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Abstract: Forecasting the energy consumption of heating, ventilating, and air conditioning systems
is important for the energy efficiency and sustainability of buildings. In fact, conventional models
present limitations in these systems due to their complexity and unpredictability. To overcome this,
the long short-term memory-based model is employed in this work. Our objective is to develop and
evaluate a model to forecast the daily energy consumption of heating, ventilating, and air condi-
tioning systems in buildings. For this purpose, we apply a comprehensive methodology that allows
us to obtain a robust, generalizable, and reliable model by tuning different parameters. The results
show that the proposed model achieves a significant improvement in the coefficient of variation of
root mean square error of 9.5% compared to that proposed by international agencies. We conclude
that these results provide an encouraging outlook for its implementation as an intelligent service
for decision making, capable of overcoming the problems of other noise-sensitive models affected
by data variations and disturbances without the need for expert knowledge in the domain.

Keywords: daily energy consumption; deep learning; forecasting model; HVAC systems; long
short-term memory; short-term forecast

1. Introduction

According to the US Energy Information Administration (EIA) [1] and the European
Commission [2], buildings represent between 39% and 40% of world energy consumption,
where the heating, ventilating, and air conditioning (HVAC) systems account for more
than half of the final energy consumption of buildings [3]. In fact, the energy consumption
of HVAC systems is very complex and unpredictable at times because the use given to a
building is very different throughout the day due to factors such as working hours, dif-
ferent types of personnel and their activities in the building, time dedicated to equipment
maintenance, and events that take place in the building. In addition, these systems are
affected by other factors, such as climate, geographical location, and building envelope,
among others [4,5].

The dynamic and nonlinear behavior of the HVAC system is difficult to manage, due
to different subsystems working together. Some of these subsystems are: the compressor,
fan-coils, heat pumps, chillers, and the air distribution system, among others [6,7]. There-
fore, the recorded time series of HVAC system operations are chaotic.
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In this sense, it is crucial to understand and analyze the energy consumption of the
HVAC system. This means that anticipating the energy consumption of HVAC systems
has great importance in the context of the energy efficiency and sustainability of buildings.
This would allow the implementation of planning strategies, optimization of the opera-
tions of these systems, and reduction in energy peaks and associated costs [8,9]. However,
before building a model for forecasting the energy consumption of HVAC systems, it is
important to consider two fundamental factors: the past observations or time lags and the
time horizon to be forecasted [4,8].

On the one hand, the time lags have been of interest in recent years since they allow
for an increase in the accuracy capacity of the predictions of the dynamic environment
models [8] and, on the other hand, the forecast time horizon delimits from which point in
time the model will carry out the forecast. The steps of this action plan can be regrouped
into three phases: short-, medium- and long-term [10,11]. Short-term forecasts are focused
on the day-to-day operations of energy systems, peak energy demand, daily energy con-
sumption, short-term electric market, fault detection, and diagnosis, etc. [12,13]. Medium-
term and long-term forecasts are directed to determine equipment modernization, create
energy saving strategies, and modify electric market plans, among others [8].

Within this framework, numerous data-driven models (i.e., statisticians and machine
learning (ML)) have been used for the short-term forecasting of the energy consumption
of HVAC systems in buildings. Some of these are: autoregressive integrated moving av-
erage (ARIMA), multiple-linear regression (MLR), support vector machine (SVM), deci-
sion tree (DT), random forest (RF), and artificial neural networks (ANNs), among others
[14-19]. While these models offer a good approximation when forecasting/predicting the
energy consumption of the HVAC system in buildings, they are very generalist, noise-
sensitive models and have a lower level of abstraction [16,20-25] since the data of these
systems have many disturbances and variations while they are in ordinary operation. In
addition, the various processes and complex features inherent in buildings significantly
affect the behavior of HVAC systems [5,18,26,27].

To overcome the shortcomings of the aforementioned models, deep learning (DL)-
based models have exposed promising alternatives since they allow automatic discovery
of the intrinsic structure of the data without the need for expert knowledge in the domain
[15,20,28,29]. Therefore, DL models are applicable to the analysis and forecasting of com-
plex and dynamic building energy systems such as HVAC systems. In fact, DL models
based on the long short-term memory (LSTM) neural network are very useful in this con-
text (as discussed in the following sections).

However, the implementation of these DL models brings with it the correct and pre-
cise tuning and implementation of different hyperparameters (HPs), such as the number
of hidden neurons, activation function, number of epochs, learning rate, optimizer, regu-
larization technique, etc. Therefore, these HPs will determine the abstraction capability of
a DL model.

In this context, the present study has focused on the development of an LSTM-based
model that is capable of forecasting the daily energy consumption of HVAC systems in
buildings. Another important objective is to evaluate the proposed model with respect to
different time lags, HP configurations, and to implement regularization techniques (such
as dropout and early stopping). To identify the best configuration of the model in this
scope, multiple experiments have been conducted to compare the performance of each
configuration. Therefore, the developed research provides an insight into the strengths
and weaknesses of applying some of the configurations analyzed and described in the
present article. It should be noted that this research is part of the research project called
“Intelligent management system for optimizing energy consumption in building air con-
ditioning” [7,30-33].

We can summarize the contributions of this study as follows: (i) we analyze in depth
real-world data on the energy consumption of the HVAC system in a complex building
such as the Teatro Real; (ii) we deeply examine the past behavior of a chaotic time series
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(noisy data and sensor errors) to make a daily forecast of the energy consumption of the
HVAC system; (iii) we apply a comprehensive methodological process that allows us to
obtain a robust, generalizable and reliable model by tuning different parameters; (iv) we
evaluate the advantages and disadvantages of applying regularization techniques in the
context of HVAC systems; (v) we identify that the proposed model achieves reliable per-
formance on the CVRMSE metric of 9.5% which is significantly lower than recommended
by international agency guidelines; (vi) we determine the configuration of our model to
achieve reliable and robust forecasts of HVAC energy consumption.

The article is organized as follows. In Section 2, we present the related work regard-
ing DL-based models aimed at forecasting energy consumption in HVAC systems, includ-
ing motivation for the use of LSTM networks. In Section 3, we briefly describe how to
address the problem in a particular real-world use case and how it has been addressed in
this study. In Section 4, we detail the methodological procedure we carried out to build
the LSTM-based DL model. Section 5 shows different configurations of the evaluated
model. In Section 6, we analyze and discuss how the model configurations were per-
formed. In addition, we identify the best configuration of the model regarding its time
lags, HPs and regularization techniques. Finally, Section 7 provides some conclusions
from the study carried out and presents future research work to be developed.

2. Related Works

In recent years, a large number of investigations have focused on the area of artificial
intelligence (AI) work with models based on deep learning (DL) techniques, in which they
have obtained surprising results in both academic and industrial fields [3,34-36]. Further-
more, these DL techniques have been used to model complex and sophisticated patterns
for the prediction/forecasting of time series in the energy sector [37]. DL techniques use
different neural network structures that allow learning from significant data representa-
tions, and in this sense, neural networks, such as the multilayer perceptron, recurrent neu-
ral network, have provided useful information for energy decision making for building
managers/administrators, such as the prediction/forecast of the energy consumption var-
iables of residential and nonresidential buildings [38—43], building temperature [37,44],
energy load of the building [45-47], and heating or cooling load of the building [48-50].

Within the aforementioned perspective, there are different proposals for DL-based
model architectures aimed at forecasting the energy consumption of HVAC systems in
buildings. Next, we describe some relevant works in this context.

