
Pattern Recognition 36 (2003) 1479–1488
www.elsevier.com/locate/patcog

Growing support vector classi"ers with controlled
complexity�

E. Parrado-Hern*andez∗, I. Mora-Jim*enez, J. Arenas-Garc*1a, A.R. Figueiras-Vidal,
A. Navia-V*azquez

Departamento de Teor�
a de la Señal y Comunicaciones, Universidad Carlos III de Madrid, Avda de la Universidad 30, 28911
Legan�es-Madrid, Spain

Received 29 May 2002; received in revised form 19 November 2002

Abstract

Semiparametric Support Vector Machines have shown to present advantages with respect to nonparametric approaches,
in the sense that generalization capability is further improved and the size of the machines is always under control. We
propose here an incremental procedure for Growing Support Vector Classi"ers, which serves to avoid an a priori architecture
estimation or the application of a pruning mechanism after SVM training. The proposed growing approach also opens up new
possibilities for dealing with multi-kernel machines, automatic selection of hyperparameters, and fast classi"cation methods.
The performance of the proposed algorithm and its extensions is evaluated using several benchmark problems.
? 2003 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Support vector classi"ers; Incremental; Compact; Multi-kernel; Controlled size; Support vector machines

1. Introduction

Support Vector Classi"ers (SVCs) "nd maximal margin
boundaries between classes, minimizing the structural risk
[1,2], and therefore endowing the classi"er with excellent
generalization capabilities. Moreover, SVCs automatically
determine the machine architecture in terms of a subset of the
input patterns (Support vectors (SVs)). SVCs have proven to
successfully solve many real world applications, such as text
classi"cation [3], image recognition [4] and bioinformatics
[5], among many others.
However, SVCs present certain drawbacks in compari-

son with other machine learning techniques that may re-
duce their usability in some domains. First, the classical
training methods—relying on Quadratic Programming (QP)

� This work has been partially supported by Spain CICYT grant
TIC 1999-0216.

∗ Corresponding author. Tel.: +34-91-624-8759; fax: +34-91-
624-8749.

E-mail address: emipar@tsc.uc3m.es (E. Parrado-Hern*andez).

techniques—have shown to be computationally costly
[6]. In addition to this, the classi"er size usually results
very high (sometimes comparable to a signi"cant frac-
tion of the amount of data). Furthermore, the training
proceeds in a closed “black-box” form, and the classi-
"er architecture is obtained after applying a deterministic
optimization procedure on the training set. This makes
diJcult the development of modi"ed, more Kexible, ver-
sions of the algorithm. In this sense, it seems vital being
able to monitor/control performance and complexity dur-
ing training, such that new criteria can be gracefully
imposed. Our incremental formulation will provide such
Kexibility.
Several approaches to overcome these inconveniences

have appeared in the literature. With respect to the com-
pactness of the machines, in Ref. [7] an already QP-trained
SVC is approximated by a smaller one minimizing the ap-
proximation error. Another strategy consists on simplifying
the classi"cation boundary with a Support Vector Regressor
[8]. Although both alternatives yield simpler machines, the
computational cost is signi"cantly increased since they "rst

0031-3203/03/$30.00 ? 2003 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
doi:10.1016/S0031-3203(02)00351-5

mailto:emipar@tsc.uc3m.es

1480 E. Parrado-Hern�andez et al. / Pattern Recognition 36 (2003) 1479–1488

solve a complete SVM problem and then postprocess the
architecture so as to approximate it with fewer nodes. On the
other hand, some techniques such as chunking or shrinking
[9] can help to reduce the training cost; those alternatives
still retain the “black-box” characteristic, and "nally lead to
the QP solution.
Suboptimal constructive methods have also been pro-

posed to reduce the complexity of the machine while con-
trolling the training cost. These algorithms are based on the
Sparse Greedy Approximation (SGA) [10], and they allow
to control the complexity of the QP problem to be solved.
Nevertheless, these constructive algorithms try to achieve
a compact representation of the input data in the projec-
tion space, like those of Kernel PCA [11], and then they
solve a classical SVC. Thus, the size of the resulting ar-
chitecture depends on the complexity of the representation
of the dataset, and this does not necessarily have to be
related to the complexity of the classi"cation problem to be
solved [12].
Alternative algorithms relying onWeighted Least Squares

(WLS) instead of QP have already succeeded in reducing
training cost: IRWLS [6] and WLS-SVC [13], the latter
providing compact (semiparametric) solutions. However,
WLS-SVC needs to be fed with an a priori estimation of
the machine architecture, solved in Ref. [13] using nonlin-
ear PCA or clustering for the Gaussian kernel case, or with
one of the constructive methods based on SGA.
As an alternative to this—probably suboptimal—

two-stage approach (architecture estimation plus training),
we propose here a growing procedure for SVCs—GSVC
algorithm—such that the trade-oP between performance
and machine size is always under control, directly de-
pending on the complexity of the addressed problem. The
iterative nature of GSVC allows the creation of implicit
Reduced-Set-like fast classi"cation methods at no extra
cost.
The problem of selecting kernel hyperparameters is still

an open issue under the GSVC scheme, since, for instance
in the Gaussian kernel case, optimal value � has to be
found before training using an oP-line cross-validation pro-
cedure. GSVC facilitates the introduction of a multi-kernel
approach, MK-GSVC. For the Gaussian kernels, the pro-
posed MK-GSVC method starts with initial large spread-
ing value for � (which provides initial machines working
at a coarse level of detail), and progressively decreases this
value in newly added kernels, such that "ner solutions are
obtained as the machine grows (multi-resolution approach).
The rest of the paper is organized as follows: Section 2

brieKy reviews SVM and WLS-SVC formulation. Section
3 is devoted to the presentation of the growing (GSVC)
and multi-kernel (MK-GSVC) algorithms, and a fast clas-
si"cation method (FC-GSVC). Experimental results con-
cerning the proposed algorithms in comparison with an
implementation of the classical SVC are oPered in Sec-
tion 4. Finally, Section 5 collects the main conclusions
and identi"es lines for future research.

