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Abstract – The basin entropy is a simple idea that aims to measure the the final state unpre-
dictability of multistable systems. Since 2016, the basin entropy has been widely used in different
contexts of physics, from cold atoms to galactic dynamics. Furthermore, it has provided a natural
framework to study basins of attraction in nonlinear dynamics and new criteria for the detection
of fractal boundaries. In this article, we describe the concept as well as fundamental applications.
In addition, we provide our perspective on the future challenges of applying the basin entropy
idea to understanding complex systems.

Why basin entropy?. – The idea of uncertainty has
pervaded physics in the past century, as well as other sci-
entific disciplines. Among them, we could mention climate
dynamics, economy and epidemics [1]. From the Heisen-
berg uncertainty principle, uncertainty is intrinsic in quan-
tum mechanics. Some qualify it as ontological uncertainty.
However, the idea of uncertainty has also revealed itself in
other areas of physics, especially through the advent of
chaos theory. This notion of classical uncertainty was al-
ready pointed out in its day by some Physics Nobel Prize
laureates such as Richard Feynman [2] or Max Born [3,4].
There are several possible sources of uncertainty in the
context of nonlinear dynamical systems. The notion of
sensitivity to initial conditions that has come to be under-
stood as one of hallmarks of chaos is one of them. The
existence of fractal structures in phase space where we
analyze the dynamical systems is another.

Precisely, one very relevant source of uncertainty in non-
linear dynamical systems is provided by the fractal struc-
tures appearing in basins of attraction in phase space. A
basin of attraction is defined as the set of initial conditions
whose trajectories go to a specific attractor. A simple and
natural analogy of a basin comes from hydrology, and the
notion of a river basin. A map of the river basins of a
given country help us to visualize the regions where the
waters go to a given river that might be understood as the
attractor. In multistable systems, trajectories may have

different fates due to a small perturbation or uncertainty
in the initial conditions. When we have several attrac-
tors in a given region of phase space, then we have several
basins that are separated by the corresponding bound-
aries. These boundaries can be classified as smooth basins
and fractal basins, depending on the geometrical nature of
the boundaries [5]. An important consequence of the pres-
ence of fractal basin boundaries is the unpredictability and
uncertainty in the evolution of trajectories of the dynam-
ical system. The term fractal basins is commonly used to
refer to the boundaries between basins when they are frac-
tal. Needless to say, basins of attraction are defined for
dissipative dynamical systems where attractors do exist.
Hamiltonian systems do not have attractors. However,
trajectories in open Hamiltonian systems may have the
possibility to escape the action of the potential. In these
cases a similar notion of escape basins is considered as the
set of initial conditions for which trajectories may escape
by a certain exit.

Now, a fundamental question arises when we try to com-
pare a couple of basins: to ascertain which basin is more
unpredictable. However, until the appearance of the novel
concept of basin entropy in 2016 [6], there was no quanti-
tative way to identify when a given basin was more unpre-
dictable than another. In spite of that, there are many
categories to label the basins: smooth, fractal, Wada,
riddled, intermingled (for a review on the topic see [5]).
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Furthermore, there were also several measures to quantify
different aspects associated to the unpredictability of the
basins such as the uncertainty exponent [7], the basin sta-
bility [8], the lacunarity [9], etc. The idea of basin entropy
supposes a quantitative measure of the unpredictability of
basins. The numerical value of the basin entropy basi-
cally depends on three key ingredients which are related
to the boundary size, the uncertainty dimension of the
basin boundaries and the total number of attractors in
the specific region in phase space.

The possible applications of the basin entropy are man-
ifold. It has been applied to numerous problems in
physics [10], such as chaotic scattering associated to exper-
iments of cold-atoms [11], chaotic dynamics in relativistic
chaotic scattering [12, 13], in astrophysics to measure the
transition between nonhyperbolic and hyperbolic regimes
in open Hamiltonian systems [14] just to mention a few.
Moreover, it could be appropriate for other problems such
as the analysis of Wada structures associated to the dy-
namics of photons in binary black hole shadows constitut-
ing a problem of chaos in general relativity [15] or even in
dynamical systems with delay [16].

