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Abstract

In dynamical systems, basins of attraction connect a given set of initial con-
ditions in phase space to their asymptotic states. The basin entropy and
related tools quantify the unpredictability in the final state of a system when
there is an initial perturbation or uncertainty in the initial state. Based on
the basin entropy, the ln 2 criterion allows for efficient testing of fractal basin
boundaries at a fixed resolution. Here, we extend this criterion into a new
test with improved sensitivity that we call the Sbb fractality test. Using the
same single scale information, the Sbb fractality test allows for the detection
of fractal boundaries in many more cases than the ln 2 criterion. The new
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test is illustrated with the paradigmatic driven Duffing oscillator, and the
results are compared with the classical approach given by the uncertainty
exponent. We believe that this work can prove particularly useful to study
both high-dimensional systems and experimental basins of attraction.

Keywords: basin entropy, fractals, boundaries, basins of attraction,
uncertainty exponent
PACS: 05.45.-a, 05.45.Df

1. Introduction

Dynamical systems often show multistability with the coexistence of sev-
eral asymptotic states, known as attractors [1]. In dissipative systems, the
set of initial conditions that asymptotically approach an attractor is called
the basin of attraction [2]. In open Hamiltonian systems, instead of attrac-
tors we have exits, and consequently the initial conditions leaving the system
by these exits are their escape basins [3]. In both cases, basin boundaries
can either be smooth or fractal curves. Under repeated enlargement, fractal
boundaries reveal new structures at arbitrarily small scales. This leads to
non-integer dimensions and it is often considered as one of the hallmarks of
chaos [4, 5]. The existence of fractal basin boundaries is profoundly inter-
twined with the unpredictability under uncertainty in the initial state of the
orbit’s attractor; this is the facet of chaos we aim to study here.

The classical method for studying the lack of predictability of a multi-
stable system is via the uncertainty exponent α [6]. Basically, it measures the
fractal dimension of the boundaries counting the number of boxes that lie be-
tween basins at different scales. The uncertainty exponent ranges from zero
for the most unpredictable basins to one for smooth boundaries. Nonethe-
less, the uncertainty exponent presents some unavoidable numerical difficul-
ties, such as accessing arbitrarily small scales or exploring multiple box sizes.
Besides, it makes a poor use of the information obtained by sampling the
phase space with the boxes, since it only classifies them as certain (lying in
the interior) or uncertain (lying on a boundary).

Other tools able to quantify the attractors unpredictability given a finite
uncertainty in the initial states are the basin entropy and the boundary basin
entropy [7]. Starting with a similar tiling of phase space, the idea is to
compute the probabilities of going to each attractor within a box and exploit
Shannon’s information entropy. Since their formulation, the basin entropy
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and the boundary basin entropy have been applied to experiments with cold
atoms [8], chaotic scattering [9, 10], biological systems [11, 12], electronic
micro/nanodevices [13], oscillators [14] and astrophysical models [15, 16, 17],
among others.

Based on the boundary basin entropy, the ln 2 criterion [7] to detect
fractal boundaries at a fixed resolution was developed. The use of a single
scale to test for fractality makes it both computationally and experimentally
convenient. The ln 2 criterion applies to boundaries separating more than
two different basins, like the Wada basins [18]. The goal of this paper is to
extend the ln 2 criterion, presenting a test as a criterion to ascertain for frac-
tal structures with an improved sensitivity that also applies for boundaries
separating only two basins.

The article is organized as follows: we start in section 2 with a quick
revision of the basin entropy and its relation to fractal structures on phase
space. We continue in section 3 introducing the fractal test and developing it
for the case when basins are known exactly in two-dimensional phase spaces.
Then, in sec. 4, we study finite resolution effects in discrete phase spaces
given by finite grids. In sec. 5, we give a recipe of the test and illustrate it
with an example. Moreover, in sec. 6, we extend the test to phase spaces in
any dimension. Finally, we summarize and discuss the results in sec. 7.

