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Abstract

Non-bactracking centrality was introduced as an attempt to correct a deficiency
of eigenvector centrality, since eigenvector centrality in a network can be ar-
tificially increased in nodes with high degree (hubs) because a hub is central
because its neighbors are central, but these in turn are central only by the hub.
In this work we introduce the α-nonbacktracking centrality as an extension
to solve some problems related to the uniqueness of non-bactracking principal
eigenvector. This extension makes it possible to demonstrate the convergence
of the α-centrality principal eigenvector when α → 0 and also the convergence
of PageRank vectors when the damping factor tends to 1, which gives an idea
of the applicability of this new measure of centrality.

Keywords: Non-backtracking centrality, alpha-centrality, perturbative
analysis of matrices, spectral analysis of complex networks

1. Introduction

Complex networks have been used with great success to model many real-
world systems in fields ranging from biology (which include issues such as
metabolic pathways, protein folding or genetic regulatory networks) to the In-
ternet, the World Wide Web and other technological systems [2, 3, 11, 12, 15,
17, 18, 23]. Research on these issues must necessarily encompass a diversity
of views that include different complementary aspects of the network structure,

∗Corresponding author
Email addresses: regino.criado@urjc.es (Regino Criado), julio.flores@urjc.es

(Julio Flores), esther.garcia@urjc.es (Esther Garćıa), alejandro.garciadelamo@urjc.es
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and the huge complexity of these objects requires of new tools coming from other
fields, including matrix analysis, statistical mechanics and computer sciences
[1, 2, 4, 3, 11, 26]. So, complex networks have recently attracted the attention
of numerous research areas and consequently the mathematical and computa-
tional study of complex networks has experienced very significant growth in
recent years [3, 12, 23]. The spectral properties of the adjacency matrix provide
great insight into the structure and function of complex networks. Specifically,
the largest eigenvalue (spectral radius) and its associated principal eigenvector
are fundamental in the understanding of nodes’ centrality, since the number of
connections a node has to other nodes (its degree) is a measure of centrality for
quantifying the importance of a node, but it’s easy to see that not all edges are
the same when you want to quantify the influence or importance of a particular
node. Eigenvector centrality [5] takes into account that not all the edges or rela-
tions are equal, since a node is more important (or influential) if the nodes with
which it is connected are, in turn, important or influential nodes. Eigenvector
Centrality has been analyzed and extended for use in different contexts and
applications [3, 10, 21, 24, 25, 26]. Specifically, in [21] the authors very rightly
observe that eigenvector centrality in a network can be artificially high on nodes
with high degree (hubs). The reason is simple and can be easily grasped in the
following sentence:

I am important, then my friends become important, then I become even more
important, then. . .

Thus the pattern “My importance depends on my friend’s importance” tends
to give priority to hubs just for their own nature, i.e., a hub with an elevated
eigenvector centrality transmits it to its neighbors, who in turn reflect it again
and inflate the hub’s centrality artificially. Therefore, if we can avoid this reflec-
tion, centrality will behave much more realistically. Thus, in [21] an attempt to
correct this weakness is proposed by using the non-backtracking centrality. The
idea is to use a modified eigenvector centrality that is similar in many ways but
with an important change: to calculate the centrality of a particular node, the
authors consider the centrality of its neighbors, in a similar way as is done with
the usual centrality eigenvector, but the centrality of its neighbors is now cal-
culated in the absence of that particular node. This centrality measure can be
calculated using the Hashimoto or non-backtracking matrix [14, 20], as pointed
out by the authors in [21]. As we will see in the next section, this matrix is
closely related to the adjacency matrix of the line graph corresponding to the
network under consideration. In any case, it is important to highlight that when
the authors in [21] introduced the non-backtracking centrality vector a natural
objection arises: can we be sure that such a vector exists? More precisely,
Perron’s theorem ([22]) guarantees that a non-negative and irreducible square
matrix A has a non-negative eigenvector associated to its spectral radius ρ(A).
But if A were not irreducible then Perron-Frobenius theorem can no longer be
used and hence the unicity of eigenvector gets compromised; but, however it is
this unicity which allows us to speak of the nonbacktracking centrality eigen-
vector.

The main goal of this work is to define of a new centrality measure, the α-
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nonbacktracking centrality, that makes possible to solve the problems related to
the uniqueness of non-bactracking principal eigenvector. This extension makes
possible to demonstrate the convergence of the α-centrality principal eigenvector
when α → 0 and also the convergence of PageRank vectors when the damping
factor tends to 1, suggesting new ideas on the applicability of this new measure
of centrality

Throughout the following sections we will develop these ideas and results,
and we will see how it is possible to guarantee the uniqueness of this eigenvector.