Hwang, J. K. et al. [3] proposed DL models for predicting the performance and en-
ergy consumption of a heating and cooling (HC) system. They used a feed-forward ANN
algorithm based on back-propagation in which they selected several hyperparameters
(HPs), such as the activation function, number of hidden layers and nodes, and regulari-
zation techniques, to adjust their model. Moreover, they also tested the proposed models
using different time intervals and selected the most appropriate input variables for the
models. Finally, they emphasized that HC system operating variables are more important
than the internal and external temperatures of the building and noted that the DL ap-
proach could establish strategies to predict the energy performance of the HC system.

Likewise, J. Cho et al. [51] benchmarked DL-based algorithms (MLP and LSTM) for
air conditioning load forecasting to reduce the energy consumption of the building. Their
tests found that the LSTM had fewer errors than MLP. They verified that the DL algo-
rithms are capable of solving load forecasting problems.

Moreover, Machida, Y. et al. [52] proposed an estimation method for energy con-
sumption for building air conditioning systems. They used an RNN with five neurons in
the middle layer and time lags of three states. In addition, they used data from a simulated
building in the summer and winter seasons, incorporating variables such as preset tem-
perature, on-off state, and the number of people in the zone/room, among others. In this
study, the authors demonstrated that, with the proposed method, it is possible to estimate
energy consumption.
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On the other hand, Sendra-Arranz, R. and Gutiérrez, A. [4], developed different
LSTM-based models for short-term prediction of the HVAC system of a real self-sufficient
solar house based on the previous day’s behavior. They only experimented with the num-
ber of neurons and learning rate. In their work, they highlighted that these results drive
the prediction of energy consumption in real-time in buildings.

Similarly, Zhou, C. et al. [25] compared predictive models, such as the ARIMA
model, Multilayer neural network model, and LSTM model for predicting the daily and
time energy consumption of air conditioning systems. The authors noted that some HPs
tuning had to be made with respect to the LSTM model. They validated their models by
comparing the mean average percentage error (MAPE) of each. According to the results
obtained, the LSTM model had high adaptability and accuracy in predicting only the en-
ergy consumption data of the air conditioning systems.

In the work of Ellis M. J. and Chinde, V. [53], an encoder-decoder LSTM-based eco-
nomic model predictive control (EMPC) framework was developed. They only tuned one,
which was the number of nodes in the LSTM layers. This framework was applied to a
building HVAC system and used the EnergyPlus building energy simulation program to
simulate a multizone building. The authors emphasize that their model can accurately
predict the indoor temperature and sensitive HVAC cooling rate of an area in the building
for a two-day horizon.

Additionally, Hwang, I. et al. [54] proposed a seq2seq (encoder-decoder) model based
on LSTM for estimating the energy consumed by air conditioning. They described some
HPs such as the number of LSTM layers for the encoder and decoder, the number of
nodes, the activation function, and the regularization technique. The authors contrasted
the proposed model with other algorithms and concluded that the LSTM-based seq2seq
model is superior because it effectively combines past and future knowledge.

From the researches cited above, we can deduce that different architectures based on
DL models have been used to forecast the energy consumption of HVAC systems in build-
ings, such as MLP, RNN, and LSTM models. However, HVAC system data are a sequence
of values recorded in a period of time (time series) [29], so future predictions of HVAC
energy consumption depend not only on the current values in the inputs but also on the
overall trend itself that past data maintain. This concept is known as long-term depend-
ency, and both the MLP network and standard RNN do not have the capacity to handle
this dependency. MLP models do not consider data as time series and RNNs do not have
the ability to retain and consider long time lags during learning [55]. From this perspec-
tive, LSTM networks have the ability to transmit the cell state information through the
different LSTM units, which is why the model is able to maintain the information of large
historical sequences, as well as to consider the data as a sequence of ordered data [48,56].
For this reason, an LSTM-based model is ideal for forecasting the energy consumption of
HVAC systems in buildings.

Taking into account the above, most of the previous studies only selected some hy-
perparameters for the development of DL-based models. However, few studies deeply
examined the past behavior of the time series to perform a short-term forecast, as well as
the use of regularization techniques such as dropout and early stopping within the train-
ing environment of the model. Therefore, it is necessary to build and evaluate a DL model
based on LSTM in which different time lags are considered, various HPs settings are used,
and the regularization techniques mentioned for the deep neural network (DNN) are in-
corporated, to identify the best configuration for performing daily forecasting of HVAC
system energy consumption in buildings with complex usage.

3. Problem Formulation

This research focuses on short-term energy consumption forecasting of HVAC sys-
tems in buildings. Since the predicted consumed energy for the HVAC system would act
as a baseline, this would allow managers/administrators to carry out intelligent strategies
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on the HVAC system, such as optimal control, predicting its behavior, performing pre-
ventive maintenance, enabling fault detection, and diagnosis, etc., through the use of ar-
tificial intelligence models such as that proposed in this study [57-59]. In this section, we
will briefly describe the problem and how we addressed it in our study.

3.1. HVAC System in Buildings

The main function of HVAC systems is to provide building occupants with thermal
comfort and good indoor air quality. In fact, these systems are characterized by being
composed of multiple subsystems, such as heat pumps, chillers, cooling towers, boilers,
and air handling units (AHU) [6,7]. In addition, the HVAC system is responsible for more
than half of the total energy consumption of the building and has great potential for en-
ergy savings [3,60,61].

On the other hand, buildings are adopting a centralized management system based
on software, called the Building Management System (BMS). This is characterized by hav-
ing various analog and digital devices (actuators, sensors, etc.), whose objective is to pro-
vide the building with an architecture for the management, monitoring, and control of
HVAC and lighting systems, among others [7,31,33]. The BMS is responsible for collecting
and storing information on building energy consumption and some other variables, such
as environmental variables (outdoor temperature, wind speed, humidity, etc.), building
variables (internal temperature, building usage, programming, occupant behavior, etc.),
and equipment operating variables (HVAC sensors, energy consumption, operating sta-
tus, etc.) [27], as shown in Figure 1.
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| - Temperature control
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\
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Figure 1. Management of the building environment and the HVAC system using a BMS.

Now, through the BMS, the building data are registered and indexed in time inter-
vals. Therefore, data from different building systems (i.e,, HVAC, lighting, etc.) are treated
as time series. Within this framework, HVAC data can be considered a chaotic time series
since they present high volatility, nonlinearity, and nonstationarity due to the different
subsystems that compose it, as well as many factors that affect the HVAC system, such as
the building usage, the specifications and features of the building, the behavior of the oc-
cupant, and the weather conditions [4,6,25,62]. Even the complexity of these time series
increases in buildings that have areas/zones of mixed use or activity such as theaters, of-
fices, and shopping centers [5].

In this sense, it is necessary to build and evaluate a DL-based model that considers
these temporal variations inherent to HVAC data and some external and internal factors
that influence it.
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3.2. Long Short-Term Memory (LSTM)

Taking into account the above, and as indicated in Section 2 (Related works), a model
based on LSTM is suitable for the development of models for time series predictions, as
they have a better capacity to deal with temporal dependencies as well as the detection of
complex patterns, which are inherent in HVAC data in buildings [51,63]. In other words,
LSTM networks have greater robustness for the handling of continuous values and pre-
sent good performance with time series data of large time lags [25]. Within this context,
this neural network offers a solution to the two main problems that RNNs present at the
moment of learning: (i) it is not able to consider time lags far from the time series and (ii)
it tends to present unstable gradients (vanishing or exploding) [4,29,55].

