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ABSTRACT Currently, the use of biometric identification, automated or semiautomated, is a reality. For
this reason, the number of attacks has increased in such systems. One of the most common biometric attacks
is the presentation attack (PA) because it is relatively easy to perform. Automated border control (ABC) is
a clear target for phishers. Concerning biometric attacks, morphing is one of the most threatening attacks
because authentication systems are usually unable to correctly detect them. In this attack, a fake face is
generated with the morphing and blending of two different subjects (genuine and phisher), and the image
result is stored in the passport. These attacks can generate risky situations in cases of border crossings where
an ABC system should perform identification tasks. This research work proposes a de-morphing architecture
that is founded on a convolutional neural network (CNN) architecture. This technique is based on the use
of two images: the potentially morphed image stored in the passport, and the snapshot of the person located
in the ABC system. The goal of the de-morphing process is to unravel the chip image. If the chip image is
a morphed one, the revealing process between the in vivo image and the morphed chip image will return
a different facial identity to the person located in the ABC system, and the impostor will be uncovered in
situ. If the chip image is a non-morphing image, the resulting image will be similar to a genuine passenger.
Therefore, the information obtained is considered at the border crossing. The equal error rate (EER) achieved
is very low compared to the literature values published to date. The accomplished outcomes endorse a robust
method that provides high accuracy rates without taking into account the quality of images used. This key
point is crucial to plausible deployment plans in areas such as ABC.

INDEX TERMS ABC, biometric systems, de-morphing, neural networks, MAD.

I. INTRODUCTION
The face recognition process is a well-known biometric
identification challenge due to the high accuracy rates
achieved and low intrusion to the subjects under identifi-
cation. To approach the facial authentication process, there
are several methods. Some of these approaches have high
security requirements. An example is the automatic border
control (ABC) system, in which the biometric trait is used to
control and assure the border crossing process. Three biomet-
ric elements (iris, fingerprint and face) could be considered in
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ABC systems, but as a matter of fact, only the face is widely
considered at airports. The authentication process of the ABC
has to determine whether or not there is a coincidental match
between the facial image stored in the Electronic Machine
Readable Travel Document (eMRTD) and a snapshot taken
in situ (see Fig. 1).
The ABC systems are exposed to multiple attacks or

threats, for example, identity theft or fraud, which also is
called spoofing. For this reason, many current research works
focus their attention on anti-spoofing techniques [1]. Morph-
ing attack is one of the most dangerous attacks because of its
high difficulty to be detected. It is based on the application
of morphing techniques to the facial image recorded in the
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FIGURE 1. Examples of FRAV-ABC data set images. Passport chip
images (top) and snap-shot images taken in the border scenario (bottom).

passport or traveler document. The morphing attack consists
of manipulating and storing inside of the eMRTD a morphed
image between the real owner’s ID card (accomplice) and
the surrogate or impostor (criminal). Then, the system should
distinguish whether the traveler is who it claims to be or not.
This approach relies on comparing the taken picture at the site
(ABC) and the eMRTD’s image that contains the potentially
morphed image. If a MADmodule is not present in the ABC,
the usual verification response will be acceptance, consid-
ering the high similarity between the criminal face and the
morphed criminal+accomplice image.

The morphing process emerged from Arts’ world such
as films, video clips or advertisements as an art resource
to achieve awesome special effects [2], [3]. In the begin-
ning, the process was handcrafted but this situation changed
quickly due to the emergence of the first new algorithms that
automated the morphing tasks [4]. It should be noted that it
was an arduous task, even to experts, to distinguish two faces
when they were merged [5]–[7]. Thus, the technique evolved
from an art resource to a spoofing toolkit [8].

Morphing of facial images can be considered as one
of the most important threats of ABC systems [9]–[11]
since applications based on face recognition are likely to
be deceived [12], [13]. For instance, the outcomes of the
National Institute of Standards and Technology (NIST)
Face Recognition Vendor Test MORPH (https://pages.nist.
gov/frvt/html/frvt_morph.html) discussed that the submitted
MAD algorithms lack robustness and performance when con-
sidering unseen and challenging corpora, as explained in [14].
However, other biometric features have been considered in

morphing attacks such as fingerprints [15] or the iris [16].
In any case, the focus of this study is on facial morphing since
this attack is the most devastating and difficult to detect in
ABC systems.