2. Basin entropy and the definition of fractality

Since our main goal is the identification of fractal boundaries, we first
need to consider the definition of fractal. Even though fractals are not de-
fined in the literature in a precise and unambiguous manner, they typically
share some of the following properties [19]: (1) fine or detailed structure at
arbitrarily small scales, (2) local and global irregularity non-describable by
ordinary geometry, (3) some notion of self-similarity, (4) a ‘fractal dimension’
greater than the topological dimension and (5) simple and perhaps recursive
definitions. Here, we refer to fractal structures as those fulfilling at least
properties (1), (2) and (4). Nonetheless, numerically we are always able to
reach only up to a given scale. This connects with the experience that phys-
ical systems do not exhibit ‘true’ fractal structures, in the sense that there
are only some finite accessible or even defined scales [20].

The basin entropy provides a way to characterize phase space structures
at a given scale. We consider a region of the phase space with M distinct
basins and we sample it using N boxes of size ε (see Fig. 1). The box size
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(a) (b) (c)

Figure 1: To compute the basin entropy, we draw boxes of size ε from the phase space.
For each box, we calculate the information entropy from the fractions of each basin within
the box; then, averaging over all boxes we calculate the basin entropy Sb; and averaging
only over boundary boxes (red dashed circles), the boundary basin entropy Sbb. These
basins are from the periodically driven Duffing oscillator ẍ+0.15ẋ−x+x3 = F sinωt, and
(a) F = 0.100, ω = 0.200, (b) F = 0.395, ω = 1.617 and (c) F = 0.128, ω = 1.106. For
Nb = 104 disks boxes in the boundary of radius ε = 0.025, the figures are ordered from left
to right by the boundary basin entropy: Sbb = 0.465± 0.002 < 0.6323± 0.0011 ≤ ln 2 <

0.760± 0.004. Using the ln 2 criterion, only basins (c) are tested with fractal boundaries.

ε dictates the scale to study the boundary structures. These boxes can be
thought as initial states either with uncertainty ε or an initial perturbation
ε. We can construct the discrete probability distribution of having a basin k

for each box, p(k), as the ratio of the volume of the basin k in the box, v(k),
to the phase space volume comprised by the box, V :

p(k) ≡
v(k)

V
, (1)

such that
∑M

k=1
p(k) = 1. Its associated information entropy s,

s ≡ s(p(1), . . . , p(M)) =
M
∑

k=1

−p(k) ln p(k), (2)

measures the final state unpredictability of an initial condition chosen at
random within the box defined by ε. It increases monotonically with the
number of basins within the box and tends to a maximum value s = lnM as
the probabilities p(k) tend to the equiprobable conditions p(k) = 1

M
for all

k.
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Then, the basin entropy Sb is defined as the average of the entropy of the
box s for the total number of boxes N ,

Sb ≡
1

N

N
∑

i=1

s(i), (3)

where i labels the boxes. Therefore, for an initial random position in the
phase space region that is uncertain within a volume of size ε, the basin
entropy quantifies the unpredictability of the orbit’s attractor. Moreover,
the boundary basin entropy Sbb is defined as the average of the entropies s(i)
restricted only to the Nb boxes falling on basin boundaries (in Fig. 1, these
correspond to the red dashed boxes):

Sbb ≡
1

Nb

Nb
∑

i=1

s(i). (4)

The boundary basin entropy quantifies the unpredictability focusing only on
the unpredictable regions of the phase space: the basin boundaries.

Based on the boundary basin entropy, the ln 2 criterion provides a suf-
ficient condition to test for fractal boundaries. It is based on the fact that
smooth boundaries separate only two basins, with the possible exception of a
countable number of points that can separate three or more basins at a time.
Therefore, for a sufficient large number of small boxes, for smooth boundaries
Sbb ∈ [0, ln 2 ≃ 0.693]. This is the case of the basins in Fig. 1a, where for a
box scale ε = 0.025, Sbb = 0.465± 0.002. Equivalently, if Sbb is significantly
larger than ln 2, this implies the boundary will not be smooth (i.e., it will
be fractal). This occurs for the basins in Fig. 1c, where Sbb = 0.760± 0.004.
Nonetheless, the criterion fails for the case of Fig. 1b with a manifested frac-
tal boundaries between two basins and Sbb = 0.6323± 0.0011. Following this
idea, there is room to make a better test using a single scale with the basin
entropy.