2. SVMs and WLS-SVC training

Let us assume that we have to solve a binary classi"-
cation problem described by labeled training pairs consist-
ing of a pattern and a target ({̃xi; yi}; i = 1; : : : ; N), with
yi ∈{−1;+1}.
SVM projects input patterns x̃i with a nonlinear function

	̃ : x̃ → 	̃(̃x) onto a higher dimension space F and, then,
it separates the data inF ({	̃(̃xi)}) with a maximal margin
hyperplane. Therefore, the classi"er is given by

f(̃x) = sign(w̃T	̃(̃x) + b) (1)

and parameters w̃ and b are obtained through the minimiza-
tion of functional Lp in Eq. (2), that maximizes the margin
of the classi"cation boundary [1]

Lp ≡ 1
2
‖w̃‖2 + C

N∑
i=1

�i −
N∑
i=1

�iyi(w̃
T	̃(̃xi) + b)

−
N∑
i=1

�i�i under �i; �i; �i¿ 0; (2)

where {�i} are Lagrange multipliers and {�i} are a set of
slack variables that are introduced to solve nonseparable
cases [1].
Unfortunately, in many interesting cases, either 	̃(·) is

unknown or the dimension of F is in"nite, what makes
	̃(·) impossible to calculate, so that w̃ cannot be directly
obtained. The usual procedure in such cases is to solve the
problem using its alternative dual formulation. Since the
solution of the linear classi"er in F only involves inner
products of vectors 	̃(̃xi), we can always use the kernel trick
[14], which consists on expressing the inner product in F

as an evaluation of a kernel function in the input space

〈	̃(̃x); 	̃(ỹ)〉= k (̃x; ỹ):

This way, we do not need to explicitly know 	̃(·) but just its
associated kernel k (̃x; ỹ). Many kernels are used in practice
[15], but in this paper we will focus on the Gaussian

k (̃x; ỹ) = exp
(
−‖̃x − ỹ‖2

2�2

)
:

When expressed in terms of kernels, the classi"er results

f(̃x) = sign

(
N∑
i=1

yi�ik (̃xi; x̃) + b

)
: (3)

If coeJcients {�i} are obtained after a QP optimization of
functional (2), we have the QP-SVM methods [1].
According to Eq. (3), those x̃i with �i ¿ 0 are called Sup-

port Vectors (SVs), and the size of the machine is equal
to the number of SVs (NSV). In cases where classes highly
overlap many SVs are found, what results in very large ma-
chines.
Alternative algorithms, exploiting the fact that SVs usu-

ally span a subspace of dimension R�NSV , can accurately

E. Parrado-Hern�andez et al. / Pattern Recognition 36 (2003) 1479–1488 1481

approach the SVM solution with a compact machine. In this
sense, WLS-SVC builds a semiparametric approximation to
the SVC from an a priori estimated architecture of R nodes
[13]. The formulation of the WLS-SVC is as follows: let
us assume a parametric solution to the SVM classi"cation
boundary of the form

f̂(̃x) = sign

(
R∑

k=1

�k	̃(̃ck)	̃(̃x) + b

)

= sign

(
R∑

k=1

�kk (̃ck ; x̃) + b

)
; (4)

where {̃ck} are R centroids corresponding to the princi-
pal directions of the subspace of F spanned by the train-
ing patterns, selected by means of any clustering algorithm.
CoeJcients {�k} are randomly initialized and solved by an
iterative application of WLS [13] until convergence. Basi-
cally, WLS-SVC operates with a matrix K of kernels of size
N × R, with Kij = k(x̃i ; c̃j), and minimizes Eq. (2) with re-
spect to {�k} for the whole training set. Simultaneously, it
identi"es the SVs and satis"es the constraints of the SVM
optimization problem so that the classi"cation boundary
asymptotically approaches that found by the original SVM
as R becomes high enough. Thus, from now on, WLS-SVC
is going to be considered as an algorithm that is fed with
matrix K and the labels of the training set, {yi}, and outputs
the parametric machine, {�k}, b, and coeJcients {�i} of
the SVM. In Ref. [13] the WLS-SVC algorithm is explained
in more detail and some experimental results are provided,
showing its advantages over the classical methods to de-
sign a SVC. Among these advantages, it is worth remark-
ing its computational and memory eJciency (WLS-SVC in-
volves inversion of matrices R× R and storage of matrices
N × R with R�NSV 6N , while QP-SVM works with ma-
trices N × N and NSV × NSV). Unfortunately, estimating R
centroids a priori is suboptimal, since there is no informa-
tion available about where the SVs are. But our formulation
enables the development of growing procedures which rep-
resent a good trade-oP between initial uncertainty about the
problem and compactness of the "nal machine.

3. Growing Support Vector Classi�ers

Our proposal to construct the GSVC consists on start-
ing with a reduced machine (with few centroids randomly
selected) and, at each step of the algorithm, adding new
ones to improve the classi"cation of the (so far) incorrectly
classi"ed patterns. Every time the architecture is grown,
WLS-SVC algorithm allows to update the solution, without
needing to solve from scratch.
The growth can be stopped according to a criterion

imposed either on the size or on the performance of the
machine. This allows to control the trade-oP between com-
plexity of the machine and accuracy.

