can lead to suboptimal or
inaccurate solutions using the standard KF. The UKF uses a technique called “sigma point
transformation” to approximate the statistics of the state distribution through non-linear
transformations. This involves taking a set of points from the distribution, passing them
through the nonlinear function, and then reconstructing the approximate distribution
using these transformed points.

The UKF maintains many of the advantages of the KF in terms of computational
efficiency and precision, but is better suited to nonlinear systems. However, the UKF
may still have limitations in cases of highly non-linear systems or with non-Gaussian
noise.

3.6 Signal Segmentation: Temporal Window

A TW is a concept used in the field of ML and time series analysis that refers to a specific
and continuous interval of time within a sequence of data ordered in time. This window
scrolls through the time series, allowing you to capture a set of data points within that
interval for analysis.

Signal segmentation based on TWs in ML is essential to model patterns and relation-
ships in time series. By dividing the series into overlapping or non-overlapping windows,
ML algorithms can process and analyze specific segments of data instead of treating the
entire series at once. This helps identify local patterns, trends and changes in data over
time. In addition to analyzing future events or behaviors based on the past evolution of
the data.



Chapter 4

Methodology

This chapter describes the methodology followed in the project. Figure 4.1 is the workflow
that will be explained in detail in the following sections. Section 4.1 describes the database
used, as well as how to obtain it. Section 4.2 shows the signals belonging to the database
and their processing and labelling. On the other hand, Section 4.3 explains how signals
are segmented, by using temporary windows, a method widely used in ML. Section 4.5
explains the algorithms used and the experiments carried out. Finally, Section 4.6 explains
the evaluation method and Section 4.7 the tools used in this project.

4.1 Database

This project uses the PHYTMO database [16]. PHYTMO contains information on phys-
ical therapy exercises and gait variations of 30 healthy volunteers, aged between 20 and
70 years old.

This database includes data recorded with four IMUs (NGIMU IMUs, X-io Technol-
ogy, Bristol, UK) and an optical system (OptiTrack system, NaturalPoint Inc). In this
project only the data obtained by the IMUs are used since OptiTrack gait data is not
available. Wearable sensors include three-axis gyroscope, accelerometer and magnetome-
ter, with a range of 2000°/s, 16 g and 1,300µT, respectively. The sample rate was set
to 100 Hz for the gyroscopes and accelerometers and to 20 Hz for the magnetometers.
Regarding the characteristics of the IMUs, they have a size of 56 x 39 x 18 mm with a
weight of 46 g. This small size allows it to be worn while doing exercises. Additionally,
each IMU is mounted on an ad-hoc structure (mounting board) for its placing at the
limbs.

The four IMUs are placed on the lower extremities with the XI-axis pointing to the
ceiling, like the reference system that can be seen in Figure 4.2a. The IMUs are placed
on the anterior surface so when volunteers are standing, the ZI-axis is perpendicular to
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Figure 4.1: Representation of workflow.
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(a) Sensor Location
(b) Suit used for tests in one of the calibration
exercises.

Figure 4.2: Location of the IMUs on the lower limbs. Volunteer wearing the suit used for
performing the exercises [16].

the coronal plane and the YI-axis is perpendicular to the sagittal plane. These positions
are chosen for the comfort to place the sensors. Each IMU has an identifier with format
Xsegment, where X refers to its position, left (“L”) or right (“R”), being segment “thigh”
or “shin”, referring to the segment of the lower-limb the IMU was placed on. The IMUs
are synchronized through exercises at the beginning of each recording. The suit used can
be seen in Figure 4.2b.

The four IMUs placed in the lower extremities record the information in CSV files.
These files have the name GNNEEELP_S, where G refers to the letter of the range of
age (“A”, “B”, “C”, “D” or “E”); NN is number of identification of the volunteer, from “01”
to “10”; EEE indicates the type of gait variation (“GAT”, “GIS” or “GHT”); L is the leg
with the exercise is performed (“L” or “R”); P is a label that indicates the evaluation of
the exercise performance, “0” value when the file contains the correctly performed exercise
and “1” when exercises are wrongly performed; and finally, S indicates the index of the
series, being “1” and “2” for the first and second recorded series.

For this project, 5 randomly volunteers are used, whose anthropomorphic data are
detailed in Table 4.1. The chosen gait exercise is “GAT”, which corresponds with natural
gait.

Table 4.1: Anthropomorphic information of the chosen volunteers.

Volunteer Range Id Age (years) Height (cm) Weight (Kg) Sex (M/F)
1 A A01 22 165 58 F
2 A A07 25 175 72 M
3 C C02 46 178 69 M
4 A A04 23 180 72 M
5 B B01 30 179 76 M

Summary - - 29.2(±8.84) 175.4(±5.46) 69.4(±6.11) 4m,1f
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4.2 Data Processing, Labeling and Selection

In each “GAT” file there is information about the time, the accelerometer, the gyroscope
and the magnetometer in the three axes. This can be seen in Table 4.2.

Table 4.2: Data belonging to file A01GAT0_1 of the database before processing it.

Time [s] GyroX [deg/s] GyroY [deg/s] GyroZ [deg/s] AccX [g] AccY [g] AccZ [g] MagX [T] MagY [T] MagZ [T]
11.5567 -11.0768 -10.4011 -0.5444 0.1746 -0.0633 0.0793 -40.9450 -23.7341 -23.9252
11.5666 -10.8905 -24.3262 2.4598 0.1954 -0.1030 0.0858 -40.9450 -23.7341 -23.9252
11.5764 -5.7349 -38.2322 5.2797 0.1999 -0.1306 0.1143 -40.9450 -23.7341 -23.9252
11.5865 0.6010 -53.4260 7.4667 0.2045 -0.1095 0.1522 -40.9450 -23.7341 -23.9252

... ... ... ... ... ... ... ... ... ...

In this project, neither the time variable nor the data from the magnetometer are
used. The remaining data that is useful is the three axis gyroscope and accelerometer. The
accelerometer data is in g (gravity acceleration) and is converted to m/s2, as represented in
Equation(4.1). On the other hand, the gyroscope data is in ° (degrees) and is converted
to rad using the Equation (4.2). This change of units is necessary since the UKF is
programmed in gs and rads.

1g = 9.8
m

s2
(4.1)

1rad =
180

π

◦
(4.2)

The next step is to transform the axes to the reference system in which the UKF is
programmed, with Z up and Y to the side. Once the angles have been rotated, the filter
is applied to obtain the Euler angles: Roll and Pitch.

All samples are going to be labelled according to the type of movement, the IMU and
the series to which the angles belong; the age group to which the volunteer belongs and
their identification. An example of the data after joining the inertial data, the motion
angles and labeling the samples can be seen in Table 4.3.

Table 4.3: Data belonging to file A01GAT0_1 of the database after processing it.

AccX [m/s2] ... GyroZ [rad/s] Type Age Volunteer Series IMU Roll [rad] Pitch [rad]
-1.1198 ... -0.1001 GAT0 A 1 1 Lshin -0.0012 -0.0127
-1.4919 ... 0.0105 GAT0 A 1 1 Lshin -0.0025 -0.0220
-2.2013 ... 0.0864 GAT0 A 1 1 Lshin -0.0042 -0.0339
-2.5404 ... 0.0972 GAT0 A 1 1 Lshin -0.0060 -0.047

... ... ... ... ... ... ... ... ... ...

Each volunteer has two attempts of the gait recorded, so the two attempts of natural
gait exercise are concatenated. Figure 4.3 shows the two concatenated attempts of Volun-
teer 2. It is observed, in red, that at the beginning and at the end of the recordings there
are movements that do not correspond to gait, so these data are eliminated. The chosen
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data that is used in the experiments is the green one. The left part in green corresponds
to the first attempt and the one on the right to the second. Both green segments have
the same number of samples.

Figure 4.3: Volunteer 2 LShin angles. The measurement frequency is 100 Hz.

4.3 Signal Segmentation

To assess the results of the different methods used in the experiments, the original recorded
inertial measurements (gyroscope and accelerometer) are used as inputs. Different MLs
models are applied to see how they affect the prediction.

In this work, from the current values, previous values are also taken into account.
For each TW sample, there is a vector with W measurements of each of the sensor axes,
which are the inputs; and a single sample of the angle at which the IMU is oriented at the
final time instant of that interval, which is the output. An example with Pitch angle can
be seen in Table 4.4. When creating a TW, the number of input columns is multiplied
W -times, where W is the number of TW applied. On the other hand, the number of rows
is reduced by W -times plus one.

In the first three experiments, TWs with n = 5, 10, 20, 40 and 60 samples are used to
obtain the results of the MLR, SVRs and TB. A maximum of 60 samples are used due to
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Table 4.4: Signal resulting from applying a temporal window of 3 samples.

AccX (t-2) AccX (t-1) AccX AccY (t-2) ... GyroZ PITCH
AccX (0) AccX (1) AccX (2) AccY (0) ... GyroZ (2) Pitch (2)
AccX (1) AccX (2) AccX (3) AccY (1) ... GyroZ (3) Pitch (3)
AccX (2) AccX (3) AccX (4) AccY (2) ... GyroZ (4) Pitch (4)
AccX (3) AccX (4) AccX (5) AccY (3) ... GyroZ (5) Pitch (5)

the high training time involved. Furthermore, as time increases, greater movement of the
person is considered. However, only 5-sample and 10-sample TW are used to predict with
MLP, since a greater number of samples with this model represents a high computational
cost that cannot be addressed.

4.4 Implementation of algorithms

The prediction of gait angles are evaluated with four regressors that are MLR,SVR, TB
and MLP. Their implementation using the MATLAB programming language is explained
below.

In the case of MLR, the function fitlm is used in which the training data is introduced.
This function creates a model, which is entered into the predict function along with the
inputs of the test set, so that it provides the prediction of the outputs of the test set. All
that remains is to use the RMSE evaluation method to calculate the error committed.

For SVR, the function fitrsvm is used in which several arguments must be defined.
First of all, it is used standardize and add true so that the software centers and scales
each column of the predictor data by the weighted column mean and standard deviation,
respectively. Afterwards, a kernel function is selected by adding KernelFunction and
depending on what we want, linear, gaussian or polynomial are used. Finally, the predict
function is used to obtain the estimated outputs by using the trained model provided by
fitrsvm.

To use TB, the TreeBagger function is applied in which the training data is introduced
and 100 decision trees are established as a parameter. Additionally, it is indicated that
the type of decision is a regression. The predict function is used again with the trained
model provided by TreeBagger.

Finally, for the MLP NN, besides applying a single layer and two layers, they require
the selection of the number of neurons per layer. The number of neurons in a single
layer are applied using a positive integer number. In the case of two layers, a matrix of
positive integer numbers is written, the first number being the number of neurons in the
first layer; and the second number, the neurons of the second layer. This is added to
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the function feedforwardnet with the argument “traingdx” which applies that the gradient
descent learning rate is variable. The learning rate is set to 0.01 and the number of epochs
to 100. This is entered into the train function along with the training data providing the
model as a result. This model is used together with the test set inputs in the sim function
to obtain the prediction.

4.5 Description of the experiments

This section is divided into two parts according to the evaluation method used and de-
pending on whether the data of the subjects to be predicted are known or not. The first
part is in Section 4.5.1 where the data of the volunteers to be predicted is known and
is made up of five experiments. The last three experiments, explained in Section 4.5.2,
focus on evaluating the extrapolation of the models.