In recent years, the wide use of ABC systems in airports
has increased the attention and the study of the possible
multiple menaces (e.g., presentation attack) as explained
by the European Border and Coast Guard Agency (FRON-
TEX) [17], [18]. These attacks incentivize the prolifera-
tion of algorithms about presentation attack detection (PAD)
[19]–[21] and especially morphing attack detection (MAD)
[13], [22] because it is a difficult paradigm to be detected.

In this paper, a novel method to detect morphing attacks
is explained using a reverse de-morphing approach based
on convolutional neural networks. There are several differ-
ences compared with previous works [23], [24], which are
explained as follows.

Ferrara et al.’s work consists of detecting the morphing
attack, the elaboration of two corpora (PMDB andMorphDB)
and the assessment of the quality of two corpora using a
commercial off-the-shelf (COTS) algorithm. The key point
in Ferrara’s algorithm is that their algorithm depends on
the prior knowledge of the generation of the morphed face,
such as the morphing process and the morphing parame-
ters. Moreover, the reconstruction faces rely on the inverse
engineering process of morphing tasks using a mathematical
method. Finally, this work is based on Delaunay-Voronoi
triangulation but there are new approaches in which the de-
morphing process is performed with neural networks. For
instance, Damer et al. [25] and Peng et al. [24] propose the
use of the generative adversarial network (GAN). Regarding
Peng et al.’s work, it is based on disentangling the accom-
plice identity from a potentially morphed image. However,
the authors developed approach is divided into two aims. The
first aim consists of unraveling the criminal identity. The sec-
ond aim relies on comparing the image obtained in the pre-
vious stage with the in vivo image obtained in the ABC
gate. Therefore, the authors can conclude whether morphing
attack occurred or not. Additionally, the de-morphing pro-
cess of Peng et al. is based on a GAN, but the presented
approach relies on an autoencoder architecture. Regarding
MAD, another key point is that none of the approaches con-
sider print and scan images in their studies. Finally, Peng
and Ferrara’s works take the pictures for their corpus in a
controlled environment. Nevertheless, in this research work,
1170 in vivo images taken in vivo in the eGates or automated
boarding control system are used.

The paper is organized as follows: the state of the art
is presented in the following section. The dataset is then
described. Since amorphingmethod is required, Section IV is
devoted to presenting a morphing method and its adaptation
to passport control in the ABC. Subsequently, (Section V),
the de-morphing approach is detailed. Section VI points out
the results and provides discussion. The conclusions are pre-
sented in the last section.
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II. PREVIOUS WORKS
In recent years, as morphing techniques have undergone
experimental investigations, an impressive improvement in
several aspects such as visual quality and automation gen-
eration has been achieved. From a substantive viewpoint,
morphing’s corpora are designed with open source and
well-known software such as the GNU Image Manipula-
tion Program (GIMP) which has a plugin called the GIMP
Animation Package (GAP) [26]. This plugin is able to merge
images [10], [13], [23], [27], but most of the software
uses the Delaunay-Voronoi triangulation algorithm (DVT)
[28]–[33] and a swapping technique to improve the outcome
achieved [34]–[39]. Moreover, some current research works
use morphing pictures with generative adversarial networks
(GANs) instead of using the triangulation process as men-
tioned previously [25].

Two MAD implementations can be found in the literature,
depending on morphing attack scenarios:

a) MAD with a single image (no-reference). Only one
morphed image is available.

b) MAD with two images (differential MAD). The mor-
phed picture and another one are used. This is the
typical scenario in ABC systems [10], [23], [24], [28].

The first approach, no-reference, seeks to determine the
noise or the deterioration in terms of quality of the image.
The picture achieved after the morphing process, however,
presents low quality. For this reason, this technique is based
on micro-texture analysis or spatial descriptor occurrences or
spectral analysis with the Fourier transform.

On the one hand, there are research works that rely on
micro-textures which use some features such as the local
binary pattern (LBP - [40]) in [25], [31], [39], [41]–[43],
or weighted local magnitude pattern (WLMP) which is pro-
posed and explained in [44]. On the other hand, there are
research works based on analysis of descriptors which use
the scale invariant feature transform (SIFT - [45]) in [46],
binarized statistical image features (BSIF - [47]) in [27], and
speeded-up robust features (SURF - [48]) in [34]. Finally,
others use spatial descriptors such as histogram of oriented
gradients (HOG - [49]) in [30].