3.1. GrowingSupportVectorClassi:eralgorithm(GSVC)

For initialization of the GSVC algorithm, the "rst M
nodes 1 (typically M = 6; 8) are picked up at random from
the training set, M=2 from every class, since no informa-
tion about the boundary is available yet. Small values of
M involve a more gradual growing of the classi"er, with
more growing iterations, while larger values of M result in
less growing steps although the "nal machine size may be
larger due to the introduction of some suboptimal nodes.
Then, an initial kernel matrix K0 is computed and the ini-
tial hyperplane �̃(0) and coeJcients �̃(0) are obtained via
WLS-SVC.
The preliminary classi"cation error can be used to select

new centroids to increase the representational capabilities
of the machine, by incorporating them into the architecture
and updating weights. Good procedures exist to "nd (be-
fore training) a near-optimal subset of representational axis
{	̃k} in F for a given dataset, for instance by means of
nonlinear PCA [16], such that they de"ne an orthonormal
basis. Unfortunately, this is diJcult here: "rst, we need to
"nd the Singular Value Decomposition (SVD) of a N × N
matrix. Second, we need to "nd elements {̃ck} in the input
space such that 	̃(̃ck)
 	̃k to obtain a "nal machine of
form (4). Although this procedure has already been formu-
lated as an Expectation-Maximization (EM) algorithm [16],
its correct application is not a trivial task. When this prob-
lem is stated as a clustering in input space [13,16], it re-
quires to set the number of centroids R a priori, and to solve
a large clustering problem; perhaps wasting many centroids
to model regions with little interest (far from the decision
boundary). To overcome this, we will follow here the princi-
ples of Boosting [17] to select the new {	̃(̃ck)}. For a given
architecture (step “n”), we force the training procedure to
concentrate on misclassi"ed or close to the boundary (inside
the margin) patterns, thereby improving the representation
in F of this region of the input space. SVC training (also
in its WLS-SVC implementation) provides a list of those
patterns that are critical for training (SVs): patterns with
�i ¿ 0. Hopefully, by concentrating on these hard-to-learn
patterns, the overall performance of the machine can be im-
proved, since they represent a suJcient set of data for solv-
ing the problem at hand. Nevertheless, we know that, in
problems with highly overlapped classes, a large number of
SVs can be found in the overlapping areas. Therefore, an
additional criterion has to be used to avoid selecting a lot of
patterns in the same region. We propose the following com-
bined criterion: among those patterns with �i ¿ 0, choose
randomly between the ones with smaller maximal projection
onto the actual basis, what enforces maximal orthogonality
with respect to the existing axes. This quantity can be easily

1 Since we will restrict our formulation to Gaussian kernels, and
the classi"er in Eq. (4) can be interpreted as a single layer Neural
Network, we will use both “centroid” and “node” to refer to every
new k (̃x; c̃i) term.

1482 E. Parrado-Hern�andez et al. / Pattern Recognition 36 (2003) 1479–1488

estimated using the kernel matrix, by simply "nding the
maximum of the kernel values associated to every pattern,
since every kernel itself represents the projection onto one
axis. According to Ref. [6], not always the “best” candidates
for becoming a centroid following any given criterion turn
out to be the most suitable once incorporated into the ma-
chine. In consequence, GSVC designs a pool of candidates
to become centroid from the hard-to-learn patterns, and then
it selects the next centroids randomly from the pool. The
growth is continued until a convergence criterion is reached.
Note that, every time the classi"er is expanded with new

nodes, the GSVC algorithm only updates the parameters for
step “n” using those at step “n − 1”, such that it does not
need re-training from scratch. This would be hard to imple-
ment under a QP formulation. Furthermore, all the kernels
computed at step “n” do not need to be re-computed at fol-
lowing steps, because their centroids are kept. In addition,
it has to be pointed out that, although the procedure for se-
lecting the new centroids is a greedy one (at each step pick
up the centroids from the best candidates), the solution that
provides the structural risk minimization (SRM) is achieved
at each iteration of the algorithm for the given centroids.
This is guaranteed by WLS-SVC determining an asymptotic
approach to the SVC from the current centroids of the ma-
chine. So, WLS-SVC updates globally all the {�k} and solve
SRM for the architecture at hand. In Ref. [13], it is shown
that sensitivity with respect to the centroids is very low, en-
suring the quality of the current parametric approximation.
To avoid over"tting and to get good generalization char-

acteristics, we stop the algorithm by means of a validation
procedure that detects when performance stops increasing.
The validation is applied on a reserved subset (about 20%)
of the training data that is not fed into WLS-SVC until
the architecture is completely determined. Once the growth
has "nished, the training and validation subsets are merged
and WLS-SVC is invoked for a last update of the classi"er
weights. Proceeding like this, WLS-SVC guarantees that the
solution achieved by GSVC is a good approximation to that
of SVC, and often this validation stopping criterion serves
to excell classic SVC generalization capability. In order to
maintain a minimum degree of performance for the grow-
ing algorithm, stopping by cross-validation is only applied
when the number of SVs found by WLS-SVC after sev-
eral growing steps is observed to stabilize, i.e., the GSVC
is close enough to the SVC solution. As stated before, this
criterion on the classi"cation error on the validation set can
be combined with additional constraints on the size of the
machine.
Computational cost is saved by the application of shrink-

ing of the training set [9]. This technique consists on iden-
tifying those training patterns that, iteration after iteration,
do not become SVs and temporarily removing them from
the training set. Kernel matrix is merely updated and not
recalculated at all. Anyway, those temporarily removed pat-
terns are monitored after each iteration and returned to the
“active” training set if they become SVs.

Table 1
Summary of the GSVC algorithm

0. Initialization
Pick randomly M=2 patterns from each class
Build initial kernel matrix K0
Obtain the initial hyperplane and SVs (̃�(0); �̃(0))=
WLS-SVC(K0; ỹ)

Loop n = 1; 2; : : :
1. Find a new set of centroids to expand the architecture,

{̃ck (n)}
2. Update the kernel matrix (Kn)ik = k (̃xi; c̃k (n)) and build

K = [K0; : : : ; Kn]
3. Train the new architecture, (̃�(n); �̃(n)) = WLS-SVC(K; ỹ)
4. Identify SVs and apply shrinking
5. Calculate the CE on the validation set
6. Calculate the number of changes from SV to non-SV and

vice versa
7. Decide whether to stop or continue growing

We summarize the GSVC algorithm in Table 1.