4.5.1 Angle prediction in five independent volunteers

With the purpose of evaluating the performance of the models in the use of the IMUs to
predict angles, five experiments are carried out. The body segments of which we want to
know the orientation are always LShin and LThigh.

Firstly, the intra-subject predictions are evaluated, where the volunteers’ gait data are
known. As explained previously, there are five independent volunteers for the experiments
(see Table 4.1). The training and testing sets are from the same volunteer. The evaluation
method is K-fold cross-validation with K equal to 5, so at all times 80% of the data is
used for training and the remaining 20% for testing. The exact function used is cvparti-
tion(group,’KFold’,k) in MatLab, where “group” is all the dataset and K the number of
folds. This function gives us as a result the inputs and outputs of the training set and
the inputs and outputs of the testing set. Training and test set are iterated 5 times with
the same ML model for the same volunteer, being different each time the test set. The
average and standard deviation of the RMSE of the 5 iterations on the 5 volunteers is
evaluated.

This workflow is followed in experiments evaluating data from individual subjects.
However, the input data used change according to the number of IMUs and their location
to be evaluated. The first two experiments, in Section 4.5.1.1 serve as a baseline for the
rest of the experiments and in the remaining three, in Section 4.5.1.2, the prediction of
angles is analyzed by optimizing the number and position of IMUs.
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4.5.1.1 Baseline experiments

The first two experiments consists of predicting the position of one IMU using its inertial
data recorded. The first experiment using only the IMU LShin of each volunteer to predict
the position of LShin, and the second one is the same for LThigh. We are performing the
5-fold cross-validation method. Figure 4.4 shows the workflow followed in this experiment.
In both experiments, the data to be predicted are the Pitch and Roll angles. The RMSE
is expected to be the lowest of all the experiments that try to predict these IMUs, which
is why they are used as baseline.

Figure 4.4: Workflow used in the first baseline experiment. The IMU LShin is predicted.

The key values are the number of samples and the models. The first step is to define
the TW samples. In these experiments 5, 10, 20, 40 and 60 samples are used for MLR,
SVR Linear, Gaussian and Polynomial and TB; and 5 and 10 samples for one-layer and
two-layer MLP. The number of samples in the window is applied in an increasing way, to
maintain a logical order. The data matrix with the TW size applied is the matrix with
which to start each experiment.

4.5.1.2 Optimization of the number and position of IMUs

We perform three experiments to assess the reduction in the number of IMUs needed and
their optimal placement.

The first experiment of this section is called 3 Devices for LShin (3DLS) Individual
Evaluation (IE). It predicts the angles of the IMU LShin with the inertial measurements
of the other three IMUs. LThigh angles are not calculated because it is used in prediction.
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All the proposed ML models and all the TW sizes are also applied, as in the two baseline
explained above. The workflow followed in 3DLS IE can be seen in Figure 4.5.

Figure 4.5: Workflow followed to perform the 3DLS IE experiment of evaluation of IMUs.
One IMU is predicted from three IMUs data.

In the following experiments, the reduction in the number of sensors and their most
appropriate location is evaluated. The experiment named 2 Devices for a IMU (2DLX)
IE predicts the angles of the LShin and LThigh IMUs. To do so, we use the inertial
measurements of the Right Shin (RShin) and Right Thigh (RThigh) IMUs together. The
optimal TW sizes and models are used. So, an IMU is being predicted with data from
two IMUs.

The last experiment of this section is named 1 Device for a IMU (1DLX) IE. 1DLX IE is
about predicting the angles of the LShin and LThigh IMUs from the inertial measurements
of the RShin and RThigh IMUs separately. In this way, the angles of one IMU are being
predicted with the data of another IMU, located on the other leg.

4.5.2 Predictions of new volunteers.

In order to see how the already trained and selected models can be extrapolated to the gait
of a new volunteer, a leave-one-out cross-validation is performed using the five volunteers.
To check the extrapolability of the models for new volunteers, three experiments are
carried out that are fundamentally the same as the previous three, where the number of
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IMUs necessary and their location are analyzed for a good prediction. In this case, the
processed data of the five selected volunteers 1, 2, 3, 4 and 5 are used. Five iterations are
carried out in which the two proposed models are trained with data from four volunteers,
leaving aside the remaining volunteer. In each iteration, a different volunteer is selected
to be excluded for testing.

For the training of the algorithms in these three experiments, the number of samples
from each volunteer is different since the range of samples from each volunteer that offers
the highest quality is taken, see Figure 4.3. The mean of the five volunteers is 5200±963
samples. Samples from the four volunteers used to train the algorithm are randomized
to avoid patterns from any specific volunteer. Finally, the performance of the models is
evaluated using the data of the independent volunteer who was not used in the training
process. The results obtained in each of the three experiments are shown as an average
of the five iterations performed. Figure 4.6 shows the workflow of the first experiment of
this section.

Figure 4.6: Workflow followed to perform the first extrapolation experiment. One volun-
teer IMU is predicted from three IMUs data of the rest of volunteers.

4.6 Evaluation metrics

The RMSE is a metric commonly used in the field of ML to evaluate the performance
of a prediction model compared to actual values. It is especially popular in regression
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problems, where you want to predict a continuous numeric value. It is a measure of the
average difference between the model predictions and the observed values, expressed in
the same unit as the original data. In this project, the RMSE is expressed in radians. The
objective is to minimize the RMSE, which means that a model is sought that generates
predictions close to the true values. The RMSE formula is shown below:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (4.3)

where N the number of observations in the data set, yi is the actual or observed value for
the i-th observation and ŷi is the value predicted by the model for the i-th observation.

Some interesting properties of using RMSE are that it penalizes large errors more
than small errors due to the square in the formula; it is in the same units as the original
data, which makes it easier to interpret and it is sensitive to outliers, since the errors are
squared.

In addition, the results are represented in Boxplots. A boxplot provides a visual rep-
resentation of how the data is distributed, making it easier to understand the spread,
concentration of data, and the presence of outliers. Outliers are observations that devi-
ate significantly from the majority of the data. They are represented with dots outside
the box, which allows them to be easily identified. Additionally, the boxplot shows key
statistics, such as the median, which is the center line of the box; and the range between
the first and third quartiles that make up the box. They are commonly used to compare
the distribution of data between different groups or categories. In this case, to compare
the results of Roll and Pitch.

4.7 Tools

4.7.1 MATLAB

The MATLAB programming language is used in this work. MATLAB is a programming
platform and development environment widely used in a variety of fields, including ML.
In addition, it allows the visualization of graphs; as well as its manipulation [98]. The
software is used for signal processing data manipulation and the training and test of ML
models.
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4.7.2 LaTeX

LATEX is a document composition system widely used for creating scientific and technical
documents. It is especially useful for mathematical equations, formulas, and structured
documents because it automates the appearance and formatting of the document. This
work has been written with LATEX using its online Overleaf text editor [99].
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Results and Discussion

In this chapter, the results obtained in the experiments are presented and discussed.
Section 5.1 shows the results of predicting the orientation angles of the LShin and LThigh
IMUs using their own inertial measurements. These first two experiments serve as the
baseline for the rest of the experiments, as well as to define the optimal algorithms and
TW that are used in the following the experiments.

Next, Section 5.2 shows three experiments carried out with the data from the IMUs
of the same volunteer. The aim of these experiments is the optimization of the number
and position of IMUs.

Finally, the aim of experiments in Section 5.3 is to assess model extrapolation to
volunteers. The theory is similar to that of the previous section, but to predict the angles
of an IMU of a volunteer, the data of the rest of the volunteers is used.

5.1 Baseline experiments

This section is made up of two experiments in which the orientation angles of a single
IMU,LShin and LThigh, are predicted. These experiments are called “baseline”, since the
prediction error is expected to be the lowest when inertial data of an IMU is used to
predict its angles. In the rest of the experiments, the angles of these IMUs are predicted
using data from other combinations of IMUs. All the ML algorithms and all the TWs
sizes proposed for each algorithm are evaluated. Therefore, the optimal algorithms and
TWs sizes are selected to be used in the rest of experiments.

5.1.1 Angle prediction in IMU LShin

This first experiment focuses on the LShin IMU, which is used for training and test.
Firstly, all the results obtained for Pitch angle are shown. Table 5.1 shows the mean and
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standard deviation of the RMSE obtained using MLR, SVR Linear, Gaussian, Polynomial,
TB and MLP models; with all the proposed TWs sizes. The errors of the test set and the
train set are shown. The MLP NN is only used with 5 and 10 sample TW. The table only
includes the lowest RMSE that has been obtained, which is with two-layer MLP. Detailed
results of the MLP hyperparameters optimization are shown in Table A.3 and Table A.4
of Appendix A.1.1.

Table 5.1: RMSE mean and deviation obtained in LShin baseline experiment to predict
the Pitch angle.

TW Size [samples]

5 10 20 40 60

TEST
RMSE
[rad]

MLR 0.152±0.027 0.121±0.025 0.079±0.018 0.052±0.008 0.041±0.006
SVRL 0.153±0.023 0.123±0.026 0.080±0.015 0.053±0.008 0.047±0.005
SVRG 0.239±0.043 0.312±0.042 0.329±0.036 0.346±0.040 0.347±0.037
SVRP 0.662±0.301 0.328±0.172 0.238±0.068 0.747±0.323 1.731±0.801
TB 0.056±0.010 0.042±0.007 0.036±0.007 0.032±0.009 0.030±0.007

MLP 0.046±0.010 0.042±0.008 - - -

TRAIN
RMSE
[rad]

MLR 0.154±0.029 0.122±0.027 0.077±0.017 0.050±0.007 0.043±0.004
SVRL 0.151±0.022 0.121±0.015 0.075±0.012 0.046±0.006 0.041±0.004
SVRG 0.065±0.007 0.098±0.012 0.103±0.011 0.105±0.009 0.101±0.009
SVRP 0.156±0.056 0.101±0.077 0.223±0.069 0.753±0.318 1.712±0.793
TB 0.032±0.005 0.023±0.004 0.019±0.004 0.016±0.004 0.015±0.004

MLP 0.040±0.008 0.037±0.009 - - -

The MLR, SVRL and TB models follow the same trend of reducing the RMSE as
the TW samples increase. These are the models with the lowest errors. Focusing on the
method with the lowest error, TB, its errors decrease from 0.056±0.010 rad to 0.030±0.007
rad when increasing the window from 5 to 60 samples. In the case of MLP with 5 samples
obtains 0.046±0.010 rad and with 10 samples, it is reduced to 0.042±0.008 rad for test set.
The errors obtained with the train test with these models are similar to those obtained
by the test set, so overfitting is not contemplated. These errors are acceptable, so they
are the reference metrics in the following experiments. However, from the Table 5.1, it
is observed that the SVRG model obtains an RMSE of 0.239±0.043 rad with TW of 5
samples and increases to 0.347±0.037 rad with 60 samples. On the other hand, the results
of the train set are in a range between 0.065±0.007 rad and 0.105±0.009 rad, which means
that overfitting occurs in this model. The next model that stands out is the SVRP. This
model does not follow a visible pattern in any of the sets. In the test set the error with
TW of 5 samples is 0.662±0.301 rad, decreasing to 0.238±0.068 rad with 20 samples and
increasing again obtaining 1.731±0.801 rad with 60 samples. The RMSE of the train set
are in a range between 0.101±0.077 rad and 1.712±0.793 rad.