In addition to the structural descriptor and texture analysis,
other studies assess the degradation of the image through
spectral image analysis. Some researchers try to detect a pos-
sible manipulation using the last mentioned technique [35].
Others try to evaluate the noise pattern employing the photo
response non-uniformity (PRNU) approach [50]) in the full
image [32] or each region [33].

With the advent of deep learning in the last decades, some
approaches use convolutional neural networks (CNNs) to
detect themorphing process [25], [38], [39], [51]. Some of the
most well-known corpora are VGG19 [52], AlexNet [53] or
GAN [54], [55]. Themain drawback of these kinds of corpora
is the number of samples required to train models. For this
reason, some research works use pretrained networks, that is,
networks with precalculated weights such as FaceNet [56] or
VGG-Face [57].

Differential MAD needs two images for morphing detec-
tion and often proposes solutions for similar ABC systems
where two images of identities are available. For instance,
Scherhag [58] seeks SIFT descriptors in the ID passport
image and the in situ image. Once the descriptors of both
images are detected, they are compared. It is important to
remark that in this case, the ID passport image is not a
trustworthy image but a fake one. This fake image is based on
the surrogate image and the ABC person’s face. The approach
is similar to the previous research study in [58], but this time,
the amount and position of the face landmark detected are
compared [59].

However, other differential MAD approaches take greater
advantage of two available images and propose that when
one of the identities is removed from the morphed image,
the other one remains [10], [23]. This removal process is
named de-morphing.

Both differential and no-reference MAD approaches have
a challenge with real-world images. The real morphed images
have often been printed and scanned, and then, this final
image is embedded in the passport. Given this action, MAD
algorithms are no longer able to detect manipulated images.
The aforementioned studies [10], [23] also analyze this
problem.

III. DATASET
This research work was carried out with FRAV-ABC database
(see Fig. 1), which was designed and developed by the
research group FRAV following all conditions present in a
general ABC system. Initially, a study of the facial databases
available for the research community was performed, but
none of them exactly fulfilled border crossing and ABC con-
ditions. Considering the strict procedure in which a passport
image is acquired and the normative restrictions (ICAO Doc
9303 [60]), a new database was acquired. To achieve it, a real
airport ABC infrastructure was used that followed all of the
aforementioned conditions to emulate as far as possible a real
morphing attack.

The corpuswas composed of 1170 individuals, 640 females
and 530 males, with an age range of study participants
between 18 and 74 years old. Indeed, 70% of subjects ranged
between 25 and 50 years old. Each subject provided two
images. The first was a chip image of a real passport, and
the second was an in vivo image. Chip images have a reso-
lution of 250×300, which are color images of real passports
that comply with the standard regulation of the International
Civil Aviation Organization (ICAO) Document 9303 for
the eMRDT [61], and in vivo images have a resolution of
300×300 pixels, which are color images captured in situ at
the airport by an ABC device.

The corpus was divided into two data sets: FRAV-ABC-
Train with 1000 subjects (70%-30% as recommended in
[62], [63], where 700 are used to train and 300 are for
validation) and FRAV-ABC-Test with 170 subjects (roughly
a 15% of the total). The authors designed and developed a
large corpus. The way to build it is explained as follows.
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On the one hand, a thousand subjects were mixed and mor-
phed to each other, except themselves. This action provides
(1000 × 1000) - 1000 combinations. Thus, the final train-
ing corpus returned 999.000 images. Note that the age,
gender, and ethnicity of the subjects were not considered
because the authors wanted to accomplish producing a robust
data set. On the other hand, the test corpus was designed and
developed in a similar way. Specifically, 170 images were
combined with each other, except themselves. Therefore,
the arithmetic equation returns 28730 images.

The verification process was performed with a Tensor-
Flow implementation of the face recognizer described in [56]
but reimplemented and published by [64]. Moreover, this
implementation is based on ideas from [57]. This available
subsystem is a facial recognition system with high accuracy
rates (99.63% in LFW (Labeled Faces in the Wild [65]) and
95.12% in YTF (YouTube Faces [66])).