3.2. Mixture of kernels to solve a multi-resolution
classi:er: MK-GSVC

In some applications, it is not clear—a priori—which
kernel function is the most appropriate, and it might be de-
sirable to train a more Kexible SVM by combining diPerent
kernels to solve a given problem. In what follows we will
restrict to the Gaussian case, where combining kernels with
diPerent � value can be interpreted as a multi-resolution
approach, observing the problem at diPerent scales of de-
tail. Such incremental multi-kernel scheme could start at a
coarse resolution and try to solve the problem by adding
new nodes with the same value of � until the classi"er sat-
urates (according to the evolution of the classi"cation error
(CE) on the validation set) and then reduce �, and continue
adding nodes. This is repeated until no improvement in the
CE of the validation set is obtained. The general ePect is
a "ne tuning of the machine on the more diJcult-to-learn
regions of the classi"cation boundary. This way, the pre-
vious ePort of pre-estimating a suitable value of parameter
� that ensures a good performance of the classi"er is
skipped.
It is necessary to reformulate the algorithms to support

multi-kernel, by combining several discriminant functions
with diPerent kernels and globally maximizing the margin
of the resulting machine. The multi-kernel SVC is

f(̃x) = sign

(
J∑

j=1

w̃Tj 	̃j (̃x) + b

)
; (5)

where 	̃j(·) are the map functions corresponding to the J
diPerent kernels and b includes all the bias terms. CoeJ-
cients w̃Tj are obtained by jointly maximizing the margins

E. Parrado-Hern�andez et al. / Pattern Recognition 36 (2003) 1479–1488 1483

of the classi"er in each of the spaces Fj (Fj corresponds
to projection 	̃j(·)), as usual in SRM

LMK =
J∑

j=1

 j
2
‖w̃j‖2

−
N∑
i=1

�i

[
yi

(
J∑

j=1

w̃Tj 	̃j (̃xi) + b

)
− 1 + �i

]

−
N∑
i=1

�i�i +
N∑
i=1

�i; (6)

where coeJcients { j} represent a set of (possible) weights
for the combination of kernels. Then, using

ei = yi −
(

J∑
j=1

w̃Tj 	̃j (̃xi) + b

)
; (7)

ai =
2�iyi

ei
(8)

and minimizing (6) we arrive to

 jw̃j − #Tj Da[ỹ − #W − 1̃b] = 0̃ j = 1; : : : ; J; (9)

− ãT[ỹ − #W − 1̃b] = 0; (10)

where#j=[̃j (̃x1) · · · 	̃j (̃xN)]T,Da is a diagonal matrix with
(Da)ii=ai, #=[#1 · · ·#J],W =[w̃T1 · · · w̃TJ]T, 1̃=[1 · · · 1]T,
and ã= [a1 · · · aN]T. We can further combine the equations
in Eq. (9) obtaining

&W − #TDa[ỹ − #W − 1̃b] = 0̃; (11)

where & is a diagonal matrix de"ned as

&=




 1I1 0 · · · 0

0 2I2 · · · 0

...
...

. . .
...

0 0 · · · J IJ



;

where {Ij} are identity matrices whose sizes are in concor-
dance with {w̃j}. Now we can write Eqs. (10) and (11) as
one single linear system[
&+ #TDa# #TDa1̃

ãT# ãT1̃

][
W

b

]
=

[
#TDaỹ

ãTỹ

]
: (12)

So far we have not made any assumption about the form of
the solution, thus this formulation could be directly applied
to the original SVC. At this point, we introduce the para-
metric approximation, and we assume that the solution of
the equation has a form

w̃j =(T
j �̃j j = 1; : : : ; J; (13)

where (j = [̃j(c̃j1) · · · 	̃j(c̃jRj)]T. The bias term b of the
original solution is kept. Now, we can write the solution of
the system in terms of the parametric approximation:

W =(T�̃;

where

(=




(1 0 : : : 0

0 (2 : : : 0

...
...

. . .
...

0 0 : : : (J




and �̃=[�̃T1 · · · �̃TJ]T. This parametric solution is included in
(12). Multiplying each side of Eq. (12) by[
(0̃

0̃ T 1

]

and grouping terms, we arrive to[
(&(T +(#TDa#(

T (#TDa1̃

ãT#(T ãT1̃

][
�̃

b

]

=

[
(#TDaỹ

ãTỹ

]
: (14)

Products between matrices # and (are inner products of
vectors in the projected spaces, and can be written in their
kernel forms[
I(+ KTDaK KTDa1̃

ãTK ãT1̃

][
�̃

b

]
=

[
KTDaỹ

ãTỹ

]
; (15)

where

I(=(&(T =




 1(1(
T
1 0 : : : 0

0 2(2(
T
2 : : : 0

...
...

. . .
...

0 0 : : : J(J(
T
J



;

K = #(T = [#1(
T
1 · · ·#J(

T
J]:

Here, it is worth remarking that, due to the block-diagonal
structure of matrices I(and (, inner products between pro-
jected vectors corresponding to diPerent mappings associ-
ated to diPerent kernels kj , kl with j �= l never appear, i.e.,
all the inner products involve well de"ned projections and
can be calculated via the corresponding kernel. In this sense,
I(and K can be calculated with kernels using

I(j = j(j(
T
j ;

(I(j)mn = jkj(c̃jm; c̃jn); m; n= 1; : : : ; Rj; (16)

1484 E. Parrado-Hern�andez et al. / Pattern Recognition 36 (2003) 1479–1488

x

.