The structure of the paper is as follows. After this introduction, Section 2
is devoted to introduce and recall some preliminary results and definitions. In
Section 3 the α-nonbacktracking centrality is introduced in order to avoid the
problem of irreducibility and lack of uniqueness of the non-backtracking prin-
cipal eigenvector. Finally, in Section 4 a result related to the convergence of
the spectral radii and the Perron vectors of a family of irreducible non-negative
matrices is obtained and, moreover, we point out how our result can be used to
prove the convergence of the α-centrality vectors when α→ 0 and the PageRank
vectors when the damping factor tends to 1.

2. Notation and preliminaries

Although the framework in which we will develop the results is that of non-
directed graphs with no loops, in this section we consider a non directed graph
G = (V,E) with no loops and |V | = n, |E| = m, the cardinal of nodes and
edges. If i→ j is the one-way trip from i to j then j → i is the return trip from
j to i.

Consider
−→
E + {(i, j), (j, i); {i, j} ∈ E} = {i→ j, j → i; {i, j} ∈ E}

the edge-set obtained from E by adding all the return trips. Clearly |
−→
E | = 2m

Thus, in order to remove feedback the heuristics goes as follows: the cen-
trality of edge k → l is proportional to the sum of the centralities of all edges
incident on k → l except edge l→ k. Here i→ j is incident on k → l if j = k.

Figure 1: An example of a directed graph G with 3 nodes to obtain L(G) and the graph
associated to B1(G).

The heuristics is revealed in the Hashimoto matrix ([14]) as follows: We

start fixing an order in
−→
E (for instance the lexicographic order), then we take

the adjacency matrix for edge incidence

(B1)i→j,k→l =

{
1 j = k and i 6= l
0 otherwise
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that is,
(B1)i→j,k→l = δjk(1− δil),

where δij is the Kronecker’s delta, i.e.,

δij =

{
1 i = j
0 otherwise

.

Notice that the Hashimoto matrix is closely related to the adjacency matrix

of
−→
L (G), the linegraph of G

(M−→
L (G)

)i→j,k→l = δjk =

{
1 j = k
0 otherwise

(here i→ j is incident on k → l if j = k).
Thus, in the example proposed for the graph G considered, by taking the

lexicographic order on edges: {(1, 2); (2, 3); (3, 1); (3, 2)}.

B1 =


0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 0

 M−→
L (G)

=


0 1 0 0
0 0 1 1
1 0 0 0
0 1 0 0


Notice that the Hashimoto matrix is B1 and is “part” of the adjacency

matrix M−→
L (G)

of the line graph of
−→
G = (V,

−→
E )

B1 =


0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 0

 M−→
L (G)

=


0 1 0 0
0 0 1 1
1 0 0 0
0 1 0 0


The relation between B1, the adjacency matrix of L(G) and their respective

associated graphs is illustrated in Figures 1, 2 and 3.

Figure 2: The line graph L(G)

Remark 2.1.
ρ(B1) ≤ ρ(

−→
L (G))

It is important to highlight the existence of strong relationships between
the eigenvector centrality of a given graph G, the eigenvector centrality of its
linegraph L(G) linegraph and the eigenvector centrality of the bipartite graph
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Figure 3: The graph associated to B1

B(G) associated to G, both in the case of G being an undirected network [8]
and in the case of G being a directed network [9].

Thus the non-backtracking centrality of edges is a function

c1 :
−→
E → [0, 1] satisfies:

•
∑

k→l∈
−→
E

c1(k → l) = 1 (normalization).

• c1(k → l) is proportional to the sum of c1(j → k) where j = l is disre-
garded.

In terms of B1

c1(i→ j) ≡ c1i→j =
1

λ

∑
k→l∈

−→
E

B1k→l,i→jc1k→l

Thus, if c1 = ((c1)i→j)i→j∈−→E is a column vector, then λc1 = Bt1c1

We remark that the non-backtracking centrality of each edge in
−→
E is ranked

by means of a normalized non-negative eigenvector of Bt1.
At this point, once the non-backtracking centrality of edges has been defined

,it is possible to define the non-backtracking centrality of nodes in the following
natural way

Definition 2.2. The centrality of node i is the sum of centralities of all edges
incident on i, in other words, the sum of centralities of all edges k → i.