As an example to illustrate how the basin entropy is
useful to capture the intuitive idea of unpredictability as-
sociated to the basins, we can focus our attention on the
escape or exit basins of the Hnon-Heiles Hamiltonian dis-
played in Fig. 1.

The Hnon-Heiles Hamiltonian is defined by H = 1
2 (ẋ2 +

ẏ2) + 1
2 (x2 + y2) + x2y − 1

3y
3 and is a well-known model

used in galactic dynamics among other contexts. In addi-
tion, it constitutes a paradigm in Hamiltonian nonlinear
dynamics as a two-dimensional time-independent dynam-
ical system. One relevant feature of this system is that
for energy values below a critical value (E = 1/6) or-
bits are bounded, and above this critical energy orbits are
unbounded. As a matter of fact, for energies above the
escape energy (E = 1/6), initial conditions launched from
the center have three different exits to escape from the po-
tential well ultimately to the infinity. The different colors
of the basins, i.e., red, green and blue, represent the initial
conditions that eventually leave the potential well through
one of the three different exits in physical space. We can
observe that basins in panels (a) and (b) have the same
fraction (1/3) of the area of the phase space due to its
2π/3 symmetry. However, one would intuitively attribute
a higher unpredictability to the figure displayed in (a) than
in (b). Put it another way: if chosen at random, it would
be easier to predict initial conditions in (a) than in (b).
This difference can be measured by the the uncertainty
dimension αa < αb. However, panels (b) and (c) have ex-
actly the same boundaries due to the merging property of
the Wada basins [17]. In fact, picture (c) has been con-
structed replacing the red and blue pixels by yellow pixels.
We can imagine that the upper and left exits are somehow
connected and therefore there is only one basin associated
to both of them. So we have that αb = αc, although in
this case their area would be different, since the yellow

basin occupies 2
3 of the total area. Therefore, we can see

how these ingredients grasp some aspects associated to the
unpredictability of the basins, but it is easy to find cases
where they fail to correctly quantify it. This situation
has given rise to offer vague affirmations when studying
basins. The basin entropy appeared as a natural way to
answer the issue of the unpredictability associated to the
basins, integrating some of the pre-existing concepts and
providing a conceptual framework to classify the basins.

What is the basin entropy?. – In multistable dy-
namical systems, the asymptotic behavior is uniquely de-
fined by the initial conditions. We assume the function
y = B(x) to be known, where y ∈ [1, NA] labels the dif-
ferent asymptotic behaviors and x accounts for the initial
conditions. Although we can define such relation mathe-
matically in a deterministic way, in practice the initial con-
ditions x typically have some uncertainty associated. This
means that in order to study the uncertainty of a multi-
stable system, initial conditions should not be regarded as
points in some state space, but as balls with some uncer-
tainty radius ε. Some of these balls fall entirely within a
basin, meaning that despite the initial uncertainty there is
no doubt concerning their fate. However, others will fall
in the boundaries, meaning that their final state would
be unknown. The idea of the basin entropy is precisely
to quantify those uncertain states. For that purpose, we
compute the probabilities pi,j associated to the different
basins j = 1, . . . , NA for each ε-ball i. If we use a large
enough number of balls N , we can define the basin entropy
as the average value of the entropy of all the balls,

Sb = − 1

N

N∑
i=1

mi∑
j=1

pi,j log (pi,j) . (1)

Thus, the basin entropy can take values Sb ∈ [0, logNA].
With a few extra assumptions, we can get some insights
about the meaning of the basin entropy. If we assume
that the probabilities of the different fates are equally dis-
tributed within each ball pi = 1/NA ∀i, and that we only
have one boundary, then we get

Sb = ñεα log(NA), (2)

where α is the uncertainty exponent, defined as the dif-
ference between the topological dimension of the basins
and the fractal dimension of the boundary α = D − d, so
that α = 1 for smooth boundaries and α < 1 for fractal
boundaries; on the other hand ñ comes from the prefactor
of the box-counting dimension which is associated to the
lacunarity [19]. This expression allows us to identify three
key ingredients of the basin entropy: the lacunarity, the
uncertainty exponent and the number of attractors.