.

.

.

.

.

...

...

.

.

o0

o1

oS-1

β0,1

β1,1

β(S-1),1

β(S-1),(R0+R1+...+RS)

β1,R0

βj,(R0+...+Rj)

β0, R0

σ0

σ1

σS-1

→

Fig. 1. GSVC architecture evolution after N steps of growing. Solid
arrows: weight paths of the resulting classi"er. Dashed arrows:
weights of the partial machines, with signals Oi being the outputs
before taking the sign. The machine is started with a wide � (nodes
in the top box) and it is grown until the stopping criterion is met.
Then � is decreased, the procedure is repeated for adjusting weights
of the new partial machine (nodes in the middle and bottom boxes).
The re"ning continues until no improvement of the performance
is observed.

Kj = #j(
T
j ;

(Kj)ik = kj (̃xi; c̃jk); i = 1; : : : ; N ; k = 1; : : : ; Rj: (17)

Once we have calculated matrices I(and K , Eq. (15) can
be solved via WLS-SVC to obtain the parametric approxi-
mation to the MK-SVC formulated in Eq. (12).
A growing scheme for the Gaussian MK-SVC case can be

easily implemented based on the lines explained in Section
3.1. The idea consists on iteratively building the classi"er
incorporating centroids with diPerent value of �, accord-
ing to the problem. In Fig. 1, a schematic of the growing
procedure is depicted. The machine is initialized with
few centroids and with a high value of parameter �,
so that data are examined with a coarse resolution. The
GSVC proceeds normally until the CE of the validation
set shows that training has saturated. Then, � is de-
creased in order to tackle in a deeper detail the parts of
the classi"cation boundary that are still badly learned.
The value of � is decreased after each saturation of the
learning until no improvement is observed in the vali-
dation error. Moreover, from iteration to iteration there
is no need to recalculate all the kernel matrices, but just
to add the blocks corresponding to the new nodes. The
algorithm, denominated MK-GSVC is summarized in
Table 2.

Table 2
Summary of the MK-GSVC algorithm

0. Initialization
Choose initial value of parameter � = �0

Pick randomly
M
2
patterns from each class

Build initial kernel matrix with �0: K0
Obtain the initial hyperplane and SVs (̃�(0);

�̃(0)) = WLS-SVC(K0; ỹ)
Iterate GSVC until saturation
Loop n = 1; 2; : : :

1. Find a new value for parameter � = �n
Loop m = 1; 2; : : :
1.1. Find a new set of centroids to expand the
architecture, {̃ck (n; m)}

1.2. Update (Knm)ik = kn (̃xi; c̃k (n; m)) and
build K = [K0; : : : ; Knm]

1.3. Update I(
1.4. Train the new architecture, (̃�(n; m);

�̃(n; m)) = WLS-SVC(K; I(; ỹ)
1.5. Identify SVs and apply shrinking
1.6. Calculate the CE on the validation set
1.7. Calculate the number of changes from SV to
non-SV and vice versa

1.8. Decide whether to continue growing with current
� or not

2. Decide whether to continue decreasing � or stop

3.3. Fast Classi:cation with GSVC: FC-GSVC

As stated before, one of GSVC goals is to reduce the
classifying cost. In what follows, we adopt the number of
kernel evaluations per pattern (KEPP) as a measure for this
cost, since it concentrates most of the computation ePort. In
this sense, the "nal machine built by GSVC is much faster
than the QP-SVC one because it has a number of nodes
(usually) much smaller than the number of support vectors,
leading to a lower KEPP. Besides, GSVC provides a direct
way to reduce the KEPP even further.
In Ref. [14] a method for sequential evaluation of SVMs

that speeds up the classi"cation is presented. The key point
is that some regions of the input space (those lying far apart
from the margin) can be correctly classi"ed using only a
reduced subset of the kernels. Similar schemes for fast clas-
si"cation can be implemented with GSVC (FC-GSVC) by
sequentially computing {oi}; i=0; : : : ; S − 1 (see Fig. 1) as
needed: if oj (̃x) gives enough evidence about the classi"ca-
tion of pattern x̃, the process stops and the pattern is classi-
"ed according to f(̃x)=sign(oj (̃x)); otherwise, oj+1(̃x) must
be computed.
Now, we need a criterion to decide if oj oPers enough

evidence to classify a pattern. We propose to apply a posi-
tive and a negative threshold associated to each {oi}. Then,
if oj (̃x) is above or below the corresponding thresholds we
accept the classi"cation. If no previous classi"cation has
been made, we classify the pattern with the GSVC output
(oS−1(̃x)). The thresholds are established in a way that guar-

E. Parrado-Hern�andez et al. / Pattern Recognition 36 (2003) 1479–1488 1485

Table 3
Fast Classi"cation with GSVC. T+ and T− are two arrays with the
S − 1 positive and negative thresholds

1. Loop i = 0; 2; : : : ; S − 2 or until classi"cation
If oi (̃x)¿T+(i), classify x̃ as belonging to class +1
If oi (̃x)¡T−(i), classify x̃ as belonging to class −1

2. If x̃ has not yet been classi"ed, classify it with oS−1(̃x)

antees that no training pattern correctly classi"ed by GSVC
is misclassi"ed using the Fast Classi"cation method. To ac-
complish this criterion, we "x the positive threshold for oj to
the maximum value of oj (̃xs), where {̃xs} are all the training
patterns belonging to class “−1” that are correctly classi-
"ed by the GSVC. Negative thresholds are set in an anal-
ogous manner. All this involves little extra computational
ePort since {oj (̃x)} are already available as a result of the
incremental training scheme.
It is worth remarking that, as the growing procedure im-

plies the addition (but not the modi"cation) of centroids,
there is no need to evaluate a number of kernels greater than
the number of nodes of GSVC in any case, so FC-GSVC
KEPP never exceeds that of GSVC.
We summarize FC-GSVC algorithm in Table 3 for a case

in which we have used S steps to train the GSVC.