3. Beyond the ln 2 criterion: the Sbb fractality test

Simple smooth boundaries are those which are locally flat (as a straight
line in 2D). According to our previous definition of a fractal, we consider
as a fractal boundary any boundary that is not simple smooth. A simple
smooth boundary could also include a few finite points where boundaries
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from several basins intersect. Nevertheless, in the infinitely fine scale these
regions become negligible in front of the other locally flat regions.

Based on this idea and the boundary basin entropy, we can define a
statistical test to identify fractal structures, which we name Sbb fractality
test. It consists on comparing the value of the boundary basin entropy Sbb

of the boundary under study to the theoretical value Sbb of a flat boundary,
at a given small box scale ε. If they are deemed statistically significantly
different, the boundary has a fractal structure. We will define it formally after
studying the boundary basin entropy of a flat boundary. Since the boundary
basin entropy is defined as an average of the box entropies s and different
configuration of the boxes’ entropies can give rise to the same value, this test
is a sufficient but not necessary condition. Nonetheless, it is more restrictive
than the ln 2 criterion and consequently it can detect fractal boundaries in
many more cases, e.g. in regions with only two basins.

Assuming a perfect knowledge of the phase space structure for a flat
boundary in a two-dimensional phase space, we can derive the theoretical
value of the boundary basin entropy. We start by choosing a disk as box
shape, because its rotational symmetry under any angle allows to compute
the boundary basin entropy independently of the box orientation. Now,
having disk boxes in a phase space with a flat boundary, we can obtain
the boundary basin entropy by sliding the box from side to side along the
boundary. If a disk box has a radius ε and is centered at the coordinate
x0 ∈ [−ε, ε] from the perpendicular direction to the boundary with origin on
the boundary, the probability p(x0) to have a disk point in one of the basins
is the fraction of the disk given by the circular segment

p(x0) =
1

2
+

1

π

[

x0

ε

√

1−
(x0

ε

)2

+ arcsin
x0

ε

]

. (5)

Then, Sbb is given numerically by:

Sbb =
1

2ε

∫ ε

−ε

dx0 s (p (x0) , 1− p (x0)) = 0.4395093(6). (6)

This means that if we were able to compute exactly the boundary basin
entropy of a smooth boundary using small disks we would get that result, and
any other number would correspond to a fractal case. However, in practice we
always have some errors induced by the use of a finite number of trajectories.
The effects that this can introduce into our test are explored in the next
section.
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4. Effects of finite grids

Both numerically and in experiments, basins are commonly calculated
using a finite number of grid points. The number of grid points within a box
determines the observed probabilities p̂(k) of the box. Ultimately, this lack
of detail results in an observed boundary basin entropy Ŝbb with a systematic
error or bias δŜbb

. In addition, we are generally limited to draw a finite
number of boxes too. This results in an observed boundary basin entropy
with a statistical error σŜbb

. Here, we study these effects for a two-dimensional
square grid with a flat boundary and disk boxes, which provides confidence
intervals for our fractal basin boundary test.

The systematic error of the observed boundary basin entropy Ŝbb depends
on two factors: the extension of the grid and the angular orientation of the
grid. The effect of the grid extension decreases with the number of grid
points per axis. Our numerical simulations showed that this factor is no
longer relevant for larger values than 50εg grid points per axis, where εg
is the disk radius in grid units. The second factor, the angle between the
grid and the boundary, is inherently unavoidable. We have investigated this
effect in Fig. 2, representing in function of the disk radius εg in grid units

and for largely extended grids, Ŝbb for different angles (legend) and the exact
Sbb (magenta dashed line). The figure inset displays the absolute errors of
Ŝbb. Even in the worst case scenario (red line), the systematic error decreases
approximately inversely proportional to the disk boxes radius εg. Indeed, a
power law fit gives an upper bound for the systematic error:

δUB

Ŝbb

≃ AεBg , (7)

with A = 0.224± 0.010 and B = −1.006± 0.014.
On the other hand, there is a statistical error of the observed boundary

basin entropy Ŝbb, which is due to the finite number Nb of boxes in the
boundary. Indeed, Ŝbb is the average of the boxes’ entropies in the boundary.
This means that, by the central limit theorem, the statistical error follows a
Gaussian distribution with a standard deviation given by:

σŜbb
= aN

−
1

2

b , (8)

where a ≡

√

1

Nb−1

∑Nb

i=1

(

Ŝbb − ŝ(i)
)2

is the sampling standard deviation and

ŝ(i) the observed entropy for the box i.
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Figure 2: For a grid with a flat boundary and disk boxes of radius εg in grid units, the

systematic error of the observed boundary basin entropy Ŝbb depends on the angle between
the grid and the boundary (legend): (outset) Ŝbb in function of εg and the exact Sbb value

(magenta dashed line); (inset) absolute errors of Ŝbb in function of εg. We considered large
grid extensions of around 128εg points per axis and Nb = 105 disk boxes in the boundary.
The worst systematic error is given by the angle 0 in red. In the infinite grid resolution
(εg → ∞) and for any angle α, we recover the exact boundary basin entropy Sbb.

Taking into account all the finite grid effects for 2D phase spaces, we
can formulate our test for fractal boundaries as follows: under an infinites-
imal disk box with radius εg in grid units and a finite grid that is largely
extended (with at least 50εg grid points per axis), if the observed boundary

basin entropy Ŝbb with a standard deviation σŜbb
(Eq. 8) is deemed statisti-

cally significant away from a flat boundary, either below the exact boundary
basin entropy value Sbb (Eq. 6) or above the upper-bound systematic error
value Sbb + δUB

Ŝbb

(δUB

Ŝbb

is given by Eq. 7), the boundary has a fractal structure.

Using one standard deviation σŜbb
for the statistical error, we can express the

Sbb fractality test by the following sufficient conditions:

Ŝbb < Sbb − σŜbb
, (9)

Ŝbb > Sbb + δUB

Ŝbb

+ σŜbb
. (10)

5. Example of application

The periodically driven Duffing oscillator is a paradigmatic model that ac-
counts for nonlinear elastic effects in large displacements of a forced damped
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elastic structure. It is defined by:

ẍ+ γẋ− x+ x3 = F sinωt, (11)

where x is the displacement of the oscillator at time t, γ is the damp-
ing coefficient, F is the forcing amplitude and ω is the frequency of the
driving. Depending on these parameters, the system exhibits a wide vari-
ety of dynamics. Here, we investigate a parameter space region given by
γ = 0.15, F ∈ [0.1, 0.5] and ω ∈ [0.2, 2.5]. We search for fractal boundaries
in the basins of attraction given by a finite grid in the phase space region
Ω = Ωx × Ωẋ = [−2.5, 2.5]× [−2.5, 2.5], with 103 points per axis.

On the following, we use the example to illustrate an easy-to-follow
recipe for the Sbb fractality test for finite grids in two-dimensional phase
spaces:

1. Choose the box disk radius ε appropriately. On the one hand,
the smaller the box, the finer scales we can study. On the other hand,
we want to have sufficient trajectories per box to get good estimates for
the probabilities. For our example, we found that a value of εg = 5 /
ε = 0.025 gave good results.

2. Verify that we are in the largely extended grid limit, with at
least 50εg grid points per axis. In our example, we had 103 = 200εg
points per axis.

3. Draw Nb disk boxes in the boundary, uniformly at random from
the phase space (and not only at grid points). In our example, we
took Nb = 104 boxes in the boundary.

4. For all boxes in the boundary, calculate both the observed prob-
abilities of the basins and the observed box’s entropy.

5. Compute the observed boundary basin entropy Ŝbb and its stan-
dard deviation σŜbb

(Eq. 8).

6. Compute the upper-bound systematic error δUB

Ŝbb

(Eq. 7) for the

current value of εg. In our example, we had δUB

Ŝbb

= 0.0474.