To follow the Spanish passport image generation pro-
cedure, 170 morphed images of the FRAV-ABC-Test data
set were printed at 300 dots per inch (dpi) quality with a
LaserJet color printer. Next, these images were scanned to
build a new data set (denoted by FRAV-ABC-Test-P&S-300).
Furthermore, a new degradation step was carried out to
assess the efficiency of algorithms used in this research work.
FRAV-ABC-Test-P&S-150 was devised from the new process
of printing and scanning of the same 170 images, but the
images were printed at 150 dpi (see Fig. 2). In this way,
a whole set of ‘‘fake morphed’’ passports with a highly real-
istic appearance was created. Finally, it should be highlighted
the a publicly available database,CASIAWebFace [67], which
has 500K facial images, was used. This database has been
used for autoencoder face training.

FIGURE 2. (a) FRAV-ABC-Test images quality. (b) FRAV-ABC-Test-P&S-300
images quality. (c) FRAV-ABC-Test-P&S-150 images quality.

IV. MORPHING METHODS AND SETUP
This section describes the morphing process and is split into
two different parts. The first part will detail the morphing
process selected and adapted to obtain a realistic image. This
process of visually detection for a border guard can be an
arduous task. The general facial morphing procedure has
been tailored to suit the problem taken into account. Thus,
the state-of-the-art algorithm and the enhancements added
will be described. The second part will show the need for a
morphing detection module in a face verification system.

FIGURE 3. (a) Landmark face detection, (b) Delaunay computation
(c) Voronoi triangulation.

A. MORPHING PROCESS
Currently, it is simple to find morphing commercial soft-
ware [26], [68]–[74]. All of them provide a high-quality
performance with morphed images, but it should be noticed
that researchers have to perform manual manipulation and
generate a large enough number of images to achieve an
adequate corpus for their research works. The well-known
algorithm [22], [23] used in the literature is adapted to the
studied problem and explained below.

a) Given two pictures (see Figure 1(a)), 76 reference
points are located in each one. There are 68 face land-
marks, calculated with the Kazemi and Sullivan algo-
rithm [59] (Dlib [75]) and eight more in the middle of
image boundaries (see Figure 3 (a)).

b) The alignment process is mandatory. To carry out this
task, the position and size of both images must match
up at eye level.

c) Both images are triangulated by the Delaunay-Voronoi
algorithm (DVT [76]) (see Figure 3 (b) and (c)) and
each triangle in one image has a counterpart triangle in
the other image (Figure 4).

d) Each triangle is blended in only one triangle whose
vertexes are the midpoints (Figure. 4 (d)). The
result of merging all triangles is the average image
(Figure 5(a)), and this process is called the warping
process [43], [77], [78].

The average image has ghost artifacts in peripheral regions
and has low quality as an attack because it is too detectable.
For that reason, it is necessary to carry out some enhance-
ments that will be explained in the following.

Two main enhancements have been considered to obtain
a realistic appearance without losing the morphing effects in
the final image.

a) For cropping, in the target image, the convex hull of
the face peripheral landmarks are placed in some of the
source images 5 (b).

b) Using the Poisson image editing [79], the merging pro-
cess is carried out. This method avoids hard seams, dif-
ferent capture illumination conditions or distinct skin
colors (see Figure 5 (c)).
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FIGURE 4. Warping the morphed target image and blending each source
triangle that contained pixels.

FIGURE 5. (a)Average image, (b) Clipping and replacing the face region
and (c) the fuzzy mask to enhance the result and cropping source image.

B. FACIAL VERIFICATION UNDER MORPHING ATTACKS
Facial verification systems are not prepared to deal with
morphing attacks [12] and the common MADs are not effec-
tive with noisy or low-quality images [31], [41], [80]. The
main problem with the verification process is the acceptance
threshold because it is complicated to distinguish whether a
morphing attack is produced or not due to the probability den-
sity function (PDF) that is located between the positive and
negative acceptance, as shown in Fig. 6. Then, it is difficult
to establish a rejection threshold for the transformation.

Fig. 6 and 7 depict the similarity scores obtained with
FaceNet and one of COTS used by Ferrara et. al in [8],
respectively, from different presentations. Each illustration

shows three kinds of curves or areas. The first is a genuine
traveler (positive presentation denoted by blue), the second is
an impostor (negative presentation signified by orange), and
finally, the third is a morphing attack (morphing presentation
designated by a red striped line). The left plot depicts the
test with FRAV-ABC-Test, the middle plot illustrates the test
with FRAV-ABC-Test-P&S-300 and the right plot represents
the test using the FRAV-ABC-Test-P&S-150 data set.