3. α-nonbacktracking centrality: existence and computation

In this section the α-nonbacktracking centrality is introduced. The objective
is twofold:

a) First and foremost we want to avoid the irreducibility problem that results
in lack of unicity for the nonbacktracking eigenvector.

b) Secondly we want to unify the different centralities into a single definition
that interpolates between non-backtracking centrality and eigenvector centrality.

We pass to propose the heuristics that support a definition consistent with
our goal. Given an order in E and α ∈ [0, 1], the edge α-nonbacktracking
centrality c(α) : E → [0, 1] should satisfy:
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1)
∑

k→l∈E
ck→l(α) = 1 (normalization).

2) ck→l(α) is proportional to the sum of cj→k(α), where j → k is incident on
k → l and instance j = l is admissible although dampened by α.

Thus, the edge incidence information is collected in the following edge adja-
cency matrix

Bi→j,k→l(α) =

 1 j = k and i 6= l
α j = k and i = l
0 otherwise

;

that is,
Bi→j,k→l(α) = δjk(1 + (α− 1)δil) .

Remark 3.1. For α = 0 we get the Hashimoto matrix B(0), while for α = 1

the matrix of
−→
L (G) is recovered.

Theorem 3.2. Let G be a directed and connected network. Then, G is strongly
connected if and only if B(α) is irreducible for α ∈ (0, 1].

Proof. It is well known that G is strongly connected if and only if
−→
L (G) is

strongly connected (cf. [27], p.44), or equivalently B(1) is irreducible. Anal-
ogously, G is strongly connected if and only if B(α) is irreducible for α ∈
(0, 1].

In the following, we suppose that G be a directed and strongly connected
network.

Let α ∈ (0, 1]. We define the edge α-nonbacktracking centrality c(α) =
((ci→j(α))i→j∈E as the positive normalized eigenvector associated to the spec-
tral radius of Bt(α).

Definition 3.3. Let α ∈ (0, 1]. The α-nonbacktracking centrality ci(α) of node
i is the sum of centralities ci→k(α) of the edges i→ k (edges incident on i).

Remark 3.4. In the next section, we will prove that limα→0 c(α) exists. Call
this limit c. Evidently c is non negative and has norm one. Also c is easily
seen to belong to the eigenspace associated to the spectral radius ρ(B(0)). Note
that, due to the possible lack of irreducibility of B(0), such eigenspace may
have a dimension greater than 1; hence choosing one centrality eigenvector in
this eigenspace is certainly ambiguous. In this context c clearly appears as a
natural candidate as the non-backtracking centrality eigenvector of B(0).

Now, we are interested in computing ci(α) and ρ(B(α)) with the help of
matrix smaller than B(α). We consider the non-directed case.
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Fix an order in E. For a given v = (vi→j)i→j∈E ∈ Rm and a given node
i ∈ V we denote

vouti =
∑

j∈N(i)

vi→j =

n∑
j=1

aijvi→j , vini =
∑

j∈N(i)

vj→i =

n∑
j=1

ajivj→i ,

where we assume vi→j = 0 when i→ j /∈ E. Now we define

vout = (vouti )ni=1, v
in = (vini )ni=1 .

Notice that, with this notation,

ci(α) =
∑

j∈N(i)

cj→i(α) =

n∑
j=1

ajicj→i(α) = cini (α) .

Theorem 3.5. Let G be a non directed graph with no loops and let α ∈ (0, 1].
If v ∈ Rm is an eigenvector of Bt(α), with eigenvalue λ, and either vout 6= 0 or

vin 6= 0, then

(
vout

vin

)
is an eigenvector of B̃(α), with the same eigenvalue λ,

with B̃(α) ≡
(

0 Gr + (α− 1)In
(α− 1)In A

)
, where Gr is the diagonal matrix

which elements are the degrees d(i). In particular, if v > 0 is an eigenvector
corresponding to to the spectral radius ρ(B(α)), then

ρ(B(α))

(
vout

vin

)
= B̃(α)

(
vout

vin

)
.

Proof. Let v ∈ Rm and k → l ∈ E. Then

(Bt(α) v)k→l =
∑

x→y∈E
Btk→l,x→y(α) vx→y =

∑
x→y∈E

Bx→y,k→l(α) vx→y

=

n∑
x,y=1

δyk(1 + (α− 1)δxl)axy vx→y = αalk vl→k +
∑
x6=l

axkvx→k

= (

n∑
x=1

axk vx→k) + (α− 1)alk vl→k .