4. Experimental work

4.1. Benchmark datasets

This experiment is aimed at testing GSVC andMK-GSVC
generalization capability and machine compactness. The

Table 4
Test classi"cation error obtained by GSVC, MK-GSVC, FC-GSVC and QP-SVC in several benchmark problems

Test CE (%)

Problem GSVC MK-GSVC FC-GSVC QP-SVC

Abalone 19:42± 0:58 23:56± 1:51 19:63± 0:26 19.7
Waveform 8:60± 0:23 8:97± 0:41 8:69± 0:19 8.9
Image 3:8± 0:3 4± 0:7 3:8± 0:6 3.9
Diabetes 23:8± 1:7 22:8± 1:1 24:3± 1:2 25
Kwok 12:07± 0:23 12:89± 1:03 12:14± 0:22 11.8

Table 5
Test KEPP for GSVC, MK-GSVC, FC-GSVC and QP-SVC in several benchmark problems

Test KEPP

Problem GSVC MK-GSVC FC-GSVC QP-SVC

Abalone 52:40± 15:38 85:56± 32:33 17:76± 5:05 1184
Waveform 80:4± 16:33 225:84± 88:18 21:43± 1:85 892
Image 160± 34:58 261:9± 37:13 54:42± 7:73 271
Diabetes 18:74± 4:07 71:6± 18:72 8:52± 2:57 295
Kwok 33:16± 10:29 126:0± 38:88 8:97± 1:72 122

datasets are selected from UCI machine learning repository
[18]: Abalone (denominated abalone in the paper), Wave-
form Data Generator (waveform), Image Segmentation (im-
age) and Diabetes (diabetes). We have also included a
bidimensional synthetic problem proposed in [19] (kwok).
Abalone has a training set of 2507 patterns and a test set
of 1670, with inputs of 8 dimensions; waveform has inputs
of 21 dimensions and the training and test sets sizes are of
4000 and 1000 patterns; image has 18 dimension inputs and
the number of training and test patterns are 1848 and 462;
diabetes has 8 dimensions, 576 training patterns and 192 test
patterns; "nally, kwok has a two dimension input space and
its training and test data sets are formed by 500 and 10200
patterns.
We compare our schemes with SVMlight, an implemen-

tation of QP-SVC described in Ref. [9], and well known in
the literature. We evaluate the classi"cation error (CE) on
the test set, as well as the test KEPP of the machine. Due to
the nondeterministic nature of GSVC and MK-GSVC (ran-
dom initialization of the machine and centroid selection),
we provide average values over 20 trials, together with stan-
dard deviations. In these experiments, a 20% of the train-
ing data is reserved for the cross-validation that is needed
to stop growth. Tables 4 and 5 show the results of applying
these systems on the benchmark problems.
As for kernel parameter selection in GSVC (�) and

QP-SVC (g), we have used those corresponding to the best
results when applying a "ve-fold cross-validation method.
To do so, we test a few � values in the range of 0.5 and
50. Later, we select the two best � values and check again,
by means of the "ve-fold procedure, ten values between
them. The selected values are displayed in Table 6. For the

1486 E. Parrado-Hern�andez et al. / Pattern Recognition 36 (2003) 1479–1488

Table 6
Parameters for GSVC, MK-GSVC and QP-SVC in the benchmark
problems

Problem GSVC MK-GSVC QP-SVC

Abalone � = 1:1, NCC = 4 �0 = 50, NCC = 2 g = 0:15
Waveform � = 26, NCC = 10 �0 = 50, NCC = 2 g = 0:0022
Image � = 2:5, NCC = 4 �0 = 50, NCC = 2 g = 0:1
Diabetes � = 1:6, NCC = 1 �0 = 50, NCC = 2 g = 0:2
Kwok � = 3, NCC = 4 �0 = 50, NCC = 2 g = 0:125

growing algorithms, we also indicate the number of cen-
troids per class (NCC) that are added at every step of the
algorithm.
Notice that MK-GSVC is started in all problems with the

same initial value of � and NCC, avoiding their a priori
estimation. Every time the growing algorithm decides to
re"ne the detail of data analysis, the value of parameter
� is modi"ed by multiplying its current value by a factor
1 (0¡1¡ 1). In these experiments 1 was "xed to 0.7,
since it was observed to work reasonably well, and the "nal
machines obtained with this algorithm showed not to be very
sensitive to this parameter.
We observe that GSVC outperforms SVMlight except for

the kwok case. Besides, the number of kernel evaluations
per pattern is, at least, one order of magnitude below (apart
from image dataset). The application of MK-GSVC skips
the estimation of kernel parameters, while still achieving
results in terms of performance andmachine size comparable
to those of GSVC.
We have also applied our Fast Classi"cation method

to all the 20 GSVC machines trained for each dataset.
The diPerences in performance are not signi"cant, ex-
cept for the diabetes dataset, maybe because in this
case the number of training data is not large enough
to make a good estimation of the thresholds. How-
ever, the KEPP reductions are very signi"cant, rang-
ing (apart from diabetes) from 66% (image) to 73.3%
(waveform) with respect to GSVC. This reductions
are made at no signi"cant cost, since all the calcula-
tions to "x the thresholds and partial weights �ij , as
depicted in Fig. 1, were carried out during the GSVC
training.