As observed in both figures, the scores of genuine individ-
uals and impostors are well separated, and it is possible to
define an adequate threshold to achieve high accuracy rates
with FaceNet as well as with the COTS when digital images
are used. However, the problem is more complex with the
print and scan images (see pictures (b) and (c) in Figure 6
and Figure 7). Therefore, it is mandatory the use ofMAD sys-
tems to prevent plausible attacks in both cases, open source
systems (FaceNet) and COTS.

C. MAD SYSTEM UNDER PRINT AND SCAN IMAGES
The photo response non-uniformity (PRNU) system [50] is
depicted in Fig. 8. The PRNU is selected as an example
of existing MAD methods to be compared with the current
approach considering several data sets. There are three data
sets such as (a) FRAV-ABC-Test, (b) FRAV-ABC-Test-P&S-
300, and (c) FRAV-ABC-Test-P&S-150). Each row is divided
into two kinds of illustrations. On the left side, bona fide and
morphing images are shown. On the right side, the histogram
of one hundred bona fide images against one hundred morph-
ing images are depicted. Regarding the first histogram, there
exists a small difference between both pictures. However,
it is difficult to unravel or distinguish the images’ histograms
when print and scan images are examined.

V. DE-MORPHING APPROACH CONSIDERED
With the morphing scheme described in the previous
section, the de-morphing approach can be presented. The
de-morphing process does not depend on the morph-
ing scheme considered. The advantage of the previously
described morphing method is that it avoids ghost effects or
abrupt skin texture changes, making the de-morphing process
a truly challenging situation. Morphing procedures that are
not as complex can be visually detected devoting some atten-
tion to ghost artifacts in the hair or face limits and face skin
color changes.

The de-morphing process is shown in Fig. 9. The input
of the de-morphing process is the in vivo and the pass-
port images and the output is one image. The goal of the
de-morphing process is to unravel the chip image. If the chip
image is a morphed image, the in vivo image is unlinked
from the chip, and the output will be a new image. This new
imagewill be quite different from the in vivo image since only
the information from the other image used in the morphing
process (impostor) will remain. If the chip image is a non-
morphing image, the output will be similar to the in vivo
image. Therefore, the last stage in the process will be an
identity verification process between the output image and
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FIGURE 6. Density graph of similarity scores of FaceNet [56] calculated with FRAV-ABC-Test images (a), FRAV-ABC-Test-P&S-300 (b) and
FRAV-ABC-Test-P&S-150 (c).

FIGURE 7. COTS Scores density calculated with FRAV-ABC-Test images (a), FRAV-ABC-Test-P&S-300 (b) and FRAV-ABC-Test-P&S-150 (c).

FIGURE 8. PRNU [50] map of the morphing image and bona fide image
and histogram comparison of PRNU averaged values over 100 morphed
images and 100 bona fide images of the data sets: (a) FRAV-ABC-Test,
(b) FRAV-ABC-Test-P&S-300, (c)and FRAV-ABC-Test-P&S-150.

the in vivo image. If both images are similar and they can
be assumed to have the same subject, the chip image is not
morphed. However, if both images are not similar, that is,
if researchers can assume that those images are from different

subjects, it can be noticed that the original chip image is a
morphed image. That morphed image is a mixture between
the in vivo subject and the subject whose information has been
kept in output image.

The de-morphing process has been split into two parts. The
first one is a facial autoencoder for each of the input images
that is followed by a decoder network. Therefore, three neural
networks will be used: two encoders of the same size and
architecture (one for the in vivo and another one for the chip
images) and one decoder neural network.

A. DE-MORPHING PROCESS
This process tries to discover the initial pictures from two
images. These images could be bona fide or genuine; in
contrast, they could be fraudulent. Two pictographs are used
in Figure 9 to explain the meaning of these images. The green
passport means a genuine chip picture and the red passport
means a fraudulent chip image in which themorphing process
is carried out. Finally, the blue camera symbol is used to
explain the in vivo picture in ABC.
In Equation 1, morphing and de-morphing processes are

illustrated. Operations on sets help to understand the role
that different images (in vivo or chip images) play in the
process.

A ∩ B = C;C − A ∼ B;C − A � A (1)
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FIGURE 9. De-morphing process and identity verify process.