If instead of considering all the N balls, we just take into
account the Nb balls (Nb ≤ N) falling on the boundary,
we can define the new concept of boundary basin entropy

Sbb = − 1

Nb

Nb∑
i=1

mi∑
j=1

pi,j log (pi,j) . (3)
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(a) E = 0.2 (b) E = 0.25 (c) E = 0.25

Fig. 1: Three escape basins for the Hnon-Heiles Hamiltonian. (a) For E = 0.2, which is above the escape energy E = 1/6, the
basin is highly fractalized and thus it is difficult to know which exit (red, green or blue) some initial conditions will take. (b)
For a higher energy E = 0.25, the basin is less fractalized, although the proportion of the three colors remains unaltered and
equal to 1

3
due to the intrinsic symmetry of the system. (c) This is the same picture as (b), but with the red and the green

basins merged into yellow (for instance, one could argue that both exits are connected). Because of the merging property of
the Wada basins [17], the fractal dimension of the boundary in (c) is exactly the same as in (b). Although the area of each
basin in (a) and (b) is the same, and the fractal dimension of (b) and (c) also coincides, the basin entropy correctly grasps the
intuitive notion of the uncertainty associated to the three basins and classifies them Sb(a) > Sb(b) > Sb(c). The computer code
for reproducing the plots is available at [18].

This quantity is most convenient and can be used to study
the fractality of the boundaries. In particular, the log 2 cri-
terion and other improved statistical tests [20] can be used
as a sufficient (but not necessary) condition for fractality
without using different magnification scales.

Multidisciplinary applications of the basin en-
tropy. – As already commented earlier, the basin en-
tropy has been applied to a wide variety of scientific fields.
In many problems of astrophysics, such as the restricted
n-body problems, it is required to quantify the associated
unpredictability and the basin entropy provides the ideal
tool [21–25]. Furthermore, in the paradigmatic Hnon-
Heiles system, the purpose of the basin entropy has gone
beyond measuring the unpredictability associated to its
basins, and it has been also exploited as a tool to quan-
tify the changes in the KAM islands of the nonhyperbolic
regime [14]. These changes alter the escape time distribu-
tion and can be easily identified by measuring the basin
entropy, while inadvertent by the fractal dimension.

The basin entropy has been proved fruitful in other
fields in physics too. For example, in [11] the boundary
basin entropy is proposed as a method to detect frac-
tal structures in experiments with cold atoms, delving
deeper in the correspondence between classical and quan-
tum chaos. Another example in the world of the tiny is
the use of the basin entropy to analyze suspended beam
micro/nanoelectromechanical (MEMS/NEMS) resonators
actuated by two-sided electrodes [26]. The complex non-

linear behavior and the multistability of such system was
carried out by using basins of attraction. The results for
the uncertainty exponents were compared with those ob-
tained using the basin entropy method, concluding that
the basin entropy provides a reliable alternative method
of calculation. Another application refers to plasma dy-
namics [27], where the basin entropy has provided a useful
framework to give a quantitative description of the basin
structures. Both basin and basin boundary entropy were
found to depend on the perturbation strength as it does
the set of initial conditions leading to an escape through
the tokamak wall. Also in plasma physics, we can mention
transport problems in chaotic area-preserving nontwist
maps [28]. The basin entropy study was combined with
the numerical computation of the transmissivity across the
internal transport barrier, allowing to identify the basin
boundary of the escape regions related to transport across
the barrier. In a biophysical model [29], the basin en-
tropy has been particularly convenient to investigate the
advection of blood particles in the carotid bifurcation in a
healthy scenario, due to the relevant role played not only
by the area of the basin but also by the basin boundary
topology.

In a problem in condensed matter physics [30], a small
number of XY magnetic dipoles subject to an external
magnetic field was used for studying the origin of their
collective magnetic response. Basins of attraction for the
dipoles were constructed, and the boundary basin entropy
facilitated the analysis of the complexity of the solutions,
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log 2

log 4
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Fig. 2: The basin boundary entropy Sbb versus the launching
velocity vx0 of cold atoms in a double beam setup [11]. The
horizontal lines show the maximum possible value for the four
attractors log 4, the original log 2 criterion for fractality [6],
and the test developed by Puy et al. [20]. These methods allow
to test the presence of fractal structures at a given resolution,
which is particularly important in hard to escalate experiments
like this.