Table 5.2 shows the mean and absolute deviation of the RMSE for the Roll angle.
As for the Pitch angle, all the proposed models and TW sizes are evaluated. Detailed
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results of the MLP hyperparameters’ optimization are shown in Table A.7 and Table A.8
of Appendix A.1.1.

Table 5.2: RMSE mean and deviation obtained in LShin baseline experiment to predict
the Roll angle.

Window Size [samples]

5 10 20 40 60

TEST
RMSE
[rad]

MLR 0.152±0.015 0.135±0.016 0.080±0.012 0.054±0.014 0.039±0.014
SVRL 0.165±0.005 0.138±0.009 0.096±0.010 0.070±0.012 0.048±0.011
SVRG 0.157±0.057 0.168±0.062 0.134±0.039 0.127±0.044 0.144±0.054
SVRP 1.034±0.711 1.140±0.968 1.246±1.705 1.105±0.802 4.102±7.038
TB 0.068±0.009 0.056±0.007 0.042±0.009 0.036±0.008 0.029±0.007

MLP 0.046±0.003 0.046±0.001 - - -

TRAIN
RMSE
[rad]

MLR 0.147±0.014 0.125±0.011 0.075±0.013 0.050±0.010 0.040±0.009
SVRL 0.157±0.005 0.136±0.006 0.094±0.009 0.069±0.008 0.051±0.008
SVRG 0.084±0.068 0.102±0.054 0.096±0.035 0.070±0.013 0.048±0.026
SVRP 0.817±0.891 1.061±0.993 1.237±1.740 0.943±0.866 3.862±6.747
TB 0.055±0.011 0.045±0.009 0.030±0.006 0.023±0.006 0.013±0.004

MLP 0.044±0.003 0.046±0.002 - - -

As can be seen, the tendency of the models to predict Roll is similar to that of Pitch.
The MLR, SVRL and TB models follow the same trend of reducing the RMSE as the
TW samples increase. In the case of MLR with 5 samples, 0.152±0.015 rad is obtained,
which decreases to 0.039±0.014 rad with 60 samples. In the case of SVRL it ranges from
0.165±0.005 rad to 0.048±0.011 rad. And in the case of TB from 0.068±0.009 rad to
0.029±0.007 rad, obtaining the lowest RMSE between the regressors, as in the case of the
Pitch angle. Two-layer MLP obtains 0.046±0.003 rad and 0.046±0.001 rad with 5 and 10
samples in the test set; and 0.044±0.003 rad and 0.046±0.002 rad, respectively, in train
set. The model SVRP obtains the highest errors, the lowest being 1.105±0.802 rad in the
test set and 0.817±0.891 rad in the train set. Regarding SVRG, a smaller difference is
observed between the errors obtained by the two sets than in the Pitch angles. In the test
set, 0.157±0.057 rad are obtained with 5 TW samples, which increases in 10 samples to
0.168±0.062 rad. Afterwards it decreases to 0.127±0.044 rad with 40 samples, to finally
increase with 60 samples obtaining 0.144±0.054 rad. On the other hand, in the train set
the RMSE varies between 0.048±0.026 rad and 0.102±0.054 rad. This difference between
the two sets reflects that overfitting is occurring, to a lesser extent than with the Pitch
angle. The lower amplitude that the Roll angle has in gait motion also explains lower
absolute errors compared to Pitch, since the angles to predict are in a smaller range.

According to the results in Table 5.1 and Table 5.2, the most appropriate model to
estimate orientation angles of a segment from inertial measurements of this segment is
TB. Specifically, with the TW of 60 samples since it is the model that provides the lowest
RMSE. TB gets 0.030±0.007 rad for Pitch and 0.029±0.007 rad for Roll, what is 1.71°and
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1.66°, respectively. The accuracy of the results indicates that the model correctly infers
the input-output relationship of the signals and angles. However, two-layer MLP and 10
TW samples is also notable, since with lower computational cost, results close to TB are
obtained. For the explained MLP gets 0.042±0.008 rad for Pitch and 0.046±0.001 rad
for Roll. Accuracy is lost compared to TB, but the computational cost is lower.

To better understand the error in the predictions with TB, Figure 5.1 displays the
final 20% of the data of Volunteer 2. The original and predicted Pitch and Roll angle of
the IMU LShin is shown, using the TB model with TW of 60 samples. The predicted
Pitch angle is represented in red and the original Pitch angle is overlapped in green. The
predicted Roll is in dark blue and the original Roll is overlapped in light blue. It is
observed that the predictions follow the trend of the originals, except for isolated cases.
Also, as discussed before, Figure 5.1 shows that the amplitude of the Pitch angle, which
is the motion in the sagittal plane, is much greater than that of the Roll, which is the
motion in the frontal plane.

Figure 5.1: Volunteer 2 Pitch and Roll angles of LShin IMU Baseline Experiment using
TB and W=60.

Figure 5.2 includes two more graphs to complement the interpretation of the error ob-
tained in Figure 5.1. Figure 5.2a shows the absolute error of the predicted angle depending
on the original angle, to analyze possible trends between them. The red color is the Pitch
angle and the blue color is the Roll. It can be seen that most points are below 0.05-0.075
rad for both angles. Up to 0.4 rad from the Pitch angle, it has several errors that are out
of the average but they are a minority. This shows that the error is not directly related
to the angle to predict. However, the range of values of the angle to predict affects the
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errors by making estimation of higher amplitude angles in low amplitude samples.

Finally, Figure 5.2b present two boxplots corresponding to the absolute error angles.
In both cases, there are outliers, which are punctual errors over three times the standard
deviation of the absolute errors. In the case of Pitch, the median is 0.024 rad and 50% of
the data is between 0.015 and 0.04 rad. In the case of the Roll, the median is 0.018 rad
and 50% of the data between 0.01 and 0.03 rad. Most errors in Pitch are below 0.08 rad
and those in Roll are below 0.064 rad. They are small errors and are within an acceptable
range for motion monitoring.

(a) Comparison of LShin angle error. (b) Boxplot of LShin angles.

Figure 5.2: Comparison of the absolute error of the predicted angles with respect to
the original angles and absolute value error boxplots corresponding to LShin Baseline
experiment.

5.1.2 Angle prediction in IMU LThigh.

The second baseline experiment predicts the orientation angles of LThigh. As in the
previous experiment, we use the measurements of one IMU to estimate its orientation,
being LThigh the chosen IMU. The results provided are of predicting the Pitch and Roll
angles.

Table 5.3 shows the absolute mean and deviation of the RMSE obtained using MLR,
SVR Linear, Gaussian, Polynomial, TB and MLP models. Besides, all the TWs sizes
are used to predict the Pitch angle. The errors of the test set and train set are shown.
Detailed results of the MLP hyperparameters’ optimization are shown in Table A.11 and
Table A.12 of Appendix A.1.2.

MLR, SVRL and TB, reduce their error as the number of TW samples increases.
MLR with 5 samples obtains 0.082±0.005 rad and with 60 samples obtains 0.035±0.017



54 Chapter 5. Results and Discussion

Table 5.3: RMSE mean and deviation obtained in LThigh baseline experiment to predict
the Pitch angle.

Window Size [samples]

5 10 20 40 60

TEST
RMSE
[rad]

MLR 0.082±0.005 0.070±0.007 0.054±0.013 0.044±0.016 0.035±0.017
SVRL 0.071±0.025 0.062±0.025 0.053±0.017 0.047±0.017 0.041±0.018
SVRG 0.261±0.324 0.146±0.036 0.161±0.027 0.192±0.028 0.212±0.027
SVRP 0.650±0.847 0.190±0.091 1.261±0.679 0.518±0.205 2.517±1.880
TB 0.046±0.012 0.043±0.012 0.039±0.010 0.036±0.009 0.033±0.011

MLP 0.045±0.011 0.038±0.002 - - -

TRAIN
RMSE
[rad]

MLR 0.082±0.008 0.069±0.009 0.055±0.015 0.047±0.016 0.043±0.019
SVRL 0.066±0.025 0.059±0.027 0.051±0.018 0.046±0.017 0.040±0.018
SVRG 0.039±0.026 0.051±0.029 0.035±0.008 0.037±0.007 0.035±0.007
SVRP 0.638±0.844 0.063±0.060 1.244±0.676 0.515±0.204 2.511±1.860
TB 0.024±0.008 0.021±0.008 0.018±0.006 0.015±0.006 0.014±0.006

MLP 0.052±0.009 0.038±0.011 - - -

rad. SVRL with 5 samples obtains 0.071±0.025 rad and with 60 samples 0.041±0.018
rad. Finally, TB obtains 0.046±0.012 rad with 5 samples and 0.033±0.011 rad with 60
samples, being the lowest RMSE in this table. In the case of MLP with 5 samples obtains
0.045±0.011 rad and with 10 samples, it is reduced to 0.038±0.002 rad for test set. In
train set, the RMSE is 0.052±0.009 rad and 0.038±0.011 rad, respectively. The trend of
the errors is similar to that of the previous experiment. The SVRP obtains high errors in
both the test set and the train set. The error fluctuates in a range of 0.190±0.091 rad
and 2.517±1.880 rad. The SVRG model obtains an error of 0.261±0.324 rad with 5 TW
samples, which decreases to 0.146±0.036 rad with 10 samples and increases with the rest
of the samples until obtaining 0.212±0.027 rad with 60 samples. On the other hand, the
train set of this model is substantially smaller, with errors between 0.035±0.007 rad and
0.051±0.029 rad, which indicates that overfitting occurs.

Regarding the prediction of the Roll angle, Table 5.4 follows the same format as for
the Pitch angle. Table 5.4 shows the absolute mean and deviation with the different
regressors. The trend repeats itself. With 60 samples, MLR obtains 0.040±0.012 rad,
SVRL 0.049±0.021 rad and TB 0.038±0.011 rad. The latter being the one with the least
error. In this three models, the RMSE decreases as the TW samples increase. MLP again
gets the lowest RMSE at its TW sizes. It obtains 0.048±0.002 rad with 5 samples and
0.046±0.001 rad with 10 samples in test set. In train, it obviously obtains a lower RMSE,
with 0.036±0.009 rad and 0.037±0.007 rad, respectively. SVRP offers errors higher than
0.272±0.219 rad, which increases by lengthening the TW. SVRG presents overfitting since
the lowest error in test is 0.165±0.016 rad and in train, errors are around the average.

According to these results, it can be concluded that the most appropriate model for
this application is TB. This model is also best suited for LShin, with the 60 sample con-
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Table 5.4: RMSE mean and deviation obtained in LThigh baseline experiment to predict
the Roll angle.