The intersection of two images (A and B) is the morphing
process representation, where C is the morphed image. The
difference between C-A represents the de-morphing process.
C-A should be an image similar to B (in case C is a mor-
phed image); additionally, C-A will not be similar to the
A image. If a morphed image is presented in an ABC gate,
only C and A image are obtained (C from the chip and A
from the in vivo image). If C-A is not similar to A, it can be
assumed that a B image has been used to compose amorphing
attack.

Therefore, if the compared output snapshot and in vivo
image are similar and the in vivo image is also similar to the
chip image prior to the de-morphing process, then it might be
noticed that the output is not a morphing attack, as illustrated
in Fig. 10(a). However, if the output picture is not similar to
the in vivo image (regardless of the similarity with chip image
before the de-morphing process), then a morphing attack was
performed, as depicted in Fig. 10(b).

Once the de-morphing process is performed, the similar-
ity output is compared with the in vivo and chip images.
In Fig. 11, output distributions of the classifier are shown.
Two examples are depicted to illustrate the difference
between a morphed and non-morphed process. When a gen-
uine chip image is compared to an in vivo image, both plots
are overlapped largely as shown in Fig. 11(a); in other words,
the distance among pictures is minimum. In contrast, if the
comparison is based on amorphed or manipulated chip image
and a in vivo snapshot, the distance among plots is evident as
shown in Fig. 11(b).
Moreover, the Figure 11 depicts the analysis of the differ-

ence between the likeness degree of the de-morphing image
and a previous chip image with blue. The figure also shows
the likeness degree of the de-morphing image and the in
vivo image is illustrated with orange. From these two plots,

FIGURE 10. De-morphing process in passports (a) with non-morphed face
image and (b) with morphed face image.

the probability density function can be calculated to detect
a morphing attack, as shown in Fig 11 (c). The probability
density function has been computed from the difference of
similarities from de-morphing image and the passport and in
vivo images.

The de-morphing process is performed by a convolutional
network (see Fig. 12(c)), which is composed of two extrac-
tion branches of features. These features are based on an
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FIGURE 11. Density graph of similarity scores of FaceNet [56] calculated
between de-morphing result image and in vivo image (a) with
non-morphed face image and (b) with morphed face image. (C)
Probability distribution in morphing and non-morphing passport images.

autoencoder (see Fig. 12(b). This autoencoder is divided into
several layers for reconstruction of the image. As depicted
in Fig. 13, the first layers of the convolutional network extract
the features of input images (chip and in vivo). The trans-
posed convolution of reconstruction layers are in charge of
distinguishing whether these features are not located in both
images. Indeed, if this were the case, it could be assumed that
the process obtains the criminal’s features.

B. AUTOENCODER
The autoencoder whose architecture is described in Fig. 12(b)
is composed of two stages, encoding and decoding. Both
stages belong to a specific convolutional neural network
(CNN) similar to that described in [63]. In the first stage,
encoding (denoted by blue striped line), reduces the initial
shape image 224×224×3 to 28×28×256 without losing
critical attribute information, as depicted in Fig. 14. This
figure shows the original input images (column a) and on the
right side, the output reconstructed images after the encoder
process (column b). The main facial information remains
during the process.

The second stage, decoding, provides the original input
image (224×224×3) using transposed convolution succes-
sive layers (denoted by red striped line) [81]. The architecture
of encoder layers of the autoencoder is the same as the VGG-
Face first layers [57], as depicted in Fig. 12(a). VGG-Face
is a CNN implementation designed to identify and verify
individuals with high accuracy rates such as 98.95% when
they use Labeled Faces in the Wild (LFW) [65] or 97.3%

FIGURE 12. Networks architectures: (a) VGG-Face [57], (b) Autoencoder
and (c) de-morphing network (DMN).

when they use YouTube Faces (YTF) [66]. It should be noted
that VGG-Face provides pretrained weights with 2.6 million
faces. As shown in the state-of-the-art section, these kinds
of neural networks are well suited for extracting information
from face images.

As explained above, VGGFaces have pretrained weights
in their first layers but they were insufficient to obtain good
results in the current problem. Thus, the decoder layers
should be trained to achieve final high accuracy rates.