The LSTM network, which is an improved variant of RNN, was first introduced in
1997 by Hochreiter and Schmidhuber [27,56] and has been widely used for the analysis
and prediction of time series or sequential data, such as: voice recognition, electrocardio-
grams, stock price, etc. [64]. This network is composed of a memory cell state denoted by
(Cy and three main gates called forget gate (F,), input gate (1), and output gate (O,), as
shown in Figure 2.

Cell State
|
7
Cot —> > l > C
Ft
Iy Ot
Sigmoid Sigmoid Sigmoid
Yi1 y ‘ ‘ > Yt
Input X,
variable t D
Forget Gate Input Gate Output Gate

Figure 2. Diagram of the internal structure of an LSTM network.

These gates function as valves to manage and control the information learned during
training. More specifically, the forget gate determines what information to remove or keep
from the memory cell; the input gate selects the information from the candidate memory
cell state (Cy) to update the cell state; the output gate decides the information from the
memory cell so that the model only considers meaningful information to predict. The val-
ues for each of these gates are calculated according to the following equations

I, = sigmoid(W; - [y, ,, Xi] + b)) @

F,=sigmoid(W¢ - [y, ,, X,] +by) 2)

O, =sigmoid(W,, - [y _,, X;] +by) ©)
C, =tanh(W. - [y, X, +b.) 4)

The memory cell (Cy) and output (y,) values of the LSTM network are calculated
using the following equations

C=(Cey -F)+(Ci - 1) )
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y, = O * tanh(Cy) (6)

where Wy ¢, ¢), and by ¢ o, ¢) represent the weights and bias variables, respectively, of
the three gates and the memory cell state, Yiq is the previous hidden unit information,
and X, is the value of the current input. Thus, the use of these gates allows the LSTM
network to have the ability to learn long-term dependencies in the input sequence.

Now, for the development of the LSTM-based model, we consider different data from
the building BMS system. Some of these data come from the environment, HVAC system,
and building. By supplying the information as a time series to the model, the model will
predict the behavior and energy consumption of the building’s HVAC system. Therefore,
building administrators/managers will obtain information to carry out the aforemen-
tioned intelligent strategies.

4. Methodology

In this study, we performed the procedure shown in Figure 3 to train and test the
robustness of the LSTM-based DL model for forecasting the short-term (daily) energy con-
sumption of HVAC systems in buildings. The following is a description of each of the
steps involved.

Data acquisition —)' Data Pre-processing | @

| Data Split |®

Training Set

Test Set

Trained Model

Data Preparation

@ 1 Configuration of
; . - ' Y | Hyperparameters | |
Validation and Metrics h A : H
1| Validation Build LSTM- :
i Set based Model , &
- ! i Regularization |
Final Model ' \__Techniques !
' i Training Model H
' Testing process . Training process |

Figure 3. Flow diagram of the model development.

4.1. Data Acquisition

We used a raw dataset from a BMS system to train and test the robustness of the
model. This dataset was kindly provided by the Teatro Real of Madrid, which is the most
important Spanish opera house.

The Teatro Real is a historic building built in 1850 that has an area of 65,000 m? and a
capacity for more than 1800 people. It also has several rooms for various activities and
uses such as events, rehearsal rooms, studios, technical areas, and a surrounding office
area.

On the other hand, this building is in operation every day of the year, with working
days of 16 h (8:00 to 00:00). The HVAC system at the Teatro Real is made up of multi-
HVAC subsystems [7] incorporating two chiller systems with a nominal cooling power of
350 kW and two heat pump systems with a nominal power of 195 kW for cooling and
heating. These multi-HVAC subsystems are monitored and controlled by a BMS that col-
lects data from the different sensors in the building. These data are sampled at different
time intervals: one sample every 15 min (96 samples per day) for operating data from
multi-HVAC subsystems and one sample every hour (24 samples per day) for internal
building data. Some of the variables that the BMS of the Teatro Real keeps stored are the



Appl. Sci. 2021, 11, 6722

8 of 26

outside and interior temperature of the building and, relative to the multi-HVAC system,
the capacity, the energy consumed, and the thermal power generated.

4.2. Data Pre-Processing

For the aforementioned case study, we performed the detection and cleaning of out-
liers or noisy values, since these greatly affect the precision of the predictive models [65].
For this reason, we used correlation and clustering techniques (k-means) to identify out-
liers.

On the other hand, the variables used for the model were indicated by the profes-
sional experts of the building, which were the following: the interior temperature of the
building, the external temperature, and the energy consumed by a HVAC system. We
retrieved 6912 data points distributed in each of these variables. Table 1 presents the sta-
tistics of them. For this work, the data comes from a heat pump supplied by the expert
staff of the Teatro Real building. These data include the winter season since this season is
the one with the highest energy consumption and cost. In addition, these data cover a
longer and more uniform period of time in the thermal demand. It should be noted that
this case is easily applicable to other seasons if data of the same type are provided.

Table 1. Statistics of the variables.

Stats Outside Temperature Indoor Temperature Heat Pump Power
Mean 8.717577 20.942005 80.989117
Std 3.214003 1.715789 50.924245
Minimum -0.768667 16.068332 0.48
25% 6.5815 19.617981 26.405333
50% 8.534667 21.256344 94.066675
75% 10.816498 22.388645 117.143975
Maximum 18.72963 23.722167 143.04

In addition, in order to obtain a uniform internal temperature of the building, we
considered calculating the average of this temperature recorded in the different areas,
rooms, and offices of the Teatro Real in which it was influenced by the heat pump.

As a follow-up to this activity, this new variable (average internal temperature) was
sampled per hour, while the other variables were sampled every 15 min. In this sense, we
applied a data transformation process (subsampling) for this new variable, since it was
crucial for the training of the model [66,67]. Therefore, we transformed the time interval
from 1 h to 15 min., using the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
method [68,69] to equalize the resolution intervals in the Teatro Real data. It should be
noted that we performed tests with the data at a 1 h resolution; however, the model lost
precision when training the model due to the complexity of HVAC systems [25].

The variables used to develop a DL model are found on different scales (for example
°C, kW, etc.); consequently, it was important to standardize them. From this perspective,
the method we used to normalize the variables was standard normalization, also known
as standard score or z-score [65].

4.3. Data Split

Once the data from the Teatro Real building had been pre-processed, we defined the
forecast horizon of the energy consumption of the HVAC system in one day (short-term)
since this allows for anticipating the energy that these systems will use; therefore, it will
help building managers/administrators to design and implement optimal control strate-
gies over these systems and access optimal energy rates in the continuous electricity mar-
ket [8,70,71]. Therefore, the one-day forecast horizon for the building is a 96 samples/time
step.
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Subsequently, we divided the data into three subsets (training-set, validation-set, and
testing-set) because the division of these subsets was essential for the accuracy of the
model [72]. From this perspective, the pre-processed data were divided into 80% for train-
ing and 20% as unseen data to be used in the final evaluation (testing) of the model. It
should be noted that 20% of the data from the training-set we used for validation during
model training (see Figure 3).

Because the different variables were recorded as a time series, it is of great
importance that these data sets were kept in order and preserved the temporal behavior.
In addition, we had multivariate data, so it was more difficult to analyze them using
classical techniques [73]. Therefore, we applied the sliding window method [72,74-77],
which allows transforming time series data into supervised learning. To achieve this, the
method maps the past observations (time lags) as input variables. The time lag can be 15
min., one hour, one day, or more than one day. Subsequently, it uses the time steps after
this time lagged (one day of samples for the case study) as forecast output, as shown in
Figure 4.