4.2. Text classi:cation experiment: the Reuters dataset

We report here text classi"cation results of the GSVC
algorithm (linear machine) on the Reuters database [20]
using the ModApte Split as explained in Ref. [3], and using
all word counts (apart from those in the stop-word list) as
input, and we did not use stemming. As usual, we only
used the 10 most populated categories. We detail the results
in Table 7, where we indicate average Break Even Point
(in percentage) between precision and recall measurements

Table 7
Comparison between SVMlight and GSVC trained without stem-
ming in the text classi"cation problem. The second column shows
the number of relevant documents to each category within the test
set. GSVC results are the average on ten diPerent realizations

Category No. positive SVMlight GSVC
docs (test)

Earn 1088 97.5 97.8
Acq 719 91.5 94.8
Money-fx 180 67.1 77.5
Grain 149 79.8 87.6
Crude 189 83.6 85.5
Trade 117 70.9 81.2
Interest 133 59.5 74.1
Ship 89 71.9 72.5
Wheat 71 74.6 80.1
Corn 56 73.2 79.9
MICROAVER. 87.3 90.9
MACROAVER. 76.9 83.1

for every category as well as micro and macroaveraging 2

results.
It can be observed that the GSVC algorithm provides

better results than SVMlight. The good performance of the
GSVC algorithm is due to the compact representation ca-
pabilities underlying it, already discussed in [13,21]. In this
sense, the cross-validation procedure incorporated in the
GSVC framework seems to add extra generalization bene"ts
to the SVMs. Furthermore, GSVC is able to achieve about
1 order of magnitude reduction of the machine size (GSVC
obtains on average solutions with 150 nodes, whereas SVM-
light obtains around 1000 nodes).

5. Conclusions and further Work

In this paper, we have presented an algorithm that it-
eratively grows a support vector classi"er (GSVC), in a
problem-oriented form. GSVC algorithm is simple, eJcient,
and allows to control the trade-oP between machine com-
plexity and performance in terms of classi"cation error. Ex-
perimental results in several benchmark problems point out
that GSVC generalizes better than standard SVC, mostly
due to its problem-oriented growing criterion, stopped by
a cross-validation procedure. These experiments also show
signi"cant reductions on the "nal machine size built by
GSVC with respect to the original SVC.
Moreover, GSVC enables the design of a multi-kernel

classi"er, MK-GSVC, that has been used here to tackle
classi"cation tasks in a multi-resolution approach, its main

2 Macroaverage is the arithmetic mean of the results in the
ten categories, while microaverage is the mean with each result
weighted by the number of relevant documents to the correspond-
ing category.

E. Parrado-Hern�andez et al. / Pattern Recognition 36 (2003) 1479–1488 1487

advantage being that it skips the problem of a priori esti-
mation of kernel hyperparameters. This MK-GSVC formu-
lation also opens lines for further research in SVCs with
mixtures of kernels.
In addition to this, the iterative nature of GSVC has been

exploited to develop a method to evaluate the machine that
speeds up its performance. Experimental results reveal that
FC-GSVC achieves reductions of about a 65–75% in the
number of kernel evaluations necessary to classify a pattern
with respect to those of GSVC, at no extra cost during the
training phase.
Ongoing research includes schemes for incremental

learning, that would introduce adaptive elements in GSVC,
such as node pruning or weight forgetting. Moreover, the
scope of the applications is widening by the development
of multi-category versions of the algorithm to deal with
nonbinary problems, as well as the development of highly
eJcient on-line versions to deal with huge datasets for Data
Mining applications.

Acknowledgements

Authors are specially grateful to Dr. F. P*erez-Cruz and
Mr. A. Caamaño-Fern*andez for their valuable comments
and support during the realization of this work. We would
also like to thank Dr. F. Valverde-Albacete and Dr. H.
Molina-Bulla for their work in conducting the text classi"-
cation experiments on the Reuters dataset.

References

[1] C.J.C. Burges, A tutorial on Support vector machines for
pattern recognition, Data Mining Knowledge Discovery 2
(1998) 121–167.

[2] V. Vapnik, The Nature of Statistical Learning Theory,
Springer-Verlag, New York, 1995.

[3] T. Joachims, Text categorization with support vector
machines: learning with many relevant features, in:
Proceedings of the 10th European Conference on Machine
Learning, Vol. 1, Chemnitz, Germany, 1998, pp. 137–142

[4] J. Huang, X. Shao, H. Wechsler, Face pose discrimination
using support vector machines (SVM), in: Proceedings of the
14th International Conference on Pattern Recognition, (ICPR),
Vol. 1, Brisbane, Queensland, Australia, 1998, pp. 154–156.

[5] M. Bonneville, J. Meunier, Y. Bengio, J.P. Souvy, Support
vector machines for improving the classi"cation of brain
PET images, in: Proceedings of the SPIE Medical Imaging
Symposium, Vol. 3338, San Diego, CA, 1998, pp. 264–273.

[6] F. P*erez-Cruz, P. Alarc*on-Diana, A. Navia-V*azquez, A.
Art*es-Rodr*1guez, Fast training of support vector classi"ers,
in: T. Leen, T. Dietterich, V. Tresp (Eds.), Advances in
Neural Information Processing Systems, Vol. 13, MIT Press,
Cambridge, MA, 2001, pp. 734–740.

[7] C.J.C. Burges, Simpli"ed Support Vector decision rules, in:
L. Saitta (Ed.), Proceedings of the 13th International
Conference on Machine Learning, Morgan Kaufmann, San
Mateo CA, 1996, pp. 71–77.

[8] E. Osuna, F. Girosi, Reducing the run-time complexity
in support vector regression, in: B. SchYolkopf, C.J.C.
Burges, A.J. Smola (Eds.), Advances in Kernel Methods—
Support Vector Learning, MIT Press, Cambridge, MA, 1999,
pp. 271–284.

[9] T. Joachims, Making large-scale SVM Learning practical, in:
B. SchYolkopf, C. Burges, A. Smola (Eds.), Advances in Kernel
Methods—Support Vector Learning, MIT Press, Cambridge,
MA, 1999, pp. 169–184.