On the one hand, the autoencoder was trained with Ten-
sorFlow 1.15 library with CASIAWebFace pictures, using
the same identities (faces) as inputs and outputs in every
single step. The autoencoder was trained approximately with
3000 epochs or iterations, with 512 samples per batch, using
mean squared error (MSE). Moreover, the option of ‘‘early
stopping (patience = 500)’’ was used in all scenarios, that is,
if the algorithm did not improve in 500 iterations, then it was
stopped. The graphic card used to train the current autoen-
coder was a NVIDIA GeForce GTX 1050 (8 GB RAM). This
study relied on the learning rate used in [82]. The learning
rate for model fine-tuning starts from 0.005 and decreases
to 0.001. Finally, an adaptive momentum (Adam) [83] was
used as the optimization algorithm.

On the other hand, it is necessary to assess the similarity
between the input and output images to test the autoen-
coder yield. To perform this assessment, 170 chip images
of FRAV-ABC-Test corpus were processed and calculated by
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FIGURE 13. De-morphing explanation. Details of Figure 12 (c).

FIGURE 14. Autoencoder process with face image. Autoencoder process
example: Original images (a) and Reconstructed images after
autoencoder information extraction (b).

autoencoder and FaceNet facial verification acceptance prob-
ability. Moreover, FaceNet was used instead of the VGGFace
corpus because the first one avoided noisy outcomes caused
by the use of the same autoencoder’s architecture.

C. DE-MORPHING FACES
Once the encoding process has ended, two images are
obtained as output. Their sizes are 28×28×256. After that,
these images are concatenated with only one output image
whose size is 28×28×512. This image merges the two
previous images’ information. Finally, the decoder returns
an output image with the original resolution (224×224×3),
using transposed convolution successive layers, as depicted
in Fig. 12(c).

The training process of the de-morphing neural network is
based on a supervised classification algorithm like all CNNs.
To obtain a robust training corpus, it is necessary to perform
a large number of combinations. The training subjects were
1000. From those subjects, 700 were used as the training set
and 300 as the validation set. Therefore, all combinations
increase to approximately one million morphing images. The
network was trained with the TensorFlow 1.15 library and
was trained in 5000 epochs or iterations, with 512 samples
per batch, with GeForce GTX 1050 (8 GBRAM), usingmean
squared error (MSE). As in [82], the learning rate for model
fine-tuning starts from 0.005 and decreases to 0.001. Finally,
an adaptivemomentum (Adam) [83] as the optimization algo-
rithm has been used.

VI. RESULTS AND DISCUSSION
This section presents the evaluation metrics commonly fol-
lowed in the morphing attacks detection approaches and the
results obtained in the presented work.
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A. EVALUATION METRICS
Recently, the community has achieved a common standard
ISO (IEC 30107-3:2016) [84] to evaluate PAD systems.
In this standard, the capability of the attack detection is
measured with the following errors: attack presentation clas-
sification error rate (APCER) and bona fide presentation clas-
sification error rate (BPCER). This measure can be defined as
follows:
• Attack presentation classification error rate
(APCER) is defined as the proportion of presentation
attacks that have been classified incorrectly (as bona
fide) [84] (Equation 2).

• Bona fide presentation classification error rate
(BPCER) is defined as the proportion of bona
fide presentation incorrectly classified as presentation
attacks [84] (Equation 3).

APCERPAIs = 1−
(

1
|PAI |

) |PAI |∑
ω=1

(RESω) , (2)

where |PAI | is the number of presentation attack instruments
(PAI) and RESω takes the value 1 if the presentation ω is
assessed as attack and 0 if it is evaluated as bona fide. A PAI
is defined as a used object or biometric trait in a presentation
attack.

BPCERPAIs =

∑|BF |
ω=1 RESω

|BF |
, (3)

where |BF | is the cardinality of bona fide presentations and
RESi returns the value 1 if the presentation ω is allocated as
an attack and 0 if it is analyzed as bona fide.

An APCER-BPCER DET curve (detection error trade-off)
and the EER (equal error rate) where both errors are identical,
provides a comparison among MAD systems.

B. RESULTS
The study estimates the quality of morphing attack detection.
It explores its potential application in ABC, considering the
images of the FRAV-ABC dataset acquired in a real ABC sys-
tem. This research work presents a specific set of experiments
concentrated in combinations of different kinds of pictures
such as in vivo, chip, and Print & Scan photos, as described
in Fig. 15.