Slinding Window Method

£

N —_—>
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g :

3

1z

<
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o

>

>

)

<

o

(&)

N
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>
>
Time
Training input (X) Training output (Y)

Figure 4. Example of use of sliding window method to transform time series data to supervised
learning.

It should be noted that the input variables included the three variables presented in
Section 4.2. and the output was the daily energy consumption of the HVAC system to be
forecasted.

4.4. Configuration of Hyperparameters

The tuning of the hyperparameters (HPs) in a DL-based model as an LSTM network
has a great impact on the speed, learning capacity, and forecast accuracy of the model
[27,78]. For this reason, we evaluated the model by adjusting the most relevant HPs that
characterize the structure of the LSTM network, such as the activation function and num-
ber of neurons. However, before considering the HPs mentioned above, we will explain
some considerations that we made with other HPs required for the training process of the
model.

There are different optimizers for learning a neural network, some of which are the
stochastic gradient descent (SGD), adaptive gradient algorithm (AdaGrad), Adadelta, root
mean square propagation (RMSprop), and adaptive moment estimation (Adam)
[29,79,80]. Although all of these optimizers perform for learning DL models, we opted for
the Adam optimizer, which, according to the literature, is the most widely used for DL
architectures [43] as it offers rapid convergence, a learning rate adaptive, and little tuning
of HPs [81]. Similarly, batch size is a hyperparameter that determines the learning perfor-
mance of the model [39,82]. It should be noted that, from the observation of performance
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through multiple initial training executions, it was established that the learning rate pa-
rameter was set at 0.001, batch size at 2 and the number of iterations or epochs at 50.

4.4.1. Number of Neurons

The number of neurons must be sufficient to provide the LSTM network with learn-
ing power. However, this number of neurons is selected by researchers through trial and
error. Additionally, the determination of the number of neurons in the LSTM layer will
depend on the application and the field in which it is to be used [83]. In this sense, we
performed several preliminary tests with a number of neurons between 40 and 80 in the
LSTM layer, in which we identified that between 50, 60, and 70 neurons the model per-
formed better. Therefore, we evaluated our model with this number of neurons in the
LSTM layer, to find which one best fitted our case study. Furthermore, for the output
layer, the number of neurons corresponds to the one-day forecast horizon of our case
study (96 neurons).

4.4.2. Activation Functions

The main purpose of the activation function is to introduce nonlinearities to the neu-
ral network [84], allowing us to model with greater certainty the nonlinear behavior or
pattern typical of real-world data. Therefore, the rectified linear unit (ReLu), leaky ReLu,
and exponential linear unit (ELU) activation functions, provide a good level of perfor-
mance in DL-based models [29,84]. However, we must take into account the strengths and
weaknesses of each of these activation functions. Below, Table 2 provides a summary of
the strengths and weaknesses of each of these activation functions.

Table 2. Strengths and weaknesses of the ReLu, ELU, Leaky ReLu activation functions.

Activation Function Strengths Weaknesses

e  The components are not up-
dated, due to the “Dead

e  Fix vanishing gradient ReLu” problem.
ReLu problem. e It does not avoid the explod-
e  Low computational cost. ing gradient problem.
e  Transforms negative values
linearly.
e Avoid the “Dead ReLu”
problem. e High computational cost.
ELU e Allow negative outputs. e It converges slower due to
e  Fix vanishing gradient the exponential.
problem.
e Avoid the “Dead ReLu” e It does not avoid the explod-
problem. ing gradient problem.
e Lower computational cost e  When differentiating it, it
Leaky ReLu than ELU. i} becomes a linear fur%ction,
e  Fix vanishing gradient causing problems when
problem. training.

Considering the above, each of these activation functions avoids the vanishing gra-
dient problem; however, this is not the same with the exploding gradient problem [29,84].
For these reasons, we evaluated the following activation functions on the LSTM network:

e  Hyperbolic Tangent (TanH): This activation function is shaped like an “S” similar to
the sigmoid function. However, unlike the latter, which has an output value of 0 to
1, the Tanh has an output value that ranges from -1 to 1. Therefore, it allows the layer
output to be normalized around zero when starting the training, helping to accelerate
the convergence of the model [29].



Appl. Sci. 2021, 11, 6722

11 of 26

e Scaled exponential linear unit (SeLu): This was introduced by Giinter Klambauer as
a variant of the exponential linear unit (ELU) [85]. An advantage of this activation
function is that it performs an internal normalization (self-normalized) of the data;
that is, the outputs of this function are normally distributed. Therefore, it has fast
convergence and solves the problem of gradients vanishing and exploding [29,42,86].

It should be noted that we evaluated these activation functions on the input and out-
put gates of the LSTM network. In this sense, and based on the considerations described
above, Table 3 summarizes the different hyperparameters that we evaluated and used for
model training.

Table 3. Hyperparameters were evaluated and used to train the model.

Hyperparameters Values
Activation function for LSTM layer [SeLu, Tanh]
Number of neurons for LSTM layer [50,60,70]
Number of neurons for output layer 96

Iterations or Epochs 50
Optimizer Adam
Learning rate 0.001

4.5. Regularization Techniques

One of the challenges presented by DL-based models is overfitting. This occurs when
the model is overparameterized or very complex; consequently, it learns the statistical
noise from the training data, resulting in a model that overfits these data excessively.
Moreover, when evaluating the model, it does not generalize correctly on the test data
[29,78]. To avoid these drawbacks, we considered implementing dropout and early stop-
ping regularization techniques.

4.5.1. Dropout

Dropout is a regularization technique applied during neural network training in a
way that ignores or eliminates some neurons randomly [87]. In this way, this technique
allows the neural network to be trained as if it presented a different architecture or main-
tained different internal connections in the layer that implements it. This means that, in
each update, the network will be trained with different “forms” of the layer that maintains
this regularization. The result of this process is a model that presents a higher robustness
and a lower probability of overfitting to the training data [87,88]; consequently, the model
is more generalizable and usable.

In addition, this technique is effective when there are limited data for training since,
if there are few data, the model will fit these data and will not generalize correctly; on the
other hand, if there is a large amount of data, this technique will generate a high compu-
tational cost [89].

As a follow-up to this process, we established a dropout rate of 20% since it generated
good results when evaluating several executions of the model with the test.

4.5.2. Early Stopping

This technique allows network training to be regularized as soon as the model
reaches a minimum threshold of the validation error of the loss function (LF) (training
error metric, such as MSE or MAE). In other words, it stops training when the LF of the
network increases after waiting for a number of epochs, thus providing good model gen-
eralization performance and avoiding network overfitting [29,90].

Taking into account the above, and as indicated in Section 4.3., we took 20% of the
training data set as the validation-set, which allowed us to monitor and stop training when
the LF did not show an improvement in the validation error. In this context, for our case
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study, the early stopping technique took the results obtained from LF-validation error and
compared them every three epochs if there was a reduction in this error. In case this error
increased after passing these three epochs, the training would stop, and the model would
be selected three previous epochs before this validation error increased. An example of
this can be seen in Figure 5.

12 w—Testing-set == Validation-set

1

0.8

Early
Stopping

Error (Loss Function)
(=1
o

# of Epochs

Figure 5. Example of the early stopping regularization technique.

4.6. Build LSTM-Based Model

The architecture of the model proposed in this study for the problem of forecasting
the daily energy consumption of the HVAC system in buildings is composed as follows:
first, an LSTM input layer that receives all the temporal variables presented in Section 4.2.
and which will be evaluated with different HPs settings (see Table 3). Second, an interme-
diate dropout layer will be implemented to prevent overfitting during the training. Fi-
nally, the data from this dropout layer will pass to an output layer made up of a fully-
connected layer or dense layer, which will make the forecast for the next day (as shown
in Figure 6). It should be noted that the weight and bias matrices were updated (learned)
at each iteration during the training.