Therefore, for i ∈ V

(Bt(α) v)outi =

n∑
j=1

aij(B
t(α) v)i→j =

n∑
j=1

aij

(
(

n∑
x=1

axi vx→i) + (α− 1)aji vj→i

)

=

 ∑
j∈N(i)

∑
x∈N(i)

vx→i

+ (α− 1)
∑

j∈N(i)

vj→i = |N(i)|vini + (α− 1)vini

= (d(i) + (α− 1))vini ,
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where d(i) is the degree of node i. Analogously, for i ∈ V

(Bt(α) v)ini =

n∑
j=1

aji(B
t(α) v)j→i =

n∑
j=1

aji

(
(

n∑
x=1

axj vx→j) + (α− 1)aij vi→j

)

=

 ∑
j∈N(i)

∑
x∈N(j)

vx→j

+ (α− 1)
∑

j∈N(i)

vi→j =

n∑
j=1

ajiv
in
j + (α− 1)vouti .

It follows (
(Bt(α) v)out

(Bt(α) v)in

)
= B̃(α)

(
vout

vin

)
.

Then, if v ∈ Rm is an eigenvector of Bt(α), with eigenvalue λ, we have

(Bt(α) v)outi =

n∑
j=1

aij(B
t(α) v)i→j = λ

n∑
j=1

aijvi→j = λvouti

and, analogously,
(Bt(α) v)ini = λvini .

Therefore

λ

(
vout

vin

)
= B̃(α)

(
vout

vin

)
.

Remark 3.6. B̃(1) =

(
0 Gr
0 A

)
. Thus

σ(B̃(α)) = σ(A) ∪ {0}

Positive B̃(1)-eigenvectors cannot have 0 as eigenvalue, thus the 1-nonbacktracking
centrality of nodes coincides with the eigenvector centrality.

4. Limit case of α-nonbacktracking centrality and other spectral cen-
trality measures

In this section we will study the convergence when α → 0 of the spectral
radii and the Perron vectors of a family of irreducible non-negative matrices
Mα of the form M0 + αM . This is the case when M0 = B(0)t is the transpose
of the Hashimoto matrix perturbed by an α-multiple of a permutation matrix
M , as proposed in Section 3. We will also point out how our result can be
used to prove the convergence of the α-centrality vectors when α → 0 and the
PageRank vectors when the damping factor tends to 1.

Clearly M0 + αM converges to M0 as α→ 0 and therefore ρ(M0 + αM)→
ρ(M0). This is well known and uses the fact that the composition of continuous
functions is continuous. Indeed, the coefficients of a matrix depend continuously
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on the matrix (whatever the matrix norm considered) and therefore the char-
acteristic polynomial depends continuously on the matrix. As the roots of the
characteristic polynomial (over C) continuously depend on its coefficients (see,
for example [13]) and the absolute value is a continuous function we obtain,
by composing all four previous dependencies, that the spectral radius varies
continuously with the matrix.

Next we will justify that the family of Perron vectors of Mα converges as α
goes to zero. The techniques used are known and make use of well established
facts on analytical functions ([16, 19]). We pass to collect the details in our
setting.

Theorem 4.1. Let Mα = M0 + αM , α > 0, be a family of irreducible non-
negative matrices. Let c(α) be the Perron vector of each Mα, α > 0. Then the
sequence of vectors {c(α)}α converges when α→ 0.

Proof. Let ρα be the spectral radius of Mα and let c(α) = (c1(α), . . . , cn(α)) be
the Perron vector of Mα. Let A(α) := Mα − ραI where I denotes the identity
matrix I of size n× n.
• Step 1: Let us express each cj(α), j = 1, . . . , n, in terms of adjoints of elements
of the matrix A(α). Since Mα is irreducible and ρα is the spectral radius,
rg(A(α)) = n− 1. Let Ã(α) be the submatrix of A(α) containing the first n− 1
rows. Without loss of generality we can assume that the rank of Ã(α) is n− 1
and that the following linear map F is bijective:

F : Rn −→ Rn x1
...
xn

 −→
 Ã(α)

 x1
...
xn


xn

 .

The matrix of this linear map with respect to the canonical basis will be denoted
F again. Notice that the matrix F coincides with the matrix A(α) where the
last row was replaced by (0, 0, . . . , 0, 1). Thus, the minors of the elements of the
last row are the same for both matrices. Consequently det(F ) = A(α)nn, where
A(α)nn is the minor of the element ann of the matrix A(α). In general, let us
denote A(α)ij the minor of the element aij of A(α).