APCER and BPCER errors of three corpora (FRAV-ABC-
Test, FRAV-ABC-Test-P&S-300 and FRAV-ABC-Test-P&
S-150) are shown in Fig. 15. Each curve represents results
with one database. Curves closer to the origin (bottom left)
present a lower EER and therefore represent better perfor-
mance. The accuracy rate obtained increases to 98% in all
corpora. The first corpus, FRAV-ABC-Test, obtained 0.78
EER and an accuracy rate of 98.7% with a similar thresh-
old. This corpus contains the original images without any
compression or downsampling. The two other corpora,FRAV-
ABC-Test-P&S-300 and FRAV-ABC-Test-P&S-150, obtained
analogous outcomes. The second corpus, FRAV-ABC-Test-
P&S-300, achieved an EER of 0.80 and an accuracy rate of

FIGURE 15. APCER and BPCER DET in FRAV-ABC-Test,
FRAV-ABC-Test-P&S-300 and FRAV-ABC-Test-P&S-150.

98.2%. The third corpus, FRAV-ABC-Test-P&S-150, yielded
the worst result but very similar to the previous one, obtaining
an EER of 1.20 and an accuracy rate of 98.1%.

The best results are obtained using digital images. It can
be seen that the curve obtained from digital images is closer
to the origin; therefore, this curve has the lowest EER. In the
case of P&S images, the performance is very similar even
when using a different resolution. Since this is the proce-
dure followed by the passport issue authorities, it should
be remarked that the results are quite similar independent
of the resolution considered. Increasing the resolution will
not have a significant improvement in the attack detection
results.

TABLE 1. Detect morphing in digital images and in printed and scanned
images.

Acomparison between severalMAD approaches presented
in the literature and the results obtained in this study is
pointed out in Table 1. Both the EER and accuracy values are
depicted to properly explain the system behavior. The results
are shown using both input types of images (digital or print
and scan). The environment conditions in the data acquisition
task have also been added to this table. The outcomes of this
research work are the only results that have been acquired
under real ABC conditions. The results achieved exceed the
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outcomes obtained in several studies presented in the liter-
ature. On the one hand, the EER of digital images is 14%
lower than the best result accomplished in the literature and
one order of magnitude better than the others. The accuracy
obtained is similar to the state of the art. On the other hand,
the EER of print and scan images is one order of magnitude
better than all others. Thus, the use of printed and scanned
images with different qualities (300 or 150 dpi) is not signifi-
cant. However, the accuracy is even better than the only value
reported in the table.

The calculation capacity of this study is notable. On the one
hand, the average time of the full de-morphing process was
approximately 5 seconds. This time was calculated with test
images on a personal computer. The characteristics of the test
environment are as follows: Intel R© CoreTM i7 motherboard
with 8 GB RAM. Note that Frontex recommends the time to
be less than 30 seconds [18].

On the other hand, the average time of the DMN process
was 3.726 seconds and 0.403 for each of the two verifications
(image de-morphing vs image in vivo and image de-morphing
vs image chip). Thus, the final time was 4.532 seconds
(3.726+ 3× 0.403).

VII. CONCLUSION
This research work proposes a new de-morphing-based
approach using a CNN to detect morphing presentation
attacks in real automated border control systems. A current
CNN architecture has been adapted to this specific problem.
A neural network was trained with different images such as in
vivo, chip, Print, Scan, and Print & Scan. A deep evaluation
was carried out to check and assess themorphing attack detec-
tion capability. The assessment has been performed taking
into account two images (in vivo and passport chip), which
is currently the most typical situation in border control.

Regarding the experimental results, it can be concluded
that the CNN paradigm is suitable for morphing attack detec-
tion, obtaining relevant outcomes. The print and scan results
achieved are remarkably better than other aforementioned
research works. A significant influence of the dpi scan res-
olution in detection attack outcomes has not been shown.

The results achieved in digital images are significantly
better than ‘‘print and scan’’ samples and improve the values
obtained in the literature. The comparison of outcomes was
performed against three different studies, and the current
research work enhanced the previous studies by one order of
magnitude.

One of the most relevant aspects is the improvement of
quality and visual aspects of the pictures achieved after the
de-morphing process. Moreover, the de-morphing network is
perfectly adapted in the ABC systems procedure. In addi-
tion to the foregoing, the hidden identity of the impostor is
attained. This feature could be very useful for other future
applications.

Towards this point, future work is envisioned that would
increase the number of users of our own database, so that by
adding samples to the database, better training performance

and more reliable results from the testing procedure could be
obtained. Moreover, paying more attention to feature selec-
tion for the CNN would enhance the outcomes.
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