[10] A.J. Smola, B. SchYolkopf, Sparse greedy matrix approximation
for machine learning, in: P. Langley (Ed.), Proceedings of the
17th International Conference on Machine Learning, Morgan
Kaufman, San Francisco, CA, 2000, pp. 911–918.

[11] B. SchYolkopf, A. Smola, K.R. MYuller, Nonlinear component
analysis as a kernel eigenvalue problem, Neural Comput. 10
(1998) 1299–1319.

[12] E. Parrado-Hern*andez, J. Arenas-Garc*1a, I. Mora-Jim*enez,
A. Navia-V*azquez, On problem-oriented kernel re"ning,
Neurocomputing, in press.

[13] A. Navia-V*azquez, F. P*erez-Cruz, A. Art*es-Rodr*1guez, A.R.
Figueiras-Vidal, Weighted least squares training of support
vector classi"ers leading to compact and adaptive schemes,
IEEE Trans. Neural Networks 12 (5) (2001) 1047–1059.

[14] B. SchYolkopf, A.J. Smola, Learning with Kernels, MIT Press,
Cambridge, MA, 2002.

[15] B. SchYolkopf, A. Smola, K.R. MYuller, Nonlinear component
analysis as a kernel eigenvalue problem, Technical Report 44,
Max-Planck-Institut fYur biologische Kybernetik, 1996.

[16] B. SchYolkopf, P. Knirsch, A. Smola, C. Burges, Fast
approximation of support vector kernel expansions, and
an interpretation of clustering as approximation in feature
spaces, in: P. Levi, M. Schanz, R.-J. Ahlers, F. May (Eds.),
Proceedings of the 20 DAGM Symposium Mustererkennung,
Vol. 1 of Informatik aktuell, Springer, Berlin, Germany, 1998,
pp. 124–132.

[17] Y. Freund, R.E. Schapire, A decision-theoretic generalization
of on-line learning and an application to boosting, J. Comput.
System Sci. 55 (1) (1997) 119–139.

[18] C.L. Blake, C.J. Merz, UCI Repository of machine
learning databases, University of California, Irvine,
Department of Information and Computer Sciences, 1998
[http://www.ics.uci.edu/∼mlearn/MLRepository.html].

[19] J.T. Kwok, Moderating the output of support vector machine
classi"ers, IEEE Trans. Neural Networks 10 (5) (1999)
1018–1031.

[20] D.D. Lewis, The Reuters-21578 Text Categorization Test
Collection, available at [http://www.research.att.com/ lewis/
reuters21578.html].

[21] E. Parrado-Hern*andez, I. Mora-Jim*enez, A. Navia-V*azquez,
Growing support vector classi"ers via architecture boosting,
in: Proceedings of the Learning’00, Legan*es, Madrid,
2000.

About the Author—E. PARRADO-HERN *ANDEZ received the Telecommunication Engineer degree from Universidad de Valladolid,
Spain, in 1999. At present, he is a Ph.D. student in Signal and Data Processing at the Department of Signal Theory and Communications,
Universidad Carlos III de Madrid, Spain.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.research.att.com/~lewis/reuters21578.html
mailto:reuters21578.html

1488 E. Parrado-Hern�andez et al. / Pattern Recognition 36 (2003) 1479–1488

His research interests include nonlinear processing, specially based on kernel methods, and its application to data mining and information
retrieval.

About the Author—I. MORA-JIM*ENEZ received the engineering degree in 1998 from the Universidad Polit*ecnica de Valencia, Valencia,
Spain. Since then she is pursuing the Ph.D. degree in Arti"cial Neural Networks at the Universidad Carlos III de Madrid, Madrid, Spain.

Her main research interests include machine learning, data mining and arti"cial neural networks.

About the Author—J. ARENAS-GARC*IA was born in Seville, Spain, in 1977. He received the Telecommunication Engineer degree in
2000 from Universidad Polit*ecnica de Madrid (ranked number 1; National Award to graduation). He is currently pursuing the Ph.D. degree
at the Department of Signal Theory and Communications, Universidad Carlos III de Madrid. His present research interests are focused in
the "elds of neural networks and learning theory.

About the Author—A.R. FIGUEIRAS-VIDAL received the Telecomm Engineer degree from Universidad Polit*ecnica de Madrid, Spain,
in 1973 and the Doctor degree in 1976 from Universidad Polit*ecnica de Barcelona.

He is a Professor in Signal Theory and Communications at Universidad Carlos III de Madrid, and at present, Head of the Department
of Signal Theory and Communications. His research interests are digital signal processing, digital communications, neural networks, and
learning theory. In these subjects he has coauthored more than 200 international journal and conference papers.

Dr. Figueiras is a member of the Spain Academy of Engineering.

About the Author—A. NAVIA-V *AZQUEZ received his Degree in Telecommunications Engineering in 1992 (Universidad de Vigo, Spain),
and "nished his Ph.D. also in Telecommunications Engineering in 1997 (Universidad Polit*ecnica de Madrid, Spain). He is now an Associate
Professor at the Department of Communication Technologies, Universidad Carlos III de Madrid, Spain. His research interests are focused
on new architectures and algorithms for nonlinear processing, as well as their application to multimedia processing, communications, data
mining, knowledge management and teleeducation. He has (co)authored more than 20 international journal and conference papers in these
areas.

	Growing support vector classifiers with controlled complexity
	Introduction
	SVMs and WLS-SVC training
	Growing Support Vector Classifiers
	Growing Support Vector Classifier algorithm (GSVC)
	Mixture of kernels to solve a multi-resolution classifier: MK-GSVC
	Fast Classification with GSVC: FC-GSVC

	Experimental work
	Benchmark datasets
	Text classification experiment: the Reuters dataset

	Conclusions and further Work
	Acknowledgements
	References