Once we obtained the forecast result for the day, the actual values registered by the
building BMS are compared by calculating the LF. Subsequently, the error obtained by
the LF will go through Adam’s optimizer during training, which will be in charge of feed-
back and updating the weights of the network to minimize the LF in each epoch. Similarly,
the early stopping technique will be monitored every three epochs with the validation
data so that the network does not have overfitting. Therefore, the validation data follow
the same architecture flow of the proposed model (see Figure 6).

4.7. Validation and Metrics

Standard DL model validation techniques such as train-test division or k-fold cross
validation are not useful for evaluating and validating time series. They ignore the tem-
poral behavior of this type of problem. For this reason, to validate our proposed model
we used the Walk-Forward Validation (WFV) technique [91,92].

Taking into account the above, WFV takes the last training-set as time lagged to make
a forecast; thus, it compares the output of this model with the unseen data (testing-set).
Moreover, this technique allows taking different time lags to evaluate in the model; fur-
thermore, it works well in conjunction with the sliding window method.



Appl. Sci. 2021, 11, 6722 13 of 26

Input variables (training and validation)
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LSTM Layer l

N [LSTMMHLSTM,.QHLSTMIS] ........ —> [LsT™,,
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and activation function (Selu, Tanh)

I Dropout Layer |

Output with Dense Layer

Q00O O0OO @)

Number of neurons: 96 \L

‘ Forecasted value |

Loss function
(MSE)

Expected value

Optimizer Adam

Figure 6. Architecture proposal and training flow of the model for forecasting the daily energy con-
sumption of the HVAC system in buildings.

One of the most commonly used metrics to evaluate the performance of a forecast is
MAPE since it is easy to understand and explain. However, the use of this indicator is
restricted in the case of having null or close to zero measured values, which would pro-
vide undefined or very extreme values [8]. For this reason, to compare the forecasting
performance of our model, we used the following metrics: coefficient of determination
(R?), root mean square error (RMSE), and coefficient of variation of root mean square error
(CVRMSE). It should be noted that the CVRMSE metric is especially used in this research,
since the American Society of Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE), the International Performance Measurement and Verification Protocol (IP-
MVP), and the Federal Energy Management Program (FEMP) established this indicator
as a metric of the goodness of fit of a mathematical model with respect to the data or
reference estimates measured in different operating conditions of an HVAC system [93—
96]. Specifically, if the CVRMSE forecast error of the model is less than 0.30 it is considered
valid and adequate for engineering purposes. Next, we define the equations for the error
metrics

221 (g’i_yi)z

RMSE= [~ )
RMSE
CVRMSE = (——)*100 % @)
R2= 1- in=11 (5\71- Yi)Z (9)
}’El (yi_ }_,)2

where m is the number of samples, y, is the expected value of the i-th point, y is the
mean of the expected value, and §, is the predicted value.

5. Evaluations
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The proposed architecture of the LSTM-based model was developed and imple-
mented under the Python language (v3.6) using the Keras Application Programming In-
terface (API) (v2.4) from the open source TensorFlow library [29,97]. Additionally, the
hardware in which the different tests were executed was carried out in an NVIDIA Jetson
Nano Developer Kit [98].

On the other hand, the forecasts obtained were compared using different configura-
tions that we will describe below. The architecture configuration C1 represents our pro-
posed model applying the two regularization techniques dropout and early stopping.
Configuration C2 represents the model that only applies dropout. Configuration C3 rep-
resents the model that only applies early stopping. Finally, configuration C4 represents
the model without these regularization techniques.

Similarly, for all these configurations, we evaluated the different hyperparameters
(HPs) shown in Table 3, where each of these HPs is labeled as follows: (S50, S60, S70)
represent the SeLu activation function with 50, 60 and, 70 neurons, respectively, and (T50,
T60, T70) represent the Tanh activation function with 50, 60 and, 70 neurons, respectively.
In addition, we used various time lags (one to seven days), to identify the best time lag
setting for the forecast of the daily (short-term) energy consumption of the building’s heat
pump.

We then executed each of these configurations five times for each time lag, due to the
randomness of the DNNs. Tables 4-7 present the performance of the metrics evaluated in
our study for the time lags analyzed in the different configurations of the model and HPs
mentioned above. Each metric obtained is the average calculated from the executions per-
formed.

Table 4. Performance in the metrics evaluated when forecasting the energy consumption of the HVAC, using different
time lags and HPs, applying the C1 configuration.

Time Lags Evaluation Metrics S50 560 S70 T50 T60 T70
R? (%) 0.817 0.818 0.818 0.826 0.825 0.824

1 RMSE (kWh) 22.61 22.53 22.55 22.05 22.09 22.14
CVRMSE (%) 0.249 0.248 0.248 0.243 0.243 0.244

R? (%) 0.829 0.826 0.821 0.832 0.830 0.827

2 RMSE (kWh) 21.86 22.06 22.34 21.64 21.76 21.96
CVRMSE (%) 0.240 0.243 0.246 0.238 0.239 0.242

R? (%) 0.841 0.837 0.843 0.847 0.846 0.849

3 RMSE (kWh) 21.07 21.33 20.96 20.69 20.71 20.55
CVRMSE (%) 0.232 0.235 0.231 0.228 0.228 0.226

R? (%) 0.846 0.854 0.836 0.862 0.860 0.864

4 RMSE (kWh) 20.75 20.20 21.37 19.65 19.77 19.52
CVRMSE (%) 0.228 0.222 0.235 0.216 0.217 0.215

R? (%) 0.849 0.858 0.852 0.871 0.874 0.869

5 RMSE (kWh) 20.56 19.91 20.25 18.99 18.74 19.10
CVRMSE (%) 0.226 0.219 0.223 0.209 0.206 0.210

R? (%) 0.860 0.861 0.856 0.874 0.874 0.875

6 RMSE (kWh) 19.75 19.72 20.07 18.75 18.73 18.68
CVRMSE (%) 0.217 0.217 0.221 0.206 0.206 0.205

R? (%) 0.858 0.852 0.840 0.876 0.874 0.876

7 RMSE (kWh) 19.94 20.30 21.06 18.61 18.74 18.64

CVRMSE (%)

0.219

0.223

0.232

0.205

0.206

0.205

The best performance obtained was highlighted in bold.
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Table 5. Performance in the metrics evaluated when forecasting the energy consumption of the HVAC, using different

time lags and HPs, applying the C2 configuration.