Window Size [samples]

5 10 20 40 60

TEST
RMSE
[rad]

MLR 0.057±0.010 0.051±0.010 0.045±0.011 0.041±0.012 0.040±0.012
SVRL 0.064±0.023 0.060±0.019 0.056±0.020 0.053±0.021 0.049±0.021
SVRG 0.202±0.014 0.165±0.016 0.198±0.017 0.213±0.018 0.237±0.019
SVRP 0.754±0.596 0.446±0.394 0.862±0.700 1.032±1.694 0.272±0.219
TB 0.052±0.011 0.044±0.010 0.046±0.012 0.049±0.012 0.038±0.011

MLP 0.048±0.002 0.046±0.001 - - -

TRAIN
RMSE
[rad]

MLR 0.056±0.012 0.052±0.013 0.046±0.015 0.043±0.017 0.040±0.019
SVRL 0.059±0.022 0.055±0.022 0.049±0.018 0.048±0.018 0.046±0.017
SVRG 0.016±0.005 0.018±0.005 0.020±0.006 0.022±0.008 0.022±0.008
SVRP 0.565±0.700 0.292±0.413 0.831±0.678 0.940±1.716 0.288±0.222
TB 0.023±0.009 0.019±0.008 0.018±0.007 0.016±0.007 0.013±0.006

MLP 0.036±0.009 0.037±0.007 - - -

figuration. TB obtains 0.033±0.011 rad for Pitch and 0.038±0.011 rad for Roll, which is
1.71°and 2.17°, respectively. This low errors allow the use of this model for gait monitoring.
However, two-layer MLP and 10 TW samples offer close results with substantially lower
computational cost. With the proposed MLP, 0.038±0.002 rad for Pitch and 0.046±0.001
rad for Roll are obtained. In LShin Baseline experiment, the RMSE is lower than with
LThigh, obtaining 0.030±0.007 rad for Pitch and 0.029±0.007 rad for Roll.

To better understand the magnitude of the errors in the prediction of LThigh, Fig-
ure 5.3 shows the final 20% of the data from Volunteer 2. The original and predicted Pitch
and Roll angle of the IMU LThigh is shown, using TB model with TW of 60 samples. The
predicted Pitch is represented in red and the original overlay in green. The predicted Roll
is depicted in dark blue and the original in light blue. It is observed that the amplitude
of the angles in the thigh are smaller than in the shin. The amplitude of Roll is smaller
than that of Pitch. Errors occur when predicting the peaks, since these, at the original
Roll angle, are irregular.

Figure 5.4 shows the absolute errors of the predicted angle according to the original
angle. It is observed that the Roll angle, even having a smaller amplitude, has greater
errors as the original angle increases. In the case of Pitch, the errors are maintained,
except in specific cases in which the error exceeds 0.06 rad. This is proof that the error
is independent of the amplitude.

The majority of Pitch errors are below 0.07 rad and Roll errors are below 0.079 rad.
Errors are acceptable for gait monitoring.

Regressors show that they can predict different movements. The movement of LThigh
and LShin are different and find the input-output relationship in both cases. Thus, it is
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Figure 5.3: Volunteer 2 Pitch and Roll angles of LThigh IMU Baseline Experiment using
TB with W=60.

(a) Comparison of LThigh angle error. (b) Boxplot of LThigh angles.

Figure 5.4: Comparison of the absolute error of the predicted angles with respect to
the original angles and absolute value error boxplots corresponding to LThigh Baseline
experiment.
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shown that both movements can be predicted exactly with inertial measurements of that
segment. In subsequent experiments, we analyze whether this input-output relationship
can also be inferred with movements of other segments.

5.2 Optimization of the number and position of IMUs

In this section, three experiments are performed using different numbers of IMUs for the
prediction of the orientation angles of a single IMU. We use the inertial measurements
from one IMU to three IMUs, to predict the angles of the fourth one. The first experiment
in this section is the following one to select the prediction models and the optimal TW
size that is used in the following experiments. It should be noted that the IMUs used to
predict and the IMU angles being predicted all belong to the same person.

5.2.1 3DLS IE experiment

In 3DLS IE experiment, the data from the RShin, RThigh and LThigh IMUs is used to
predict the angles formed by the LShin IMU. In this experiment, all the models and all
the TWs sizes proposed are used. The LThigh IMU is not predicted because it would be
a scenario similar to the baseline experiments.

To begin with, Table 5.5 shows Pitch and Roll prediction results in test. Detailed
results of the MLP hyperparameters’ optimization are shown in Table A.19, Table A.20
and Table A.24 in Appendix A.2.1. SVRP and SVRG provide the highest errors, reaching
11.42±25.39 rad with 60 TW samples and 0.351±0.040 rad, respectively. Furthermore,
errors are not acceptable if you want to predict gait, since high errors cause problems that
other parts of the body have to compensate. The remaining three models obtain lower
RMSE as the number of TW samples increases. TB being the one that obtains the smallest
error with 0.036±0.008 rad for Pitch and 0.032±0.017 rad for Roll. This is equivalent
to 2.06°and 1.83°, respectively. MLP continues to be the model that best predicts its
corresponding TW sizes. With 10 samples, Pitch prediction obtains 0.040±0.010 rad and
Roll 0.033±0.006 rad.

According to these results, the most suitable model for this application is TB with TW
of 60 samples to predict Pitch and Roll. However, the performance of two-layer MLP and
10-sample TW obtain close results. Comparing the results of this experiment with those
obtained in the LShin Baseline experiment, the RMSE has increased 0.006±0.001 rad to
predict Pitch and 0.003±0.010 rad for Roll. Although the error is slightly increased, the
models can assumed it to monitor the gait.

To better understand the error, Figure 5.5 shows the final 20% of the data from the
IMU LShin of Volunteer 4. It shows the original Pitch and Roll angles and predicted using
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Table 5.5: RMSE mean and deviation obtained in 3DLS IE experiment to predict the
Pitch and Roll angles.

Window Size [samples]

5 10 20 40 60

PITCH
RMSE
[rad]

MLR 0.094±0.016 0.074±0.012 0.062±0.009 0.058±0.010 0.059±0.011
SVRL 0.096±0.017 0.076±0.013 0.066±0.009 0.064±0.010 0.068±0.010
SVRG 0.325±0.034 0.342±0.029 0.349±0.039 0.351±0.040 0.350±0.031
SVRP 0.194±0.153 0.357±0.273 2.560±3.515 1.722±3.257 11.42±25.39
TB 0.065±0.007 0.059±0.007 0.054±0.006 0.047±0.007 0.036±0.008

MLP 0.048±0.009 0.040±0.010 - - -

ROLL
RMSE
[rad]

MLR 0.057±0.016 0.054±0.016 0.051±0.014 0.050±0.015 0.048±0.014
SVRL 0.064±0.018 0.061±0.020 0.060±0.018 0.060±0.014 0.058±0.014
SVRG 0.109±0.035 0.107±0.028 0.117±0.038 0.104±0.060 0.122±0.042
SVRP 0.871±0.936 0.654±0.600 0.979±0.863 1.141±1.293 1.080±2.330
TB 0.038±0.016 0.037±0.017 0.034±0.016 0.033±0.017 0.032±0.017

MLP 0.047±0.004 0.033±0.006 - - -

the TB model with TW of 60 samples. The error image translates into more accurate
predictions. The boxplots show that the majority of Pitch errors are below 0.125 rad and
Roll errors are below 0.075 rad. The predictions report data within these range of values
without outliers. In Pitch, the range of values has increased by 0.04 rad and that of Roll
by 0.01 rad.

(a) Original and predicted angles. (b) Boxplot of LShin angles.

Figure 5.5: Volunteer 4 Pitch and Roll angles of 3DLS IE Experiment using TB with
W=60. Absolute value error boxplots.

By carrying out this experiment and LShin and LThigh baseline experiments, it is
concluded that the most appropriate model is TB with TW of 60 samples. However,
two-layer MLP and 10 TW samples performs correctly with a much lower computational
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cost. Both methods provide acceptable errors for gait prediction. Also, they are so small
that the following experiments are carried out only with those two ML models and TW
sizes.

5.2.2 2DLX IE experiment

In 2DLX IE experiment, the angles of a single IMU, LShin or LThigh, are predicted by
using the IMUs of the right leg. That is, one IMU orientation is predicted using the inertial
measurements of two. As explained above, only the TB models with 60 TW samples and
two-layer MLP with 10 samples are used. Detailed results of the MLP hyperparameters’
optimization are shown in Table A.25 and Table A.26 in Appendix A.2.2.

Table 5.6 shows the results obtained with TB and MLP for the Pitch and Roll an-
gles, both for the LShin IMU and the LThigh IMU. In LShin, the RMSE of Pitch is
0.039±0.010 rad using TB and 0.068±0.018 rad using MLP. For Roll, it is 0.032±0.006
rad and 0.056±0.003 rad, respectively.

Table 5.6: RMSE mean and deviation obtained in 2DLX IE experiment to predict the
Pitch and Roll angles.

TW size
& Model

Pitch RMSE
[rad]

Roll RMSE
[rad]

LShin
TB60 0.039±0.010 0.032±0.006

MLP10 0.068±0.018 0.056±0.003

LThigh
TB60 0.034±0.009 0.031±0.015

MLP10 0.049±0.011 0.043±0.002

On the other hand, for predicting LThigh Pitch angle, 0.034±0.009 rad is obtained
with TB and 0.049±0.011 rad with MLP. For Roll, TB obtains 0.031±0.015 rad and MLP
0.043±0.002 rad.

In the case of LShin, the results can be compared with those of the LShin Baseline
and 3DLS IE experiments. In the Baseline one, the error increases 0.009±0.003 rad for
Pitch and 0.003±0.001 rad for Roll. Regarding the results of 3DLS IE experiment, the
RMSE increases 0.003±0.002 rad for Pitch and 0.000±0.011 rad for Roll. Therefore, in
2DLX IE for LShin the error of Roll’s prediction is similar to that obtained with 3 IMUs.
When predicting LThigh a lower RMSE for Roll is obtained than using only LThigh for
predicting in LThigh Baseline experiment. In that experiment, we get 0.033±0.011 rad
for Pitch and 0.038±0.011.

To visualize these errors, Figure 5.6c shows the final 20% of the LShin (top) and
LThigh (bottom) IMUs with the original and predicted angles, obtained using TB. In the
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thigh, both angles have a smaller amplitude, which causes the error in this part to be
less than in the shin. To better analyze these results, the following graphs offer relevant
information. This is best seen in Figure 5.6b where the median of the Pitch angle is
0.045 rad and that the outliers exceed the error of 0.125 rad. On the other hand, the
median error in Roll is 0.02 rad and concentrates 50% of the data in a range of ±0.012
rad. Finally, in Figure 5.6c it is observed that 50% of the Roll data produce a greater
error than 50% of the Pitch data. In all cases, the errors obtained with the models are
within the first and third quartiles of their corresponding angles.

The results obtained reflect that the TB model correctly infers the input-output re-
lationship between the angles and the signal. Comparing the errors produced with those
obtained in the 3DLS IE experiment, the conclusion is reached that it is optimal to use 2
IMUs for gait monitoring.

5.2.3 1DLX IE experiment

In this last experiment of individual evaluation, named 1DLX IE, the prediction of the
LShin and LThigh IMUs is tested with inertial measurements of a single IMU, either RShin
or RThigh. First, all the results obtained with the IMU RShin are presented, and then
with RThigh. All detailed MLP tables with the results can be seen in Appendix A.2.3.

Table 5.7 shows the results obtained by using RShin inertial data. In the prediction of
LShin Pitch angle, TB obtains 0.051±0.001 rad and MLP, 0.086±0.005 rad. Predicting
Roll angle, we get 0.045±0.010 rad and 0.073±0.004 rad, respectively. When predicting
LThigh Pitch angle with TB we get 0.042±0.003 rad and with MLP, 0.056±0.003 rad.
For Roll, we get 0.036±0.006 rad and 0.049±0.002 rad, respectively.

Table 5.7: RMSE mean and deviation obtained in 1DLX IE experiment to predict the
Pitch and Roll angles knowing RShin data.