Since F (c(α)t) = (~0Rn−1 , cn(α))t and F is bijective,

c(α)t = F−1
(
~0Rn−1

cn(α)

)
= cn(α)(F−1)n,

where (F−1)n denotes the nth column of F−1. From classic Cramer’s rule we
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get that

c(α)t = cn(α)(F−1)n =
cn(α)

det(F )


(−1)n+1A(α)n1
(−1)n+2A(α)n2

. . .
(−1)2nA(α)nn



=
cn(α)

A(α)nn


(−1)n+1A(α)n1
(−1)n+2A(α)n2

. . .
(−1)2nA(α)nn


and thus

cj(α) = cn(α)
(−1)n+jA(α)nj

A(α)nn
, j = 1, . . . , n.

Notice that cj(α) > 0 implies A(α)nj 6= 0 for every j. Moreover, since c(α)
is the Perron vector,

1 = ‖c(α)‖1 =
cn(α)

|A(α)nn|
∑
j

|A(α)nj |,

which implies that |A(α)nn| = cn(α)
∑
j |A(α)nj | and therefore

cj(α) =
|A(α)nj |∑
i |A(α)ni|

=
1

1 +
∑
i 6=j

|A(α)ni|
|A(α)nj |

. (4.2)

Observe that each term |A(α)ni|
|A(α)nj | in (4.2) is a quotient of polynomials in two

variables α and ρα = ρ(α).
• Step 2: Let us prove that for every j ∈ {1, . . . , n} and every i 6= j, the limit

lim
α↓0

|A(α)ni|
|A(α)nj |

always exists and belongs to [0,∞]. Take the function G(α, ω) = det(Mα−ω I)
defined on C×C. Notice that G(α, ω) is a polynomial of the two variables α, ω
of degree n. Hence

G(α, ω) =

n∑
k=0

gk(α)ωk,

where gk(α) is a polynomial in α.
By choosing, for every α ∈ C, an element ωα in the spectrum σ(Mα) of Mα

we have G(α, ωα) = 0. Notice that for every α ∈ R+ ∪ {0} we can choose ωα =
ρα, the spectral radius of Mα (by the Perron-Frobenius theorem for nonnegative
matrices and the continuity of the spectral radius observed above).

Thus, we have a function ω(α) = ωα defined on the complex plane satisfying
ω(α) = ρα for α ∈ R+∪{0} and such that G(α, ωα) = 0 for all α ∈ C. According
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to §13 in [19] such a function, ω(α), is called an element of an algebraic function
defined by G(α, ω) = 0.

We can assume that equation G(α, ω) = 0 is irreducible (see [19], sec-
tion §13). Observe that for a fixed α0 the equation G(α0, ω) = 0 will have,

in general, n distinct roots ω
(i)
0 , i = 1, . . . , n. As observed in§13 in [19], there

are two exceptions to this:

(i) gn(α0) = 0. Then the degree (in ω) of the equation G(α0, ω) = 0 is
lowered.

(ii) G(α0, ω) = 0 has multiple roots.

As noticed in Section §13 of [19], there are only finitely many values of α,
which we denote a1, . . . , ar, for which either (i) or (ii) holds. These special
values are called critical points and must therefore be isolated points. This

implies that when the limit limα↓0
|A(α)ni|
|A(α)nj | is considered (here α ↓ 0 in the

positive real axis), there must exist some δ > 0 such that every α ∈ (0, δ) is a
non-critical point, while α = 0 can be a critical point.

If α0 is not one of the critical points above then in Section §14 of [19] the
equation G(α, ω) = 0 is proved to define a single n-valued analytical function
ω = F (α). Equivalently, this equation defines n-branches of an multivalued
analytical function. More importantly the critical points become poles of this
function as proved in Section §15 of [19].

Since ρ(α) satisfies G(α, ρ(α)) = 0 for all α ∈ [0, δ) it follows from the above
that ρ(α) is an analytical function with 0 as a pole. But this certainly means
that after applying L’Hopital’s rule at most a finite number of times we get

lim
α↓0

|A(α)ni|
|A(α)nj |

∈ [0,∞].

• Step 3: The number of terms in the sum
∑
i 6=j

|A(α)ni|
|A(α)nj | is finite. Hence from

Step 2 it follows that

cj(α) =
1

1 +
∑
i 6=j

|A(α)ni|
|A(α)nj |

must converge and therefore the vector c(α) = (c1(α), . . . , cn(α)) must converge.