Time Lags Evaluation Metrics S50 560 570 T50 T60 T70
R? (%) 0.800 0.793 0.805 0.813 0.820 0.813

1 RMSE (kWh) 23.60 23.92 23.30 22.82 22.39 22.85
CVRMSE (%) 0.260 0.263 0.256 0.251 0.246 0.251

R? (%) 0.736 0.807 0.792 0.804 0.806 0.806

2 RMSE (kWh) 26.84 23.14 24.03 23.39 23.25 23.22
CVRMSE (%) 0.295 0.255 0.264 0.257 0.256 0.255

R? (%) 0.817 0.817 0.832 0.826 0.840 0.823

3 RMSE (kWh) 22.60 22.56 21.65 22.06 21.15 22.23
CVRMSE (%) 0.249 0.248 0.238 0.243 0.233 0.245

R? (%) 0.829 0.835 0.844 0.858 0.855 0.849

4 RMSE (kWh) 21.72 21.44 20.84 19.88 20.12 20.55
CVRMSE (%) 0.239 0.236 0.229 0.219 0.221 0.226

R? (%) 0.857 0.850 0.840 0.866 0.863 0.862

5 RMSE (kWh) 19.97 20.49 21.07 19.37 19.54 19.65
CVRMSE (%) 0.220 0.225 0.232 0.213 0.215 0.216

R? (%) 0.850 0.856 0.857 0.873 0.874 0.875

6 RMSE (kWh) 20.37 20.01 20.01 18.82 18.76 18.71
CVRMSE (%) 0.224 0.220 0.220 0.207 0.206 0.206

R2 (%) 0.862 0.785 0.847 0.866 0.877 0.872

7 RMSE (kWh) 19.61 23.82 20.68 19.36 18.56 18.89
CVRMSE (%) 0.216 0.262 0.227 0.213 0.204 0.208

The best performance obtained was highlighted in bold.

Table 6. Performance in the metrics evaluated when forecasting the energy consumption of the HVAC, using different

time lags and HPs, applying the C3 configuration.

Time Lags Evaluation Metrics S50 560 570 T50 T60 T70
R? (%) 0.819 0.821 0.823 0.832 0.832 0.832

1 RMSE (kWh) 2248 22.35 22.23 21.69 21.67 21.68
CVRMSE (%) 0.247 0.246 0.244 0.239 0.238 0.238

R? (%) 0.824 0.831 0.825 0.838 0.838 0.837

2 RMSE (kWh) 22.20 21.71 22.09 21.28 21.27 21.32
CVRMSE (%) 0.244 0.239 0.243 0.234 0.234 0.235

R2 (%) 0.849 0.852 0.848 0.855 0.853 0.858

3 RMSE (kWh) 20.57 20.32 20.62 20.15 20.26 19.92
CVRMSE (%) 0.226 0.224 0.227 0.222 0.223 0.219

R? (%) 0.855 0.859 0.842 0.865 0.868 0.869

4 RMSE (kWh) 20.13 19.83 20.96 19.39 19.17 19.15
CVRMSE (%) 0.221 0.218 0.230 0.213 0.211 0.211

R? (%) 0.860 0.781 0.872 0.882 0.880 0.879

5 RMSE (kWh) 19.76 23.33 18.93 18.19 18.28 18.36
CVRMSE (%) 0.217 0.257 0.208 0.200 0.201 0.202

R? (%) 0.863 0.871 0.860 0.882 0.882 0.877

6 RMSE (kWh) 19.51 19.01 19.72 18.16 18.16 18.53
CVRMSE (%) 0.215 0.209 0.217 0.200 0.200 0.204

R? (%) 0.724 0.873 0.869 0.886 0.883 0.885

7 RMSE (kWh) 24.85 18.83 19.09 17.88 18.10 17.89
CVRMSE (%) 0.273 0.207 0.210 0.197 0.199 0.197

The best performance obtained was highlighted in bold.

Table 7. Performance in the metrics evaluated when forecasting the energy consumption of the HVAC, using different

time lags and HPs, applying the C4 configuration.

Time Lags

Evaluation Metrics

S50

560

570

T50

T60

T70
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R2? (%) 0.757 0.766 0.763 0.828 0.817 0.805

1 RMSE (kWh) 25.90 25.38 25.63 21.94 22.59 23.28
CVRMSE (%) 0.285 0.279 0.282 0.241 0.248 0.256

R2 (%) 0.812 0.790 0.787 0.814 0.828 0.792

2 RMSE (kWh) 22.93 24.10 24.27 22.77 21.89 23.94
CVRMSE (%) 0.252 0.265 0.267 0.250 0.241 0.263

R2 (%) 0.759 0.786 0.804 0.823 0.829 0.817

3 RMSE (kWh) 25.32 24.32 23.33 22.25 21.86 22.61
CVRMSE (%) 0.278 0.268 0.257 0.245 0.240 0.249

R? (%) 0.829 0.787 0.821 0.857 0.853 0.847

4 RMSE (kWh) 21.83 24.22 22.30 19.96 20.23 20.65
CVRMSE (%) 0.240 0.266 0.245 0.219 0.223 0.227

R? (%) 0.842 0.826 0.829 0.871 0.866 0.858

5 RMSE (kWh) 20.95 21.99 21.83 18.99 19.36 19.91
CVRMSE (%) 0.230 0.242 0.240 0.209 0.213 0.219

R2 (%) 0.803 0.842 0.825 0.878 0.878 0.876

6 RMSE (kWh) 22.67 20.94 22.01 18.47 18.48 18.59
CVRMSE (%) 0.249 0.230 0.242 0.203 0.203 0.204

R2 (%) 0.845 0.775 0.827 0.879 0.878 0.872

7 RMSE (kWh) 20.77 24.88 21.92 18.37 18.49 18.91
CVRMSE (%) 0.228 0.274 0.241 0.202 0.203 0.208

The best performance obtained was highlighted in bold.

Each of the tables presented above is divided as follows: time lags, performance met-
rics, and the nomenclature given for the HP sets studied. Subsequently, we analyzed the
performance obtained in each of the tables and identified the best time lags, activation
function, and number of neurons for each configuration, according to the evaluation met-
rics analyzed. The best performance obtained in Tables 4-7 are highlighted in bold.

From this perspective, all configurations achieved good performance with time lags
of seven days. Furthermore, the C1, C3, and C4 configurations performed better with a
Tanh activation function of 50 neurons (T50) in the LSTM layer. C2 achieved good results
with a Tanh activation function of 60 neurons (T60) in the LSTM layer.

In the same way, we carried out an in-depth analysis of the previous evidence, in
which we analyzed and evaluated each configuration obtained with respect to its epochs,
LF of the training-set, and LF of the validation-set, to identify the overfitting in these
model configurations. In this sense, we named each configuration C1-T50, C2-T60, C3-
T50, and C4-T50. Figure 7 shows each of the configurations with their values obtained for
the LF, where the bar chart represents the average error of the LF (training-set and vali-
dation-set) and the red line represents the average number of epochs in which the training
was completed. It should be noted that these results are the average of the five runs per-
formed.
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Figure 7. Evaluation of training and validation for the best configurations obtained.

In addition, to verify the robustness and applicability of the configurations of the
previously trained models, we compared the performance of the daily forecast provided
by the model with respect to unseen data from the testing-set. In Figure 8, some samples
are shown with the forecast of the energy consumption of the building’s heat pump ob-
tained for one day with these configurations.
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Figure 8. Comparison of the observed values with those predicted by the configurations obtained (C1-T50, C2-T60, C3-
T50, C4-T50) for the daily energy consumption of the heat pump.

For these forecasted samples, we have also evaluated and calculated the relative error
of the average energy consumption and the relative error of the maximum energy con-
sumption of the building’s heat pump. Tables 8-11 show each configuration of the model

obtained.
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Table 8. Calculation of the relative error of the daily energy consumption (average and maximum) with respect to the
testing-set (model: C1-T50).

Forecast Avg.EC* Avg. EC* Relative Error Max. EC * Max. EC * Relative Error
Day by Day (Y *) by Day (Y*) (Avg. EC*byDay) by Day (Y *) by Day (Y*)  (Max. EC * by Day)
1 99.24 84.44 14.92% 141.600 124.988 11.73%
2 82.15 84.82 3.25% 142.075 124.824 12.14%
3 9241 84.90 8.12% 142.080 125.786 11.47%
4 89.93 84.76 5.74% 142.400 124.654 12.46%
5 90.87 84.85 6.62% 141.189 125.379 11.20%
Avg. 90.92 84.753 7.73% 141.869 125.126 11.80%

Avg. EC *: Average energy consumption (kW); Max. EC *: Maximum energy consumption (kW); Y *: Expected value; Y *:
Forecasted value.