TW size
& Model

Pitch RMSE
[rad]

Roll RMSE
[rad]

LShin
TB60 0.051±0.001 0.045±0.010

MLP10 0.086±0.005 0.073±0.004

LThigh
TB60 0.042±0.003 0.036±0.006

MLP10 0.056±0.003 0.049±0.002

In Figure 5.7a we can see the final 20% of the respective IMUs of Volunteer 3 obtained
with TB. The predicted angles adjust to the originals, except in the LThigh Roll due to
the irregularity of its peaks.

In the LShin IMU, specific errors occur in both angles, since the majority remains
below 0.1 radians of error. Figure 5.7b shows that outliers in Pitch occur when the error
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(a) Original and predicted angles.

(b) Boxplot of LShin angles. (c) Boxplot of LThigh angles.

Figure 5.6: Volunteer 2 Pitch and Roll angles prediction of LShin and LThigh IMUs using
right leg inertial measurements in 2DLX IE experiment using TB with W=60. Absolute
value error boxplots.
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exceeds 0.08 rad and in Roll when it exceeds 0.05 rad. In LThigh, most Pitch prediction
errors are below 0.1 rad, except when the original angle is 0.3 rad when isolated errors
are made. On the other hand, the Roll error remains below 0.05 rad without any outlier
as Figure 5.7c shows.

In the case of using RThigh inertial data for prediction, Table 5.8 shows the results. For
predicting LShin Pitch angle we get 0.052±0.002 rad with TB and 0.079±0.008 rad with
MLP. For Roll, we get 0.034±0.007 rad and 0.039±0.009 rad, respectively. For predicting
LThigh Pitch angle with TB we get 0.036±0.005 rad and with MLP, 0.044±0.009 rad.
For Roll, we get 0.032±0.002 rad and 0.026±0.003 rad, respectively.

Table 5.8: RMSE mean and deviation obtained in 1DLX IE experiment to predict the
Pitch and Roll angles knowing RThigh data.

TW size
& Model

Pitch RMSE
[rad]

Roll RMSE
[rad]

LShin
TB60 0.052±0.002 0.034±0.007

MLP10 0.079±0.008 0.039±0.009

LThigh
TB60 0.036±0.005 0.032±0.002

MLP10 0.044±0.009 0.026±0.003

Figure 5.8 shows 20% of the IMUs of Volunteer 3 using TB and the error boxplots
obtained. As in the previous case, the original movement is followed with the predictions.
In Figure 5.8b and Figure 5.8c it is observed that errors are higher than in 2DLX IE
experiment.

The results obtained in this experiment have a higher RMSE than in the rest of the
experiments, being lower when using RThigh than RShin. This is because the model
better infers the input-output relationships of the thigh. Using RShin to predict all
errors increase between 0.005 and 0.011 rad. However, using RThigh, all errors are minor
compared to RShin, except the Pitch of LShin. All this is compared with 2DLX IE results.
The errors are reasonable, but there is great variability depending on the IMU used to
predict, so the results of the 2DLX IE experiment are chosen as optimal; as well as the
use of two IMUs placed in the shin and thigh of the same leg.

5.3 Performance of new volunteers

In this last section, three experiments are carried out that are homologous to the Sec-
tion 5.2 experiments. However, in this section we evaluate how extrapolable the prediction
models are to new volunteers motions. This is achieved by predicting the orientation IMU
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(a) Original and predicted angles.

(b) Boxplot of LShin angles. (c) Boxplot of LThigh angles.

Figure 5.7: Volunteer 3 Pitch and Roll angles prediction of LShin and LThigh IMUs using
RShin inertial measurements in 1DLX IE. Model TB with W=60. Absolute value error
boxplots.
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(a) Original and predicted angles.

(b) Boxplot of LShin angles. (c) Boxplot of LThigh angles.

Figure 5.8: Volunteer 3 Pitch and Roll angles prediction of LShin and LThigh IMUs
using RThigh inertial measurements in 1DLX IE experiment. Model TB with TW=60.
Absolute value error boxplots.
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or IMUs of a volunteer using models trained with the IMU data of the rest of the vol-
unteers. This evaluation method is called leave-one-out. For these experiments, the TB
models with 60 TW samples and two-layer MLP with 10 TW samples are used.

5.3.1 3DLS NV experiment

In 3DLS New Volunteer (NV) experiment, the Pitch and Roll angles of an IMU of a
volunteer is predicted from the inertial measurements of the rest of the IMUs of the rest
of the volunteers. In this case, the LShin IMU is predicted using LThigh, RShin and
RThigh.

Table 5.9 shows the RMSE obtained by the test set for predicting Pitch and Roll angles
of LShin IMU. The error of predicting Pitch is 0.141±0.059 rad with TB; and 0.123±0.011
rad with MLP which corresponds to 7.04°. For Roll, TB obtains 0.140±0.030 rad which
corresponds to 8.02°; and 0.173±0.018 rad with MLP. If we compare TB results with its
equivalent, 3DLS IE experiment, in which 0.036±0.008 rad for Pitch and 0.032±0.017 rad
for Roll are obtained, the error has increased considerably. It makes sense that the error
increases with this method, since the model does not have information about the IMU to
predict. Detailed MLP results can be seen in Appendix A.3.1

Table 5.9: RMSE mean and deviation obtained in 3DLS NV experiment to predict Pitch
and Roll angles.

TW size
& Model

Pitch RMSE
[rad]

Roll RMSE
[rad]

LShin
TB60 0.141±0.059 0.140±0.030

MLP10 0.123±0.011 0.173±0.018

Figure 5.9a shows the original and predicted Pitch and Roll angles of Volunteer 3. The
graph belongs to the IMU LShin. It is observed that there are delayed predictions mainly
in the Roll. Furthermore, the peaks of the amplitudes do not follow each other correctly.
In Figure 5.9b it is observed that the majority of Pitch errors are below 0.27 rad and
Roll errors below 0.37 rad. These errors are acceptable for gait prediction. Therefore, the
models can be extrapolated to new volunteers’ inertial data.

5.3.2 2DLX NV experiment

In 2DLX NV experiment, the Pitch and Roll angles of each one of the IMUs of the
left leg are predicted from the inertial measurements of the two IMUs of the right leg
together. That is, with the IMUs RShin and RThigh, the IMU LThigh and LShin are
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(a) Original and predicted angles. (b) Boxplot of LShin angles.

Figure 5.9: Volunteer 3 LShin Pitch and Roll angles prediction with TB and W=60 in
3DLS NV experiments. Absolute value error boxplots.

predicted separately. The objective of this experiment is to check if with two IMUs a
good prediction of one IMU can be obtained.

Table 5.10 shows the RMSE of the test set obtained by predicting the Pitch and
Roll angle of the IMU LShin and LThigh using TB and MLP. As occurred with the
homologous experiment, the prediction in the shin obtains errors greater than those in
the thigh, mainly due to the amplitude of the angles that these areas cause. The Pitch
error in LShin is 0.236±0.073 rad with TB and 0.166±0.011 rad with MLP. LThigh
obtains 0.169±0.035 rad and 0.144±0.012 rad, respectively. The Roll error is slightly
lower in both IMUs. LShin obtains 0.224±0.046 rad with TB and 0.183±0.016 rad with
MLP. LThigh gets 0.064±0.048 rad and 0.110±0.008 rad. The MLP, for the first time in
all this work, is the most appropriate model for an experiment, except for predicting the
Roll of LThigh. Detailed information about MLP results can be seen in Appendix A.3.2

Table 5.10: RMSE mean and deviation obtained in 2DLX NV experiment to predict Pitch
and Roll angles.

TW size
& Model

Pitch RMSE
[rad]

Roll RMSE
[rad]

LShin
TB60 0.236±0.073 0.224±0.046

MLP10 0.166±0.011 0.183±0.016

LThigh
TB60 0.169±0.035 0.064±0.048

MLP10 0.144±0.012 0.110±0.008

The errors of predicting the angles of LShin are higher than those obtained in 3DLS
NV. Pitch is 0.043 rad higher and Roll is 0.043 rad higher. If we compare it with its
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counterpart, the errors are much higher.

The original and predicted Pitch and Roll angles of Volunteer 2 are shown in Fig-
ure 5.10a. The graph above belongs to the IMU LShin and the one below to LThigh.
Again, delayed predictions are observed in the LShin Roll. Maximum amplitudes are not
calculated correctly. Figure 5.10b and Figure 5.10c show that there is variability regard-
ing where the majority of errors are found. The models continue to be extrapolable to
new inertial data, but due to the imbalance it provides depending on the segment to be
predicted, the results of the 3DLS NV experiment indicate that is preferable to use 3
IMUs.

5.3.3 1DLX NV experiment

In this last experiment named 1DLX NV, the Pitch and Roll angles of each of the IMUs
of the left leg are predicted from the inertial measurements of the IMUs of the right leg.
That is, with the IMUs RShin and RThigh separately, the IMU LThigh and LShin are
predicted separately. The objective of this experiment is to check if with one IMU a good
prediction of one IMU can be obtained.

This section is made up of two parts, the first shows the results obtained from the
inertial measurements of the IMU RShin and the second part shows the results obtained
from the inertial measurements of the IMU RThigh.

Starting with the first part, Table 5.11 shows the RMSE obtained by the test set
to predict the Pitch and Roll angle of the IMUs LShin and LThigh. For LShin, the
Pitch errors are 0.163±0.019 rad with TB and 0.173±0.023 rad with MLP. For LThigh
is a bit lower obtaining 0.123±0.020 rad with TB and 0.122±0.023 rad with MLP. All
the Roll errors are lower than Pitch one when using TB. For LShin, 0.152±0.010 rad
and 0.260±0.037 rad are obtained. For LThigh, TB gets 0.102±0.004 rad and MLP
0.150±0.041 rad, respectively. Detailed information about MLP results can be seen in
Table A.34 and Table A.35 in Appendix A.3.3.

Table 5.11: RMSE mean and deviation obtained in 1DLX NV experiment to predict Pitch
and Roll angles of LShin and LThigh from RShin data.

TW size
& Model

Pitch RMSE
[rad]

Roll RMSE
[rad]

LShin
TB60 0.163±0.019 0.152±0.010

MLP10 0.173±0.023 0.260±0.037

LThigh
TB60 0.123±0.020 0.102±0.004

MLP10 0.122±0.023 0.150±0.041
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(a) Original and predicted angles.

(b) Boxplot of LShin angles. (c) Boxplot of LThigh angles.

Figure 5.10: Volunteer 2 Pitch and Roll angles prediction of LShin and LThigh IMUs
using RShin and RThigh inertial measurements in 2DLX NV experiment. Model TB
with W=60. Absolute value error boxplots.
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Figure 5.11a shows two graphs with the original and predicted Pitch and Roll angles of
Volunteer 3. The graph above belongs to the IMU LShin and the one below to LThigh. As
can be seen, the amplitude of the Roll angle is much smaller than that of the Pitch angle,
being the amplitude of both angles smaller in the IMU LThigh. In this case, delayed
predictions are not observed, but errors continue when predicting amplitude maxima.
Figure 5.11b shows mainly that Roll has no outliers. Both angles have similar range of
the majority of values around 0.3 rad. On the other hand, Figure 5.11c shows that the
majority of Roll values are below 0.16 rad and the Pitch ones below 0.225 rad. It makes
sense since the amplitude of Roll in LThigh is much smaller than in LShin.