finding that the damping timescale is critical for the emer-
gence of fractal structures. Besides those applications al-
ready mentioned, the idea of basin entropy has been also
applied to account for special relativistic effects on celes-
tial dynamics problems [12, 13]. Furthermore, in a gen-
eral relativity context, the calculation of the basin entropy
showed that the uncertainty in predicting the final exit
state increases with stronger magnetic interactions in a
weakly magnetized Schwarzschild black hole [31]. Another
original application of the basin entropy appeared in [32],
in the context of biodiversity for the analysis of a stochas-
tic network evolution of a cyclic three-species system. As
a matter of fact, the main idea is that the basin entropy
concept might be useful to be applied to any physical sys-
tem showing multistability.

Definitely, the basin entropy has been widely applied
to problems in nonlinear dynamics and fractal geometry.
Gusso et. al. [33] proposed another unexpected appli-
cation of the basin entropy. They used it as a way to
compute the fractal dimension of the basins of attraction.
With an approach inspired from the box-counting algo-
rithm, the authors achieved a high level of accuracy for
two dimensional basins.

The Wada property was one of the initial motivations
for the investigation of the basin entropy and both of them
have strong connections. In this special case of fractal
structures, three or more basins share a common fractal
boundary [34]. In the literature, Wada basins were re-
garded as even more unpredictable than fractal basins. In

the framework of the basin entropy we can understand the
particularities of the Wada property: it maximizes the un-
certainty associated with boundaries, but not with basins.
Different parameters have been defined to characterize the
Wada property. Among them, the Wada index is closely
related to the basin entropy [35]. In fact, for basins with
the property of Wada, it can be verified that

Sbb = − logNA
NA

W, (4)

where Sbb is the basin boundary entropy, NA is the number
of attractors and W is the average of the Wada index over
the boundary as defined in [35].

Fractals at a single scale. – Fractals are mathe-
matically defined using infinite magnification scales, but
there are many practical situations where one would like
to detect fractality using only one single scale. If we think
in terms of the boundary basin entropy Sbb, a smooth
boundary typically separates two possible fates and there-
fore it contains one bit of information. However, frac-
tal boundaries wander in complex meanders which need
more information to be described. The log 2 criterion is a
sufficient (but not necessary) condition for fractal bound-
aries that exploits this idea. It was first introduced in
the original paper of the basin entropy and the reasoning
was quite simple. In smooth basins, boundaries separate
three basins in a few countable number of cases. There-
fore, if the Sbb value corresponds to a situation where we
have mostly boundaries separating more than two basins,
those boundaries must be fractal. Indeed, it is possible to
show that

Sbb > log 2⇒ α < 1, (5)

where α is the uncertainty exponent. This means that
if the Sbb is computed and is larger than log 2, we have
strong evidence of the presence of fractal boundaries. The
converse is not true and indeed the log 2 criterion does not
work for bistable systems. The main advantage with re-
spect to other methods to determine whether a boundary
is fractal or not, is that it can be applied using a single
scale. Therefore this method is particularly well suited
for experimental setups where it is often the case that the
scale cannot be changed at will. Nonetheless, the log 2 cri-
terion could be further improved. Following the goal of a
fractal detection within one single scale, a new statistical
method was recently devised based on the basin entropy
concept [20]. The idea is that one can study the statistical
properties of Sbb for smooth boundaries as a way to iden-
tify them. Significant deviations from such values suppose
important indicators of non-smoothness, that is, of frac-
tality. It can be shown that if the Sbb is computed using
disks in two dimensions, then we have

Sbb 6= 0.4395093(6)± σ ⇒ α < 1, (6)

where σ is the error that typically appears when the basin
entropy is computed and that must be estimated for each
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case. Equation 6 is clearly more restrictive than Eq. 5, and
consequently it allows a more precise detection of fractal
boundaries. We can see a comparison of these criteria
in Fig. 2. The black solid line is an estimation of the
Sbb value for a system with four basins as the parameter
vx0 is varied. In this case, Sbb = log4 is the maximum
possible value, which would imply completely fractalized
basins. As vx0 decreases, the Sbb approaches this asymp-
totic value. In the analyzed range under consideration, we
can see that only values with vx0 . 0.6 fulfill the log2 cri-
terion. However, the statistical method (green line) shows
that we have fractal basins almost for the entire range of
values. This evinces how the statistical test is more precise
than the log 2 criterion and can be used to detect fractal
basins using only one scale.