Table 9. Calculation of the relative error of the daily energy consumption (average and maximum) with respect to the
testing-set (model: C2-T60).

Forecast Avg.EC* Avg. EC* Relative Error Max. EC * Max. EC * Relative Error
Day by Day (Y *) by Day (Y*) (Avg.EC*byDay) by Day (Y *) by Day (Y*)  (Max. EC * by Day)
1 99.24 84.39 14.96% 141.60 126.08 10.96%
2 82.15 85.20 3.71% 142.07 130.55 8.11%
3 92.41 85.02 8.00% 142.08 125.93 11.37%
4 89.93 84.85 5.64% 142.40 126.01 11.51%
5 90.87 84.87 6.61% 141.19 125.90 10.83%
Avg. 90.92 84.86 7.78% 141.87 126.90 10.55%

Avg. EC *: Average energy consumption (kW); Max. EC *: Maximum energy consumption (kW); Y *: Expected value; Y *:
Forecasted value.

Table 10. Calculation of the relative error of the daily energy consumption (average and maximum) with respect to the
testing-set (model: C3-T50).

Forecast Avg.EC* Avg. EC* Relative Error Max. EC * Max. EC * Relative Error
Day by Day (Y *) by Day (Y*) (Avg.EC*byDay) by Day (Y *) by Day (Y*)  (Max. EC * by Day)
1 99.24 85.18 14.16% 141.60 132.07 7.58%
2 82.15 85.36 3.91% 142.07 129.79 8.65%
3 9241 84.75 8.28% 142.08 128.39 9.64%
4 89.93 84.80 5.70% 142.40 127.69 10.33%
5 90.87 84.56 6.94% 141.19 127.79 9.49%
Avg. 90.92 84.93 7.80% 141.87 129.15 9.14%

Avg. EC *: Average energy consumption (kW); Max. EC *: Maximum energy consumption (kW); Y *: Expected value; Y *:
Forecasted value.

Table 11. Calculation of the relative error of the daily energy consumption (average and maximum) with respect to the
testing-set (model: C4-T50).

Forecast Avg.EC* Avg. EC* Relative Error Max. EC * Max. EC * Relative Error
Day by Day (Y *) by Day (Y*) (Avg.EC*byDay) by Day (Y *) by Day (Y*)  (Max. EC * by Day)
1 99.24 84.58 14.77% 141.60 127.40 10.03%
2 82.15 84.61 3.00% 142.07 126.88 10.69%
3 92.41 84.86 8.17% 142.08 127.64 10.16%
4 89.93 84.77 5.73% 142.40 127.36 10.56%
5 90.87 84.82 6.65% 141.19 127.81 9.47%
Avg. 90.92 84.73 7.66% 141.87 127.42 10.18%

Avg. EC *: Average energy consumption (kW); Max. EC *: Maximum energy consumption (kW); Y *: Expected value; Y *:
Forecasted value.

6. Results and Discussion

This study was developed with the objective of building a DL model based on LSTM
that allows forecasting of the daily energy consumption of the HVAC system in buildings.
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For this, it has been applied specifically to a heat pump in a historic building, the Teatro
Real in Spain. Another purpose was to evaluate the best configuration of this model by
using different time lags, various HP tuning, and implementation of the dropout and early
stopping regularization techniques during the training of the model.

Analyzing the performance obtained, it can be seen in Tables 4-7, that all the config-
urations showed good precision in forecasting the short-term energy consumption of the
building’s heat pump, given that they obtained values within the range of 0.197-0.285 of
CVRMSE, the metric used by ASHRAE, IPMVP, and FEMP to validate the accuracy of a
forecast model [93-96]. Although the results show that any configuration of the proposed
model can be used, this does not imply that the models generalize correctly. For this rea-
son, we analyzed and evaluated all the configurations that provided the best results in all
the accuracy evaluation metrics (see Equations (7)-(9)), to identify and obtain the model
with the best values of time lags, HPs tuning, and goodness of the regularization tech-
niques.

Taking into account these considerations, as seen in Tables 4-7, all configurations for
a time lag of seven days obtained good results according to the evaluation consideration.
Furthermore, for the C1, C3, and C4 configurations, better results were obtained with a
Tanh activation function of 50 neurons (T50). C1 proposed configuration obtained R?,
RMSE and CVRMSE values of 0.876, 18.61 and 0.205, respectively; C3 configuration ob-
tained R?, RMSE, and CVRMSE values of 0.886, 17.88 and 0.197, respectively; C4 configu-
ration obtained R?, RMSE, and CVRMSE values of 0.879, 18.37, and 0.202, respectively.
Finally, C2 configuration obtained better results with a Tanh activation function of 60 neu-
rons (T60), in which it achieved R2, RMSE, and CVRMSE values of 0.877, 18.56, and 0.204,
respectively.

From the results shown above we can highlight several interesting findings. First, to
perform a daily forecast in this case study, it was necessary to apply seven-day historical
time lags. The HVAC system of a house only uses the historical behavior of the previous
day to forecast the next day as there are few temporal variations throughout a week [4].
In contrast, a complex building such as the one studied here presents many disturbances
during the week (e.g., occupant behavior, building use, work time, theatrical perfor-
mances, events, etc.). The use of seven days of history offers the opportunity to capture
these disturbances, making it feasible to anticipate the energy consumption of the HVAC
system for the next day with adequate accuracy and favors the implementation of appli-
cations such as optimal control, preventive maintenance and fault detection, and diagno-
sis [57-59]. Regarding the second finding, the configurations obtained (C1-C4) achieved a
good performance in the CVRMSE metric, which was between 0.095 and 0.103, less than
that proposed of 0.30 by international agencies.

Other significant findings of the results obtained were the activation function and the
number of neurons for the LSTM layer. In the first finding, the best results obtained using
the activation function Tanh versus SeLu are highlighted. One justification for this is that,
while SeLu has the ability to avoid vanishing or exploding gradient problems, it is not able
to hold the gradient for a long period of time before it reaches zero, a property that Tanh
can solve by calculating its second derivative [29,84,99]. In the second finding, the number
of neurons evaluated in this study for the LSTM layer was 50, 60, and 70 neurons, in which
three model configurations, C1, C3, and C4, performed well with only 50 neurons,
whereas the C2 configuration performed better with 60 neurons.

From the previous results, we have taken the best set of configurations, including the
activation function and number of neurons obtained, defined as follows: C1-T50, C2-T60,
C3-T50, and C4-T50. To understand and justify the difference in the number of neurons
required for the LSTM layer, we proceeded to analyze the results of the loss function (LF)
and the number of epochs used by these configurations with the training-set and valida-
tion-set data.

Taking into account the above and analyzing the results observed in Figure 7, the C1-
T50 configuration showed the best results with training and validation sets since the use
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of regularization techniques for dropout and early stopping prevented it from presenting
any tendency of overfitting in LF-training and LF-validation. It is also appreciated that an
average of less than 20 epochs was required to achieve good results, so this model has
enough computational capacity to capture temporal variations and make a daily forecast
of the energy consumption of the building’s heat pump. On the other hand, the C2-T60
configuration, although it employs a greater number of neurons and implements dropout,
generated the greatest errors in LF-training and LF-validation. In addition, it had a ten-
dency to overfit since it does not implement early stopping to monitor LF-validation dur-
ing training, which continued until reaching the established maximum.