In this second part of the experiment, the results obtained from predicting with the
IMU RThigh are presented. Table 5.12 shows prediction results. It obtains lower errors
than previous part when predicting LThigh but higher when predicting LShin. Regarding
Pitch errors, LShin obtains 0.219±0.045 rad with TB and 0.224±0.019 rad with MLP.
LThigh gets 0.107±0.037 rad and 0.151±0.018 rad, respectively. For Roll, LShin gets
0.183±0.033 rad with TB and 0.173±0.019 rad with MLP. LThigh gets 0.046±0.009 rad
and 0.052±0.011 rad, respectively.

Table 5.12: RMSE mean and deviation obtained in 1DLX NV experiment to predict Pitch
and Roll angles of LShin and LThigh from RThigh data.

TW size
& Model

Pitch RMSE
[rad]

Roll RMSE
[rad]

LShin
TB60 0.219±0.045 0.183±0.033

MLP10 0.224±0.019 0.173±0.019

LThigh
TB60 0.107±0.037 0.046±0.009

MLP10 0.151±0.018 0.052±0.011

Figure 5.12a shows two graphs with the original and predicted Pitch and Roll angles
of Volunteer 3 using TB. As the previous one, the graph above belongs to the IMU LShin
and the one below to LThigh. Again, the amplitude of the Roll angle is much smaller than
that of the Pitch angle, being the amplitude of both angles smaller in the IMU LThigh.
In Figure 5.12b we can see that there are outliers that reach 0.9 rad in amplitude. Both
angles have the majority of values around 0.4 rad. Figure 5.12c shows that most values
of Roll have half the amplitude of those of Pitch.

Predicting with RShin, a lower RMSE is obtained than in 2DLX NV in all cases.
However, using RThigh, the errors of predicting LThigh are the smallest in this entire
section; but those of predicting LShin are the greatest. It should be noted that the Roll
of LThigh is 0.046±0.009 rad, very similar to that obtained in its IE counterpart which is
0.032±0.002 rad. The model’s inference in the input-output relationships is correct, but
it infers better in some segments than in others. The models can be extrapolated to new
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(a) Original and predicted angles.

(b) Boxplot of LShin angles. (c) Boxplot of LThigh angles.

Figure 5.11: Volunteer 3 Pitch and Roll angles prediction of LShin and LThigh IMUs
using RShin inertial measurements in 1DLX NV experiment. Model TB with W=60.
Absolute value error boxplot.
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(a) Original and predicted angles.

(b) Boxplot of LShin angles. (c) Boxplot of LThigh angles.

Figure 5.12: Volunteer 3 Pitch and Roll angles prediction of LShin and LThigh IMUs
using RThigh inertial measurements in 1DLX NV experiment. Model TB with W=60.
Absolute value error boxplots.
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volunteers, but the use of 3 IMUs is still optimal when it comes to predicting new inertial
data.



Chapter 6

Conclusion and Future Lines

This chapter presents the conclusions obtained after finishing this project; as well as the
future lines and the different consequences that this could have. Section 6.1 details the
main findings of the research. In Section 6.2, the limitations and future lines of research
are exposed. Section 6.3 explains the social, environmental and economic impacts of this
work. Besides, Section 6.4 describes the Sustainable Development Goal (SDG) framework
in which this work is located. Finally, Section 6.5 explains the lessons learned during the
development of this Bachelor’s Thesis.

6.1 Conclusions

The main objective of this Bachelor’s Thesis was to develop ML models to estimate angles
of the lower extremities using inertial measurements of IMUs during walking. This has
applications in various areas such as rehabilitation, the design of knee prostheses and
exoskeletons, helping to improve the quality of life of people who suffer from pathologies
that affect gait.

Eight experiments were carried out that are divided into three groups, depending on
the objective of each group. The same five preselected volunteers were used. In the
first group, two baseline experiments for predicting LShin and LThigh angles with their
own data were performed. The objective of the next group was the optimization of the
number and position of IMUs and includes three experiments. The angles of an IMU were
predicted with the inertial measurements of three, two and one IMU. The last group also
comprises three experiments that were similar to those of the previous group. However,
the data was not known, since it was trained with inertial measurements of the rest of
the volunteers. The extrapolation of the models in new volunteers was checked.

The ML models applied were MLR, TB, MLP, SVR Linear, Gaussian and Polynomial.
In addition, time window series were applied, which allowed the used data to be enlarged,

73
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by using past data for present angles. As a conclusion of these experiments, the more
samples there were, the greater the computational cost was required. With 60 samples,
the most suitable model for the applications of the first three experiments was TB. In the
LShin baseline, the error to predict Pitch was 0.030±0.007 rads and to predict Roll was
0.029±0.007 rads. In the LThigh baseline, the Pitch error was 0.033±0.011 rads, and the
Roll error was 0.038±0.011 rads.

The following experiment was the first in which IMUs were evaluated. In this case,
LShin was predicted with the inertial measurements of the other three IMUs. LThigh was
not predicted since it was used for training. The error of predicting Pitch was 0.036±0.008
rads and that of Roll was 0.032±0.017 rads. However, with two-layer MLP and 10 TW
samples, the obtained results were valid, although superior to those obtained with TB.
By using 10 samples, the computational cost was lower than using 60 samples, so in the
rest of the experiments this method and TB of 60 samples were used.

After choosing the optimal TW sizes for the best ML methods, was time to reduce the
number of IMUs for training. When using two IMUs to predict, the error of Pitch and
Roll were 0.039±0.010 rads and 0.032±0.006 rads for LShin; and 0.034±0.009 rads and
0.031±0.015 rads, respectively, for LThigh. In the last experiment of predicting with a
single IMU, the errors are higher in all cases.

Finally, we evaluated the extrapolability of the chosen models to new volunteers data.
The predictions produced considerably larger errors. However, using only RThigh to
predict, the Roll of LThigh obtained an RMSE of 0.046±0.009 rads with TB. To predict
the Pitch of LShin, an RMSE of 0.123±0.011 rads was obtained by using three IMUs and
the MLP model. It was the only time that MLP made a more precise estimation than
TB.

In summary, the results obtained in this work showed that it is possible to estimate
sensor angles with ML techniques. Furthermore, these techniques showed to be effective
and obtained accurate results. Having carried out different experiments to assess optimal
number of IMUs and their position, it allows us to know the importance of each sensor,
also knowing the cost that can be saved.

6.2 Limitations and future approaches

During the development of this work, some limitations have been experienced that affect
the results obtained. These limitations serve as a starting point for future prediction
studies of human gait:

1. The TW method has been applied to increase the number of data since only 5
volunteers have been used to carry out the experiments, but it would be advisable
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to initially use a large database. Additionally, it would be valuable to add volunteers
with anthropomorphic differences and gait-related pathologies.

2. The signals used are recorded while walking on a flat surface. It would be inter-
esting to use signs of volunteers doing different activities such as climbing stairs or
running; in addition to different speeds, to be able to make predictions of day-to-day
activities.

3. It would be advisable to develop regressors and NN in more depth for the esti-
mation of data from unknown volunteers. In this project, acceptable results have
been obtained by extrapolating the models, but it would be advisable to optimize
hyperparameters.

6.3 Impact

6.3.1 Social Impact

The analysis of human gait or gait biomechanics has a significant impact on various
aspects of society, especially in the field of health and rehabilitation. It allows health
professionals to evaluate and diagnose disorders. This allows us to design personalized
treatments and therapies. It can reveal hidden or underlying health problems, such as
neuromuscular diseases or postural imbalances. This can lead to earlier diagnoses and,
therefore, more effective treatment.

The biomechanics of gait is essential in the development and improvement of medical
devices such as prostheses, orthoses and orthopedic footwear. These devices improve the
quality of life of people with disabilities and allow them to move more easily. Even,
in jobs that require standing or walking for long periods, gait analysis can be used to
improve ergonomics and workplace safety. This can help prevent musculoskeletal injuries
and increase productivity.

Besides, understanding how people walk and get around influences the design of public
spaces, such as sidewalks and parks, as well as the design of public transportation systems.
The aim is to make these spaces and systems more accessible and comfortable for all age
groups and abilities.

In general, gait analysis contributes to improving people’s quality of life by allowing a
better understanding and addressing of mobility and health problems. This is especially
important in the aging population, where mobility becomes a key factor in maintaining
independence and quality of life.
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6.3.2 Environmental Impact

To carry out this work, signals recorded with IMUs are used. The manufacturing of
these sensors can generate electronic microwaste that can be harmful to the environment.
However, this work aims to reduce the number of these sensors, which contributes to
mitigating the waste generated.

Due to the use of MLs algorithms, computing resources are required that consume a
large amount of electrical energy during the model training and evaluation phase. Elec-
tricity generation can be through fossil fuels or renewable energy. In the first case, this
implies the burning of these resources, releasing a large amount of greenhouse gases into
the atmosphere, which contributes to global warming. In the second case, it involves the
construction of structures such as hydroelectric dams, electric generating mills or solar
plants, which affect the landscape and the terrain on which they are located. For exam-
ple, in this work, the MLP model obtains similar results to those of TB, with much lower
computational cost.

By improving gait quality and reducing the risk of injury, sustainable mobility is
promoted. People who can walk or run more efficiently may opt for more environmentally
friendly means of transportation, such as walking or cycling, rather than relying too
heavily on motorized vehicles.

6.3.3 Economic Impact

Finally, the economic impact of this work is found in the inertial sensors. Its low cost,
small size and easy placement favor the carrying out of studies with these devices by
populations or teams with low resources. There are clothes, watches and accessories on
the market that have these sensors built in, which allow movement analysis to be carried
out more easily in the future.

6.4 Sustainable Development Goals framework

This Bachelor’s Thesis is framed within the SDGs taking into account the impacts in
Section 6.3. The SDGs are 17 global goals established in 2015 by the United Nations
(UN) as part of the 20230 agenda for sustainable development. The objectives and goals
to which this project benefits are shown in Table 6.4.
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Table 6.1: Specific SGD goals within the framework of this work.

Goal Target Description

SDG 1: No
Poverty

SDG 1.4 By 2030, ensure that all men and women, in partic-
ular the poor and the vulnerable, have equal rights
to economic resources, as well as access to basic ser-
vices, ownership and control over land and other forms
of property, inheritance, natural resources, appropri-
ate new technology and financial services, including
microfinance.

SDG 3: Good
Health and
Well-Being

SDG 3.8 Achieve universal health coverage, including financial
risk protection, access to quality essential health-care
services and access to safe, effective, quality and afford-
able essential medicines and vaccines for all.

SDG 3.d Strengthen the capacity of all countries, in particular
developing countries, for early warning, risk reduction
and management of national and global health risks.

SDG 7:
Affordable and
Clean Energy

SDG 7.a By 2030, enhance international cooperation to facili-
tate access to clean energy research and technology,
including renewable energy, energy efficiency and ad-
vanced and cleaner fossil-fuel technology, and promote
investment in energy infrastructure and clean energy
technology.

SDG 9: Industry,
Innovation and
Infrastructure

SDG 9.5 Enhance scientific research, upgrade the technological
capabilities of industrial sectors in all countries, in par-
ticular developing countries, including, by 2030, en-
couraging innovation and substantially increasing the
number of research and development workers per 1 mil-
lion people and public and private research and devel-
opment spending.
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6.5 Bachelor’s Thesis Based Learning

During the development of this work, knowledge acquired during the Biomedical Engi-
neering Bachelor’s Degree has been put into practice. Starting from studying the different
parameters of the biomechanics of human gait, such as the phases of gait and modes of
locomotion. Although this work has focused particularly on the angles of the knee joints.
For that, I needed to understand IMUs operation.