Basin entropy as a classification tool. – The pre-
vious discussion lays out a framework for the classification
of the basins [19] using as a criterion the basin entropy.
Equation 2 possesses three terms that measure different
aspects of basins of attraction. The first term, the lacu-
narity, quantifies the gapiness of the structures present in
the basins. An extreme case of a boundary with high la-
cunarity is a basin in the form of a set with infinite initial
conditions with a zero set measure known as Cantor dust.
The second term measures the final state sensitivity of the
basins with uncertainty exponent α. The value α = 0 cor-
responds to a complete fractalization of the phase space
known as riddled basins, whereas on the other end smooth
boundaries will have an exponent α = 1. All other basins
take a value in the interval 0 < α < 1. The third and last
term accounts for the number of possible attractors Na in
the basins.

The basin entropy takes characteristic values for basins
that maximize one of the three ingredients of Eq. 2. This
classification process is illustrated in Fig. 3 with six dif-
ferent basins. The panel (a) represents two riddled basins
with the same uncertainty exponent α = 0. Despite the
extraordinary complex aspect of both pictures, it is clear
that their fine structure is different. Since α and Na are
the same for the two figures, the values of the basin en-
tropy reveal the difference of lacunarity between the two
basins. For riddled basins the condition Sb ' Sbb is ful-
filled but the bottom panel has the value log 2, the highest
possible value for basins with two attractors. The basin
entropy allows to clearly establish the order in uncertainty
between the two examples. Panels (b) of Fig. 3 depict two
examples of basins with a smooth boundary, meaning that
the uncertainty exponent takes the maximum value α = 1.
Both boundaries have a similar structure, but the basin en-
tropy sorts the two plots according to the intricacy of their
boundary. Notice that the value of the boundary basin en-
tropy is close to 0.439, which is the theoretical value of a
smooth boundary. Still the intuition automatically assigns
a larger unpredictability to the basins on the bottom plot
and the basin entropy confirms this first thought. Figure 3
(c) represents two basins with the Wada property. Using

the Wada index and the basin entropy it is possible to
identify the Wada property for this system. Nevertheless,
a simple look at the two basins is enough to decide which
basins are the most intricate. The basin entropy quantifies
this contrast with two very different values. It turns out
that basins with the Wada property are not necessarily
more intricate than other basins. It is a peculiar attribute
of the boundary but other aspects of the basins contribute
to its complexity too.

The direct classification between two basins is possible
when both basins maximize one of the ingredients of the
basin entropy. But the comparison between two basins
that have different characteristics also bears its fruits. The
basins with a smooth boundary in Fig. 3 (b)-bottom have
a basin entropy higher than the fractal basins in Fig. 3
(c)-top. This counterintuitive fact is an example of how
difficult it is to establish a hierarchy between basins ob-
served with a finite resolution. The area of the phase space
occupied by the boundary of the Newton fractal is smaller
than the smooth boundary of the basins with two attrac-
tors of the Duffing oscillator. However, if we zoom in on
the Newton fractal to enlarge a part of its phase space as
seen in Fig. 3 (d), the basin entropy is now Sb = 0.187: a
value above the basins with the smooth boundary. It can
be interpreted as a limitation of the basin entropy, while it
is in fact a problem of interpretation of the unpredictabil-
ity of the basins. The question “Which figure is the most
intricate?” has not always a clear cut answer when we deal
with basins at a finite resolution. The basin entropy gives
an answer according to the blending of three ingredients
that cannot always be decomposed unequivocally.