There are several possible explanations for these results: (i) the established dropout
rate was not optimal for this number of neurons; (ii) the influence of other selected HPs
such as learning rate, epochs, optimizer, etc. From this perspective, the use of optimization
techniques focused on these HPs could improve the model accuracy [3,47,100]. Mean-
while, C3-T50 and C4-T50 configurations showed a clear trend to overfit, as LF-training
decreased dramatically compared to LF-validation. On the one hand, the C3-T50 configu-
ration, while making use of the early stopping technique, was not enough to prevent over-
fitting over the training-set. On the other hand, the C4-T50 configuration, by not using
regularization techniques, was not able to correctly adapt to the data, causing the model
to overfit. Thus, we have observed that using only the early stopping technique or any of
the regularization techniques would not guarantee that the model is robust and offers
good forecast accuracy in data with high temporal variation (chaotic series), as in the case
of complex building HVAC systems. Therefore, the use of the early stopping technique
will depend on the data, the size of the data, and the context to which it is directed.

On the other hand, to test the robustness and applicability of all the resulting C1-T50,
C2-T60, C3-T50, and C4-T50 configurations, we evaluated each configuration of the model
with some samples from the testing-set and obtained the corresponding daily forecasts,
to compare the accuracy when making the forecast of a day, as well as determine the rel-
ative errors obtained in the forecast of the average and maximum daily energy consump-
tion of the heat pump. In this sense, the results observed in Figure 8 show good accuracy
of the configurations in the forecast and in detection of the daily temporal variation of the
energy consumption of the heat pump. However, in accordance with the aforementioned
results and what is observed in Tables 8-11, the C2-T60, C3-T50, and C4-T50 configura-
tions obtained values of the relative error of the average daily energy consumption of
(7.78%, 7.80%, 7.66%) and the maximum daily energy consumption of (10.55%, 9.14%,
10.18%), respectively. The C1-T50 configuration obtained a relative error of daily average
energy consumption of 7.73% and daily maximum energy consumption of 11.80%.

According to the previous results, the relative errors of the energy consumption (av-
erage and maximum) of the C2-T60, C3-T50, and C4-T50 configurations were quite low;
however, this can be misleading because, by implementing one or none of the regulariza-
tion techniques, these configurations cannot reliably generalize over the test-sets, as they
exhibit overfitting. For the C1-T50 configuration, although the relative errors are not so
low, the model could generalize better to the data since the implemented regularization
techniques allowed capturing of the temporal variations.

7. Conclusions and Future Works

In this study, we developed an LSTM-based model aimed at forecasting the daily
energy consumption of the HVAC system in buildings, specifically a heat pump at the
Teatro Real in Spain. In particular, we focused on determining the time lags that best suits
the need. In addition to identifying the best tuning of hyperparameters (HPs) for the
LSTM layer, we analyzed the implementation of dropout and early stopping regulariza-
tion techniques during learning the proposed model.

From this point of view, we have compared different model configurations with re-
spect to the actual data provided by the building’s BMS, in which each model configura-
tion implemented one, two, or none of the above regularization techniques. Subsequently,
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we evaluated, for all these model configurations, multiple executions of several time lags
(one to seven days), with HPs as the activation function (SeLu or Tanh) and a number of
50, 60, and 70 neurons. As a result, we analyzed and evaluated the forecast accuracy of
each model configuration with respect to the various results obtained in the evaluation
metrics (R% RMSE, CVRMSE).

From the experiments conducted, we identified that the CVRMSE measurement re-
sults obtained by the model configurations were within the acceptable accuracy range
(<0.30) for the global uncertainty in the prediction of energy use according to the criteria
indicated by the ASHRAE, IPMVP, and FEMP guidelines to validate an HVAC calibrated
model [93-96]. Additionally, for all configurations, we determined that the best time lag
to make a daily forecast is the previous seven days. This suggests that models aimed at
forecasting the energy consumption of the HVAC system should consider a wide time lag
to capture all the patterns or temporal variations of these systems and the building
[5,18,26,27], so it could be a baseline for researchers studying similar complex cases.

In addition, we determined the HPs of the C1 to C4 configurations with the best perfor-
mance in the metrics. The Tanh activation function was more accurate in these configurations
compared with the SeLu activation function, while the best number of neurons was 50 for the
C1-T50, C3-T50, and C4-T50 configurations and 60 neurons for the C2-T60 configuration.
Based on this evidence, we consider that the activation functions and the number of neurons
will depend on many factors, such as data size and variations, model complexity, HPs, use of
regularization techniques, or the context in which it is studied. Therefore, the application of
optimization techniques for some of these factors would improve the accuracy for model pre-
diction [3], although this would imply a high computational cost [36,62].

We also observed that dropout and early stopping regularization techniques can
work together in analogous scenarios, as they easily capture volatility, nonlinearity, and
hidden patterns during DNN training. In fact, we have demonstrated that the configura-
tion of model C1-T50, which implemented these regularization techniques, was able to
determine the relative error of the forecast of average and maximum daily energy con-
sumption by 7.73% and 11.80%, respectively. In addition, this model has a lower perfor-
mance in the CVRMSE metric of 0.095 than that proposed by the ASHRAE, IPMVP, and
FEMP guidelines. Therefore, it generates generalizable forecasts and is capable of captur-
ing the temporal variations of a complex building such as the one studied.

Taking into account the above, this HVAC system energy consumption forecast
model could be part of a broader framework, in which, through the analysis of the forecast
generated, intelligent decisions can be made, such as performing preventive maintenance,
fault detection and diagnosis, optimization of operation modes, etc.

On the other hand, it should be noted that the proposed model can be improved by
adjusting other HPs, such as the learning rate, optimizer type, number of epochs, dropout
rate, and number of delay or “patience” for early stopping. Therefore, it would be inter-
esting to investigate whether there is an improvement in the forecasting accuracy of the
model when tuning some of these HPs [4,62].

Finally, in future work, we will compare the performance of this model with respect
to other Deep Learning models, under the implementation of an intelligent microservices
environment within a cloud-connected ecosystem, in order to improve the BMS architec-
ture and extend its functionalities [32] since microservices allow the decoupling of services
that require higher computational power (GPU or parallel computing) [101].
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Nomenclature

Acronyms Description

HVAC Heating, ventilating, and air conditioning
BMS Building management system

ML Machine learning

DL Deep learning

DNN Deep neural network

LSTM Long short-term memory

RNN Recurrent neural network

MLR Multiple-linear regression

ARIMA Autoregressive integrated moving average
DT Decision Tree

RF Random Forest

SVM Support vector machine

ANN Artificial neural network

MLP Multilayer perceptron

HPs Hyperparameters

SGD Stochastic gradient descent

AdaGrad Adaptive gradient algorithm

RMSprop Root mean square propagation

Adam Adaptive moment estimation

ReLu Rectified linear unit

Leaky ReLu Leaky rectified linear unit

ELU Exponential linear unit

SeLu Scaled exponential linear unit

Tanh Hyperbolic tangent

LF Loss function

MSE Mean squared error

MAE Mean absolute error

MAPE Mean average percentage error

WEV Walk-forward validation

R? Coefficient of determination

RMSE Root mean square error

CVRMSE Coefficient of variation of root mean square error
ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers
IPMVP International Performance Measurement and Verification Protocol

FEMP Federal Energy Management Program
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