The quality of training data is essential for the effectiveness of machine learning models.
I learned that accurate data collection and labeling takes time and care. Besides, it
was the first time that I have implemented a NN as MLP. Finally, I have improved my
programming skills in MATLAB for signal processing; as well as in writing a scientific
document in LATEX.
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Appendix A

MLP tables

A.1 Baseline experiments

A.1.1 Angle prediction in IMU LShin

Table A.1: RMSE mean and deviation obtained in LShin baseline experiment to predict
the Pitch angle using one-layer MLP and 5-sample TW.

Num. Neurons

5 10 15 20 25 30
TEST
RMSE
[rad]

0.205±0.032 0.186±0.025 0.184±0.018 0.175±0.022 0.161±0.019 0.160±0.011

TRAIN
RMSE
[rad]

0.203±0.031 0.186±0.025 0.183±0.019 0.176±0.024 0.162±0.019 0.160±0.016

Table A.2: RMSE mean and deviation obtained in LShin baseline experiment to predict
the Pitch angle using one-layer MLP and 10-sample TW.

Num. Neurons

10 20 30 40 50 60
TEST
RMSE
[rad]

0.157±0.018 0.121±0.017 0.130±0.016 0.129±0.013 0.120±0.017 0.137±0.019

TRAIN
RMSE
[rad]

0.160±0.016 0.123±0.016 0.131±0.015 0.127±0.012 0.118±0.011 0.137±0.012
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Table A.3: RMSE mean and deviation obtained in LShin baseline experiment to predict
the Pitch angle using two-layer MLP and 5-sample TW.

Num.
Neurons 5 10 15

TEST
RMSE
[rad]

5 0.053±0.009 0.053±0.010 0.051±0.013
10 0.046±0.010 0.047±0.009
15 0.048±0.011

TRAIN
RMSE
[rad]

5 0.049±0.006 0.046±0.007 0.044±0.008
10 0.040±0.008 0.040±0.007
15 0.040±0.009

Table A.4: RMSE mean and deviation obtained in LShin baseline experiment to predict
the Pitch angle using two-layer MLP and 10-sample TW.

Num.
Neurons 10 20 30

TEST
RMSE
[rad]

10 0.042±0.008 0.043±0.009 0.045±0.011
20 0.043±0.010 0.044±0.010
30 0.043±0.010

TRAIN
RMSE
[rad]

10 0.037±0.009 0.037±0.008 0.037±0.008
20 0.035±0.007 0.034±0.008
30 0.036±0.008

Table A.5: RMSE mean and deviation obtained in LShin baseline experiment to predict
the Roll angle using one-layer MLP and 5-sample TW.

Num. Neurons

5 10 15 20 25 30
TEST
RMSE
[rad]

0.202±0.007 0.193±0.010 0.186±0.006 0.178±0.009 0.166±0.008 0.166±0.007

TRAIN
RMSE
[rad]

0.202±0.006 0.190±0.010 0.185±0.006 0.175±0.008 0.171±0.008 0.165±0.008

Table A.6: RMSE mean and deviation obtained in LShin baseline experiment to predict
the Roll angle using one-layer MLP and 10-sample TW.

Num. Neurons

10 20 30 40 50 60
TEST
RMSE
[rad]

0.159±0.010 0.147±0.022 0.145±0.014 0.138±0.019 0.144±0.020 0.145±0.020

TRAIN
RMSE
[rad]

0.157±0.011 0.145±0.023 0.144±0.013 0.136±0.018 0.142±0.022 0.144±0.020
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Table A.7: RMSE mean and deviation obtained in LShin baseline experiment to predict
the Roll angle using two-layer MLP and 5-sample TW.

Num.
Neurons 5 10 15

TEST
RMSE
[rad]

5 0.048±0.001 0.050±0.001 0.049±0.001
10 0.049±0.001 0.048±0.003
15 0.046±0.003

TRAIN
RMSE
[rad]

5 0.048±0.001 0.048±0.003 0.049±0.001
10 0.048±0.001 0.047±0.003
15 0.044±0.003

Table A.8: RMSE mean and deviation obtained in LShin baseline experiment to predict
the Roll angle using two-layer MLP and 10-sample TW.

Num.
Neurons 10 20 30

TEST
RMSE
[rad]

10 0.048±0.001 0.048±0.001 0.050±0.002
20 0.048±0.002 0.048±0.001
30 0.046±0.001

TRAIN
RMSE
[rad]

10 0.048±0.001 0.048±0.001 0.050±0.002
20 0.047±0.001 0.048±0.002
30 0.046±0.002

Table A.9: RMSE mean and deviation obtained in LThigh baseline experiment to predict
the Pitch angle using one-layer MLP and 5-sample TW.

Num. Neurons

5 10 15 20 25 30
TEST
RMSE
[rad]

0.101±0.007 0.108±0.003 0.097±0.003 0.115±0.005 0.117±0.010 0.114±0.006

TRAIN
RMSE
[rad]

0.106±0.008 0.114±0.002 0.105±0.009 0.111±0.010 0.110±0.005 0.110±0.002

Table A.10: RMSE mean and deviation obtained in LThigh baseline experiment to predict
the Pitch angle using one-layer MLP and 10-sample TW.

Num. Neurons

10 20 30 40 50 60
TEST
RMSE
[rad]

0.092±0.010 0.095±0.007 0.097±0.006 0.105±0.014 0.102±0.005 0.106±0.006

TRAIN
RMSE
[rad]

0.090±0.011 0.092±0.011 0.092±0.009 0.097±0.017 0.096±0.010 0.101±0.009
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Table A.11: RMSE mean and deviation obtained in LThigh baseline experiment to predict
the Pitch angle using two-layer MLP and 5-sample TW.

Num.
Neurons 5 10 15

TEST
RMSE
[rad]

5 0.054±0.005 0.057±0.010 0.055±0.006
10 0.053±0.006 0.045±0.011
15 0.050±0.005

TRAIN
RMSE
[rad]

5 0.044±0.011 0.041±0.007 0.046±0.008
10 0.043±0.005 0.052±0.009
15 0.050±0.004

Table A.12: RMSE mean and deviation obtained in LThigh baseline experiment to predict
the Pitch angle using two-layer MLP and 10-sample TW.

Num.
Neurons 10 20 30

TEST
RMSE
[rad]

10 0.038±0.002 0.040±0.004 0.048±0.014
20 0.046±0.013 0.042±0.009
30 0.051±0.019

TRAIN
RMSE
[rad]

10 0.038±0.011 0.039±0.011 0.037±0.005
20 0.035±0.008 0.035±0.011
30 0.032±0.006

Table A.13: RMSE mean and deviation obtained in LThigh baseline experiment to predict
the Roll angle using one-layer MLP and 5-sample TW.

Num. Neurons

5 10 15 20 25 30
TEST
RMSE
[rad]

0.093±0.007 0.106±0.005 0.060±0.002 0.075±0.006 0.065±0.010 0.092±0.005

TRAIN
RMSE
[rad]

0.081±0.014 0.092±0.006 0.061±0.007 0.061±0.010 0.057±0.006 0.081±0.005

Table A.14: RMSE mean and deviation obtained in LShin baseline experiment to pre-
dictthe Roll angle using one-layer MLP and 10-sample TW.

Num. Neurons

10 20 30 40 50 60
TEST
RMSE
[rad]

0.069±0.013 0.069±0.001 0.070±0.008 0.068±0.004 0.069±0.003 0.069±0.003

TRAIN
RMSE
[rad]

0.063±0.003 0.068±0.001 0.066±0.010 0.064±0.006 0.067±0.004 0.068±0.005



A.2. Optimization of the number and position of IMUs 93

Table A.15: RMSE mean and deviation obtained in LThigh baseline experiment to predict
the Roll angle using two-layer MLP and 5-sample TW.

Num.
Neurons 5 10 15

TEST
RMSE
[rad]

5 0.048±0.002 0.048±0.005 0.048±0.009
10 0.049±0.002 0.049±0.010
15 0.050±0.008

TRAIN
RMSE
[rad]

5 0.036±0.009 0.040±0.001 0.035±0.006
10 0.035±0.011 0.034±0.009
15 0.033±0.010

Table A.16: RMSE mean and deviation obtained in LThigh baseline experiment to predict
the Roll angle using two-layer MLP and 10-sample TW.

Num.
Neurons 10 20 30

TEST
RMSE
[rad]

10 0.046±0.001 0.047±0.003 0.046±0.002
20 0.047±0.005 0.047±0.006
30 0.046±0.008

TRAIN
RMSE
[rad]

10 0.037±0.007 0.036±0.007 0.035±0.004
20 0.035±0.008 0.031±0.003
30 0.032±0.004

A.1.2 Angle prediction in IMU LThigh

A.2 Optimization of the number and position of IMUs

A.2.1 3DLS IE experiment

Table A.17: RMSE mean and deviation obtained in 3DLS IE experiment to predict the
Pitch angle using one-layer MLP and 5-sample TW.

Num. Neurons

5 10 15 20 25 30
TEST
RMSE
[rad]

0.121±0.014 0.124±0.015 0.120±0.015 0.120±0.021 0.122±0.017 0.120±0.012

TRAIN
RMSE
[rad]

0.119±0.013 0.119±0.014 0.117±0.015 0.116±0.020 0.118±0.014 0.118±0.012



94 Chapter A. MLP tables

Table A.18: RMSE mean and deviation obtained in 3DLS IE experiment to predict the
Pitch angle using one-layer MLP and 10-sample TW.

Num. Neurons

10 20 30 40 50 60
TEST
RMSE
[rad]

0.095±0.017 0.099±0.017 0.105±0.017 0.117±0.016 0.123±0.012 0.131±0.015

TRAIN
RMSE
[rad]

0.092±0.015 0.096±0.015 0.101±0.015 0.115±0.012 0.121±0.014 0.126±0.014

Table A.19: RMSE mean and deviation obtained in 3DLS IE experiment to predict the
Pitch angle using two-layer MLP and 5-sample TW.

Num.
Neurons 5 10 15

TEST
RMSE
[rad]

5 0.051±0.008 0.051±0.006 0.054±0.008
10 0.049±0.008 0.049±0.005
15 0.048±0.009

TRAIN
RMSE
[rad]

5 0.045±0.006 0.045±0.006 0.046±0.007
10 0.04±0.008 0.038±0.006
15 0.036±0.007

Table A.20: RMSE mean and deviation obtained in 3DLS IE experiment to predict the
Pitch angle using two-layer MLP and 10-sample TW.

Num.
Neurons 10 20 30

TEST
RMSE
[rad]

10 0.046±0.005 0.051±0.014 0.048±0.010
20 0.043±0.007 0.044±0.011
30 0.040±0.010

TRAIN
RMSE
[rad]

10 0.035±0.008 0.038±0.010 0.037±0.006
20 0.031±0.007 0.03±0.010
30 0.028±0.009

Table A.21: RMSE mean and deviation obtained in 3DLS IE experiment to predict the
Roll angle using one-layer MLP and 5-sample TW.

Num. Neurons

5 10 15 20 25 30
TEST
RMSE
[rad]

0.079±0.002 0.085±0.005 0.072±0.008 0.073±0.007 0.076±0.006 0.085±0.007

TRAIN
RMSE
[rad]

0.076±0.007 0.084±0.011 0.070±0.009 0.070±0.005 0.072±0.006 0.083±0.010
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Table A.22: RMSE mean and deviation obtained in 3DLS IE experiment to predict the
Roll angle using one-layer MLP and 10-sample TW.