Future perspectives. – As we have described ear-
lier, the basin entropy has become a fundamental tool
for understanding unpredictability in multistable systems.
Nevertheless, we believe that it has a very promising po-
tential for its use in the future in numerous research prob-
lems. Among the conceivable applications, we can think of
the basin entropy as a way to predict and classify bifurca-
tions in dynamical systems. In fact, when a new attractor
and its basin appear or disappear as a parameter is mod-
ified, there is a sudden change in the basin entropy value.
A connection between bifurcations and basin entropy val-
ues could be an alternative for the study of the parameter
dependence of dynamical systems. It might be even fea-
sible to detect some early indicators of bifurcations that
are not easily observed with current methods. The rela-
tionship of the basin entropy with other quantities such
as the uncertainty exponent or the Wada index has shed
light into different areas of nonlinear dynamics. This kind
of connections could be further extended to other quan-
tities and contexts. Maybe the Kaplan-Yorke conjecture
can provide such a link between the Kolmogorov-Sinai en-
tropy and the basin entropy, creating a bridge between
instantaneous and asymptotic dynamics. Stochastic dy-
namics have also been studied in combination with basins
of attraction [38, 39]. In these cases, the basin entropy
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SmoothFractal Wada(a) (b) (c) (d) Detail of Wada basins 

Fig. 3: Basins classified according to the basin entropy. In (a) we represent two riddled basins obtained from the
dynamical system published in [36] on the left and the forced damped pendulum θ̈ + 0.2θ̇ + sin θ = 1.3636 sin 0.5t on the
right. In (b) the two basins with a smooth boundary have been obtained from the periodically driven Duffing oscillator
ẍ + dẋ − x + x3 = 0.1 sin 0.1t with d = 0.4 on the left and d = 0.1 on the right. (c) Represents two examples of Wada basins
with three attractors. On the left, the basins for the Newton algorithm to find the roots of the polynomial f(z) = z3 − 1 in the
complex plane. The figure on the right shows the Wada basins of the forced damped pendulum θ̈+ 0.2θ̇+ sin θ = 1.66 sin t. (d)
The figure represents a portion of the phase space of the Newton fractal. The basin entropy has been computed on a grid of
1000×1000 initial conditions. All figures have been computed with Julia programming language using an automatic algorithm
[37]. The code for reproducing the plots is available at [18].

could also be adapted to provide information about the
system final state unpredictability.

Another natural development of the basin entropy is re-
lated to the Wada property. Actually, the detection and
characterization of Wada basins has drawn much attention
in recent years [40]. In the same vein, we can imagine a
new way to detect Wada boundaries based on the bound-
ary basin entropy Sbb. The log 2 and then the statistical
criterion allowed us to identify fractal basins at a given
scale. A similar reasoning could lead to a sufficient con-
dition to detect Wada boundaries at a single scale, which
would be quite advantageous for some experiments. Al-
though some of the applications of the basin entropy are
related to the use of just one scale, one could aim to de-
fine a free-scale related quantity, by properly integrating
the information provided by the basin entropy at differ-
ent scales in some sort of renormalization process. For
example, slim fractals with varying properties along dif-
ferent scales typically appear in undriven dissipative sys-
tems [41].

The field of complex networks can also benefit from the
basin entropy ideas. Recently, Halekotte et al. [42] have
studied the multistability of the British Power grid with
the basin entropy. It would be interesting to investigate

the occurrence of fractal boundaries in such high dimen-
sional systems. The statistical criterion of Eq. 6 can be
extended to n-dimensional basins [20]. Therefore, it would
provide a useful test for high-dimensional systems such as
complex networks.

Nonetheless, as usually happens in research, probably
some of the most exciting developments concerning the
basin entropy do not figure in the previous lines, but still
remain to be unveiled. The research on multistable sys-
tems and their unpredictability will definitely expand in
physics and other scientific disciplines in the upcoming
years.

Conclusions. – The basin entropy constitutes a new
tool to measure the final state unpredictability of dynam-
ical systems by analyzing their basins. Different domains
in Physics, such as cold atoms, shadows of binary black
holes, and classical and relativistic chaotic scattering in
astrophysics have been benefited so far of its use. We be-
lieve that the idea of basin entropy will become a relevant
tool in the study of complex systems with applications
in multifarious scientific fields. Many disciplines in sci-
ence and engineering have recently received a tremendous
influence from nonlinear dynamics. We would like to em-
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phasize that the field of chaos theory can provide useful
tools to understand the rich dynamics of many fundamen-
tal problems in physics, something that could be achieved
through fruitful scientific interactions.
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