7. Check if the computed value of Ŝbb lies in the interval provided
by the systematic and statistical errors. If the value is outside the
interval, we can affirm that according to our test the boundary is fractal.
Otherwise, it is most likely to be a smooth boundary, although there could
be pathological cases leading to wrong results. It is important to recall
that this fractality test is a sufficient but not necessary condition.
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(a) (b)

Figure 3: For the periodically driven Duffing oscillator ẍ+0.15ẋ−x+x3 = F sinωt in the
parameter space (F, ω), we obtain similar regions with fractal boundaries (hot colors) and
smooth boundaries (cold colors), both for (a) the Sbb fractality test and (b) the uncertainty
exponent α. In white, we have regions with a single basin. In (a), the color of each point
corresponds to the boundary basin entropy Ŝbb, for disk boxes with radius ε = 0.025 /
εg = 5 and Nb = 104 boxes in the boundary: cold colors are compatible with simple
smooth boundaries and hot colors for fractal basin boundaries (red colors are detected by
the ln 2 criterion). In (b), we represent the uncertainty exponent with a transition point
at α = 0.8 from fractal to smooth boundaries; this value is arbitrary and based on the
observed basins.

We display the results in the parameter space of Fig. 3a. The color of each
parameter value corresponds to its boundary basin entropy Ŝbb value: white
is for regions with a single basin, cold colors are for regions compatible with
simple smooth boundaries and hot colors are for fractal basin boundaries.
In particular, red colors are for fractal basin boundaries detected by the ln 2
criterion. We can observe that this just accounts for a 27% fraction of all the
fractal basin boundaries detected by the single-scale fractal basin boundary
test.

To evaluate the performance of the method, we compare it to the un-
certainty exponent α (Fig. 3b). From the observed basins, we have chosen
the arbitrary value of α = 0.8 as the transition point between smooth and
fractal boundaries: α ≥ 0.8 correspond to smooth boundaries (cold colors)
and α < 0.8 to fractal basin boundaries (hot colors). Again, parameters
with a single basin are represented in white. Indeed, both the uncertainty
exponent and the Sbb fractality test give qualitatively similar regions with
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fractal boundaries. However, there are some quantitative differences due to
numerical errors in both methods.

6. Extension to any phase space dimension

We can generalize the test to phase spaces for any dimension. The test
again compares for small box scales ε the boundary basin entropy Sbb of the
boundary under study to the theoretical value of that of a flat boundary of
the corresponding dimension. Here, we only consider the case with an exact
knowledge of the phase space. We believe that the study for basins with
finite grids can be developed similarly to the two-dimensional case.

For a given dimension, we can derive the theoretical value of the bound-
ary basin entropy of a phase space with a flat boundary. The box is now an
hyperball of radius ε centered at a coordinate x0 in the direction that indi-
cates the distance to the flat boundary. Furthermore, the probability p(x0)
to have a hyperball point in one basin is the fraction of the hyperball given
by the hyperspherical cap [21]:

p(x0) = −
1

2
sgn

(x0

ε

)

I
1−(x0

ε
)
2

(

D + 1

2
,
1

2

)

+Θ
(x0

ε

)

, (12)

where D is the dimension of the phase space, sgn(x) is the sign function,
Ix (a, b) is the regularized incomplete beta function and Θ(x) is the Heaviside
function. We have this quantity plotted for several dimensions (see colorbar)
in Fig. 4a. For D = 1, the probability p(x0) is linear; for larger values of
D, it deviates from this behavior; and in the limiting case D → ∞, p(x0)
becomes dominated by the Θ

(

x0

ε

)

term and has a switching behavior. This
large dimension behavior is understood because most of the volume of a high-
dimensional hyperball lies within two parallel hyperplanes at a small distance

from its center of order O
(

ε
√

D−1

)

[22]. Moreover, we calculate the boundary

basin entropy Sbb analogously to the two-dimensional case, following Eq. 6.
We have the Sbb relationship with the dimension D in Fig. 4b; we can see
how the boundary basin entropy goes to zero in the infinite dimension limit
following the expression Sbb ∼ D−

1

2 . We have tabulated the boundary basin
entropy Sbb for the first five D dimensions in table 1.

7. Conclusions

In this paper, we have applied the theory of the basin entropy and related
tools to characterize fractal basin boundaries using a single scale. Our work
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(a) (b)

Figure 4: For a hyperball box and a flat boundary in the phase space, we plot (a) for several
dimensions of the phase space (colorbar), the probability p(x0) to have a hyperball point
in one basin in function of the box center coordinate x0, which indicates the distance to
the flat boundary; and (b) the boundary basin entropy Sbb relationship with the dimension
D of the phase space (magenta circles). Sbb decreases potentially fast with a power fit
Sbb = ADB (purple line): A = 0.898± 0.006 and B = −0.4995± 0.0012.