Num. Neurons

10 20 30 40 50 60
TEST
RMSE
[rad]

0.071±0.012 0.071±0.023 0.144±0.119 0.096±0.042 0.081±0.009 0.083±0.024

TRAIN
RMSE
[rad]

0.072±0.010 0.070±0.021 0.138±0.113 0.037±0.040 0.081±0.012 0.084±0.023

Table A.23: RMSE mean and deviation obtained in 3DLS IE experiment to predict the
Roll angle using two-layer MLP and 5-sample TW.

Num.
Neurons 5 10 15

TEST
RMSE
[rad]

5 0.048±0.005 0.047±0.004 0.044±0.009
10 0.049±0.005 0.053±0.011
15 0.051±0.007

TRAIN
RMSE
[rad]

5 0.042±0.009 0.041±0.003 0.042±0.007
10 0.035±0.010 0.034±0.006
15 0.036±0.008

Table A.24: RMSE mean and deviation obtained in 3DLS IE experiment to predict the
Roll angle using two-layer MLP and 10-sample TW.

Num.
Neurons 10 20 30

TEST
RMSE
[rad]

10 0.037±0.010 0.037±0.011 0.038±0.011
20 0.033±0.007 0.033±0.006
30 0.077±0.069

TRAIN
RMSE
[rad]

10 0.029±0.007 0.030±0.011 0.032±0.006
20 0.024±0.004 0.021±0.004
30 0.009±0.011

Table A.25: RMSE mean and deviation obtained in 2DLX IE experiment to predict the
Pitch angle using two-layer MLP algorithm with 10 samples of TW.

Num.
Neurons 10 20 30

LShin Pitch
RMSE [rad]

10 0.070±0.015 0.068±0.018 0.072±0.017
20 0.075±0.018 0.078±0.013
30 0.076±0.016

LThigh Pitch
RMSE [rad]

10 0.051±0.011 0.053±0.012 0.053±0.011
20 0.049±0.011 0.052±0.011
30 0.050±0.012
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Table A.26: RMSE mean and deviation obtained in 2DLX IE experiment to predict the
Roll angle using two-layer MLP algorithm with 10 samples of TW.

Number of
neurons 10 20 30

LShin Roll
RMSE [rad]

10 0.060±0.007 0.059±0.004 0.057±0.004
20 0.056±0.003 0.057±0.005
30 0.059±0.006

LThigh Roll
RMSE [rad]

10 0.048±0.002 0.047±0.004 0.045±0.003
20 0.045±0.004 0.047±0.004
30 0.043±0.002

Table A.27: RMSE mean and deviation obtained in 1DLX IE experiment to predict the
Pitch angle using two-layer MLP algorithm with 10 samples of TW. LShin and LThigh
IMUs from RShin.

Num.
Neurons 10 20 30

LShin Pitch
RMSE [rad]

10 0.091±0.002 0.090±0.008 0.088±0.008
20 0.091±0.005 0.087±0.005
30 0.086±0.005

LThigh Pitch
RMSE [rad]

10 0.057±0.002 0.057±0.002 0.056±0.003
20 0.059±0.003 0.056±0.003
30 0.059±0.005

Table A.28: RMSE mean and deviation obtained in 1DLX IE experiment to predict the
Roll angle using two-layer MLP algorithm with 10 samples of TW. LShin and LThigh
IMUs from RShin.

Num.
Neurons 10 20 30

LShin Roll
RMSE [rad]

10 0.076±0.006 0.076±0.006 0.075±0.006
20 0.073±0.006 0.074±0.005
30 0.073±0.004

LThigh Roll
RMSE [rad]

10 0.051±0.002 0.051±0.003 0.052±0.004
20 0.049±0.003 0.051±0.002
30 0.049±0.002

Table A.29: RMSE mean and deviation obtained in 1DLX IE experiment to predict the
Pitch angle using two-layer MLP algorithm with 10 samples of TW. LShin and LThigh
IMUs from RThigh.

Num.
Neurons 10 20 30

LShin Pitch
RMSE [rad]

10 0.102±0.015 0.087±0.018 0.089±0.011
20 0.079±0.008 0.087±0.012
30 0.096±0.014

LThigh Pitch
RMSE [rad]

10 0.049±0.008 0.044±0.009 0.045±0.002
20 0.048±0.007 0.045±0.006
30 0.048±0.009
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Table A.30: RMSE mean and deviation obtained in 1DLX IE experiment to predict the
Roll angle using two-layer MLP algorithm with 10 samples of TW. LShin and LThigh
IMUs from RThigh.

Num.
Neurons 10 20 30

LShin Roll
RMSE [rad]

10 0.041±0.006 0.042±0.007 0.040±0.010
20 0.042±0.008 0.039±0.009
30 0.049±0.006

LThigh Roll
RMSE [rad]

10 0.026±0.003 0.026±0.004 0.027±0.004
20 0.029±0.003 0.033±0.006
30 0.030±0.005

A.2.2 2DLX IE experiment

A.2.3 1DLX IE experiment

A.3 Performance of new volunteers

A.3.1 3DLS NV experiment

Table A.31: RMSE mean and deviation obtained in 3DLS NV experiment to predict Pitch
and Roll angles of LShin using two-layers MLP algorithm and 10 samples of TW.

Num.
Neurons 10 20 30

LShin
Pitch

10 0.140±0.008 0.124±0.006 0.141±0.010
20 0.123±0.011 0.141±0.014
30 0.133±0.017

LShin
Roll

10 0.176±0.023 0.174±0.020 0.178±0.021
20 0.174±0.018 0.173±0.018
30 0.179±0.024

A.3.2 2DLX NV experiment

A.3.3 1DLX NV experiment
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Table A.32: RMSE mean and deviation obtained in 2DLX NV experiment to predict
Pitch angle of LShin and LThigh using two-layer MLP algorithm and 10 samples of TW.

Num.
Neurons 10 20 30

LShin Pitch
RMSE [rad]

10 0.172±0.012 0.169±0.014 0.166±0.011
20 0.170±0.016 0.176±0.013
30 0.166±0.015

LThigh Pitch
RMSE [rad]

10 0.153±0.011 0.147±0.010 0.160±0.012
20 0.144±0.012 0.152±0.007
30 0.145±0.016

Table A.33: RMSE mean and deviation obtained in 2DLX NV experiment to predict Roll
angle of LShin and LThigh using two-layer MLP algorithm and 10 samples of TW.

Num.
Neurons 10 20 30

LShin Roll
RMSE [rad]

10 0.194±0.014 0.194±0.019 0.196±0.017
20 0.198±0.021 0.200±0.020
30 0.183±0.016

LThigh Roll
RMSE [rad]

10 0.112±0.007 0.109±0.003 0.117±0.010
20 0.113±0.008 0.110±0.008
30 0.115±0.012

Table A.34: RMSE mean and deviation obtained in 1DLX NV experiment to predict
Pitch angle of LShin and LThigh from RShin data using MLP algorithm and 10 samples
of TW.

Num.
Neurons 10 20 30

LShin Pitch
RMSE [rad]

10 0.180±0.028 0.179±0.019 0.193±0.033
20 0.173±0.023 0.192±0.038
30 0.197±0.040

LThigh Pitch
RMSE [rad]

10 0.133±0.021 0.122±0.023 0.131±0.022
20 0.128±0.008 0.131±0.013
30 0.137±0.006

Table A.35: RMSE mean and deviation obtained in 1DLX NV experiment to predict Roll
angle of LShin and LThigh from RShin data using MLP algorithm and 10 samples of TW.

Num.
Neurons 10 20 30

LShin Roll
RMSE [rad]

10 0.373±0.052 0.297±0.045 0.325±0.048
20 0.279±0.044 0.260±0.037
30 0.327±0.037

LThigh Roll
RMSE [rad]

10 0.177±0.023 0.165±0.027 0.167±0.017
20 0.171±0.032 0.150±0.041
30 0.164±0.052



A.3. Performance of new volunteers 99

Table A.36: RMSE mean and deviation obtained in 1DLX NV experiment to predict
Pitch angle of LShin and LThigh from RThigh data using MLP algorithm and 10 samples
of TW.

Num.
Neurons 10 20 30

LShin Pitch
RMSE [rad]

10 0.234±0.027 0.238±0.035 0.224±0.019
20 0.238±0.052 0.248±0.039
30 0.239±0.041

LThigh Pitch
RMSE [rad]

10 0.154±0.033 0.155±0.027 0.154±0.036
20 0.151±0.018 0.173±0.027
30 0.162±0.016

Table A.37: RMSE mean and deviation obtained in 1DLX NV experiment to predict Roll
angle of LShin and LThigh from RThigh data using MLP algorithm and 10 samples of
TW.

Num.
Neurons 10 20 30

LShin Roll
RMSE [rad]

10 0.188±0.025 0.180±0.014 0.173±0.019
20 0.175±0.022 0.179±0.021
30 0.179±0.031

LThigh Roll
RMSE [rad]

10 0.052±0.011 0.057±0.009 0.060±0.008
20 0.056±0.010 0.066±0.012
30 0.059±0.006


	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Context
	Motivation
	Objectives
	Structure

	State of the Art
	Gait Features and Related Parameters
	Gait Cycle Phases
	Joint Angle
	Torque / Moment
	Locomotion Mode
	Intention

	Literature Research
	Article Selection
	Research Results
	Joint Angle and Trajectory Estimation
	Gait Phase Estimation
	Locomotion Mode Estimation

	Starting point of this project


	Theoretical Framework
	Human gait biomechanics
	Artificial Intelligence
	Machine Learning Paradigms
	Machine learning algorithms
	Multiple Linear Regression
	Support Vector Machine
	Regression Trees (Treebagging)
	Multilayer Perceptron


	ML model validation
	K-Fold cross-validation
	Leave-One-Out cross-validation

	Inertial measurement units: IMUs
	Orientation Estimation
	Quaternions
	Euler Angles

	Bayesian Filters: The filtering problem
	Kalman Filter

	Signal Segmentation: Temporal Window

	Methodology
	Database
	Data Processing, Labeling and Selection
	Signal Segmentation
	Implementation of algorithms
	Description of the experiments
	Angle prediction in five independent volunteers
	Baseline experiments
	Optimization of the number and position of IMUs

	Predictions of new volunteers.

	Evaluation metrics
	Tools
	MATLAB
	LaTeX


	Results and Discussion
	Baseline experiments
	Angle prediction in IMU LShin
	Angle prediction in IMU LThigh.

	Optimization of the number and position of IMUs
	3DLS IE experiment
	2DLX IE experiment
	1DLX IE experiment

	Performance of new volunteers
	3DLS NV experiment
	2DLX NV experiment
	1DLX NV experiment


	Conclusion and Future Lines
	Conclusions
	Limitations and future approaches
	Impact
	Social Impact
	Environmental Impact
	Economic Impact

	Sustainable Development Goals framework
	Bachelor's Thesis Based Learning

	Bibliography
	MLP tables
	Baseline experiments
	Angle prediction in IMU LShin
	Angle prediction in IMU LThigh

	Optimization of the number and position of IMUs
	3DLS IE experiment
	2DLX IE experiment
	1DLX IE experiment

	Performance of new volunteers
	3DLS NV experiment
	2DLX NV experiment
	1DLX NV experiment