As was observed above, Theorem 4.1 allows us to give a precise meaning to
the nonbacktracking centrality eigenvector of a network G even if the associ-
ated nonbacktracking matrix, B(0), is not irreducible. Indeed, in this case the
eigenspace associated to the spectral radius may have dimension greater than
one and it could be not possible to select a unique norm-one positive vector
inside. But for every α close to zero we can find the α-nonbacktracking cen-
trality eigenvector c(α) of Mα := B(α)t and take c = limα↓0 c(α) (which has
been shown to exist) as α decreases to zero. It is straightforward to check that
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c has norm one, is non-negative and belongs to the eigenspace associated to
the spectral radius of M0 := B(0)t. Therefore it is perfectly sound to refer to
c as the nonbacktracking centrality eigenvector of G. The following definition
collects this remark.

Definition 4.3. Given a directed network G we call the nonbacktracking edge
centrality of G to the vector c = limα↓0 c(α). From this we define the nonback-
tracking centrality of a node i ∈ G as

ci =
∑
j

ci→j ,

where ci→j is the coordinate of c indexed by the edge i→ j.

Note that this definition is consistent with the original one in the case that
the nonbacktracking matrix of G is irreducible. Indeed, in this case the Perron
vector v of B(0)t can be unambiguously chosen. We just need to prove that it
coincides with our c. But since the ρ(B(0)t)-eigenspace is one-dimensional and
both c and v are of norm one and non-negative we must necessarily have c = v.

Example 4.4. With this definition the nonbacktracking centrality of the graph
G in Figure 4 can be determined. In this example the matrices B(α) and B(0)
are as follows, where we are using the lexicographical order for the edges, that
is, (1→ 2, 2→ 1, 2→ 3, 3→ 2):

B(α) =


0 α 1 0
α 0 0 0
0 0 0 α
0 1 α 0

 B(0) =


0 0 1 0
0 0 0 0
0 0 0 0
0 1 0 0


and the graphs corresponding to B(α) and B(0) are those in figures 5 and 6
respectively.

Figure 4: An example graph G with 3 nodes

We get, through direct computation, that the spectral radius ρα = ρ(B(α)t) =√
α2 + α and that v(α) = (α,

√
α2 + α,

√
α2 + α, α) is a positive eigenvector of

B(α)t associated to ρα. Therefore

c(α) := v(α)/||v(α)||1

is the Perron vector of B(α)t. It is easy to prove that

c = lim
α↓0

c(α) = (0, 1/2, 1/2, 0)
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Figure 5: The graph associated to B(α)

Figure 6: The graph associated to B(0)

and this vector is what we have defined as the nonbacktracking edge centrality
of G. Note that in this case ρ(B(0)t) = 0 and the associated eigenspace V0 =
{(0, µ, ν, 0)}µ,ν∈R has dimension 2.

Finally, for the nonbacktracking centrality of the nodes of G, we have

c1 = c1→2 = 0, c2 = c2→1 + c2→3 = 1, c3 = c3→2 = 0.

Remark 4.5. Next we point out how Theorem 4.1 can be used to study the
limit case of other spectral centrality measures. For instance, when M0 = At,
where A is the adjacency matrix of directed graph G (which is not necessarily
strongly connected), and M is the matrix with every entry mij = 1, the Perron
eigenvector c(α) of Mα is the α-centrality of G ,[6] and Theorem 4.1 proves that
this family of vectors converge when α ↓ 0.

As another example, we can consider the PageRank of G [7], indexed by the
damping factor q, which is defined as the Perron eigenvector of the matrix

Rq = qP t + (1− q)N t,

where P is obtained by normalization of each row of the adjacency matrix A
and N is the personalization matrix (which can be seen as a generalization of
the personalization vector). If we set α = 1− q, M0 = P t and M = N t−P t we
get Mα = M0 + αM = Rq. Therefore Theorem 4.1 proves the convergence of
the PageRank vector when q ↑ 1. This result has been shown by Boldi et al. in
Section 5 of [4] for the case of a matrix N constructed from a personalization
vector. Our theorem provides an alternative proof and generalizes the result
to the case of an arbitrary personalization matrix. Note that the limit cases of

13



eigenvector-type centralities have been studied in the literature (see, for example
[1, 25]) and Theorem 4.1 proves the existence of such limit cases.
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