Table 1: Boundary basin entropy Sbb for hyperball boxes in a flat boundary of a D

dimensional phase space, for the first five D dimensions.

D Sbb

1 0.499999(9)
2 0.4395093(6)
3 0.39609176(4)
4 0.36319428(1)
5 0.33722572

consists on comparing, under a given box scale, the value of the boundary
basin entropy Sbb of the boundary to the Sbb value of a smooth boundary. In
contrast to the former basin-entropy-based test, the ln 2 criterion, it achieves
both an improved sensitivity and a capacity to identify fractal basin bound-
aries separating only two basins. We call it Sbb fractality test. Nonetheless,
this test is still a sufficient but not necessary condition. One could think
about an improvement by means of the probability density function (PDF)
of the probabilities in the boundary boxes. The configuration of a PDF is
more restrictive than an average (the boundary basin entropy), but it is also
more demanding to implement.

On the other hand, testing for fractal basin boundaries with this line of
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work has important advantages compared to the classical approach given by
the uncertainty exponent α. While both methods hold numerical limitations
in the infinitely fine scale, the uncertainty exponent requires accessing mul-
tiple scales of the system. This is not only numerically inconvenient but, for
some physical systems, it may be impossible. Indeed, our methods only re-
quire accessing a single scale and have a natural formulation for experimental
basins of attraction.

Finally, we believe the extension for basins in any phase space dimension
could prove useful for studying the unpredictability in higher-dimensional
systems, a generally unexplored area in the field; in particular, it could com-
plement current studies for network systems [23, 24, 25].
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[8] Daza A, Georgeot B, Guéry-Odelin D, Wagemakers A,
Sanjuán MAF, Chaotic dynamics and fractal structures in
experiments with cold atoms, Phys Rev A 2017;95:013629.
https://doi.org/10.1103/PhysRevA.95.013629

[9] Bernal JD, Seoane JM, Sanjuán MAF, Uncertainty dimension and basin
entropy in relativistic chaotic scattering, Phys Rev E 2018;97:042214.
https://doi.org/10.1103/PhysRevE.97.042214

[10] Nieto AR, Seoane JM, Alvarellos J, Sanjuán MAF, Resonant be-
havior and unpredictability in forced chaotic scattering, Phys Rev E
2018;98:062206. https://doi.org/10.1103/PhysRevE.98.062206

[11] Donepudi R, Ramaswamy R, The collective dynamics of nf- κb
in cellular ensembles, Eur Phys J-Spec Top 2018;227:851–863.
https://doi.org/10.1140/epjst/e2018-800014-7

[12] Mugnaine M, Andrade F, Szezech Jr J, Bazeia D, Basin entropy be-
havior in a cyclic model of the rock-paper-scissors type, Europhys Lett
2019;125:58003.

[13] Gusso A, Viana RL, Mathias AC, Caldas IL, Nonlinear dynam-
ics and chaos in micro/nanoelectromechanical beam resonators ac-
tuated by two-sided electrodes, Chaos, Soliton Fract 2019;122:6–16.
https://doi.org/10.1016/j.chaos.2019.03.004

[14] Kong G, Zhang Y, A special type of explosion of
basin boundary, Phys Lett A 2019;383:1151–1156.
https://doi.org/10.1016/j.physleta.2019.01.017

[15] Zotos EE, Suraj MS, Basins of attraction of equilibrium points in
the planar circular restricted five-body problem, Astrophys Space Sci
2018;363:20. https://doi.org/10.1007/s10509-017-3240-7

14



[16] Zotos EE, On the Newton–Raphson basins of convergence of
the out-of-plane equilibrium points in the Copenhagen prob-
lem with oblate primaries, Int J Nonlin Mech 2018;103:93–103.
https://doi.org/10.1016/j.ijnonlinmec.2018.05.002

[17] Zotos EE, Riaño-Doncel A, Dubeibe FL, Basins of con-
vergence of equilibrium points in the generalized Hénon–
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