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Abstract—An increase in student motivation is often cited as an 
expected effect of software visualization, but, as far as the authors 
are aware, no controlled experiments have yet demonstrated this. 
This paper therefore presents a controlled evaluation of this ef-
fect, conducted within the framework of self-determination theo-
ry. Students were tasked with removing redundant recursion in a 
multiple recursive algorithm. The experimental group (N=19) 
used the SRec program visualization system, while the control 
group (N=17) could use any programming tool in which they were 
proficient, such as BlueJ or Eclipse. The increase in motivation 
was measured by the difference between student scores in pre- 
and post-tests of their motivation. Statistically significant increas-
es were observed for the two more determined forms of motiva-
tion, intrinsic motivation (p=.01) and extrinsic motivation via 
identified regulation (p=.03). Student feedback about their sub-
jective acceptance of SRec reinforced these results. These findings 
give experimental support to expectations for software visualiza-
tion in terms of motivation. Several paths for future work are 
identified, in particular, the need for more experiments under 
various conditions to achieve deeper understanding of the motiva-
tional effect of program visualization. 
 

Index Terms—Computer science education, educational soft-
ware, experimental research, document analysis, program visual-
ization, self-determination theory 
 

I. INTRODUCTION 
he proverb “a picture is worth a thousand words” explains 
the emergence of software visualization in recent decades 

as a major line of research in computer science education [1]. 
A more accurate claim is that “a picture is sometimes worth a 
thousand words” [2]. Visualization has associated difficulties 
that are not evident, such as having to learn the meaning of 
graphical notation, and not taking this for granted [3]. 

A consensus in the research community is that, for educa-
tional success, the form of the learning activity in which soft-
ware visualization is used is more important than is the quality 
of the visualizations [4]. A related factor is students’ engage-

ment with visualizations. The “engagement taxonomy” pro-
poses several classes of student engagement: viewing, re-
sponding, changing, constructing and presenting [5]. This is 
probably the most commonly used evaluation framework, but 
additional analyses have suggested that the level of engage-
ment is not the only factor that effects educational success [6]. 
The search for additional factors is ongoing and has led to sev-
eral refinements or extensions of the engagement taxonomy 
[7]−[9]. Specific features of visualizations that are education-
ally effective have been identified, but even that is still an 
open issue [10]. 

It is important to note that most evaluations of algorithm 
visualization were focused on “effectiveness”. The meta-study 
by Stasko, Douglas and Hundhausen [4] defines effectiveness 
in terms of knowledge (conceptual or procedural), and analyz-
es evaluations conducted as controlled experiments. In a sub-
sequent review, also conducted by Stasko and Hundhausen 
[11], their analysis of effectiveness was extended to other 
evaluation methods (observational studies, questionnaires and 
surveys, ethnographic field studies, and usability studies). On-
ly a few studies address other concerns: Ebel and Ben-Ari 
studied the effect of visualization on students’ attention [12], 
and Ben-Bassat and Ben-Ari [13] studied teachers’ attitudes to 
adopting visualization systems in their courses. 

There is a surprising gap in the current literature on evalua-
tion of software visualization. Motivation is probably the most 
often-cited effect on students of using visualizations. But to 
the authors’ knowledge, the evidence is only anecdotal, with, 
at best, questionnaires and surveys being used to gather “pref-
erences or opinions”, that is, subjective data. A representative 
example of this kind of study was conducted by Stasko himself 
[14], who asked students to develop algorithm visualizations 
and rate several statements using a Likert-type scale. Students 
gave very high ratings to the utility of animations as a learning 
experience, to their usefulness in understanding algorithms, to 
them being characterized as fun, and to their ease of use. Ob-
viously, students enjoyed the visualizations, but the results 
only have value as subjective opinions. 

The situation described here is well represented in a quota-
tion [15]: “In course evaluations, students rate the visualiza-
tions as a fun and productive part of the course. While we have 
not conducted formal studies as to the ICV’s effect on student 
learning, the positive student reaction and the evidence in ed-
ucational literature on the effects of active learning approach-
es have convinced us that this is a productive approach.” Note 
the association of formal studies with students’ performance, 
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and the informal treatment of their motivation. 
Therefore, the research question addressed in this article is 

whether visualization has an impact on students’ motivation, 
stating the following hypothesis: 

H. Students are more motivated in their programming tasks 
by using visualization tools than by using traditional tools. 

The main contribution of this paper is an evaluation, in a 
controlled experiment based on objective data and calibrated 
questionnaires, of the impact of visualization on student moti-
vation. 

The experiment has some distinctive features. Firstly, the 
approach known as “program visualization” was adopted. 
Here, note the difference between two related terms [16]: pro-
gram visualization and algorithm visualization. The former is 
concerned with visualizing actual code or data structures, 
while the latter is concerned with more abstract descriptions. 
Notice that tight linking of program visualization with code 
naturally leads to automation: running a program can produce, 
as a side effect, a visualization by rendering the program state 
into a graphical representation. However, the higher abstrac-
tion level of algorithm visualization usually demands the in-
tervention of a human agent to construct the visualizations. In 
the evaluation, the program visualization system SRec, aimed 
at visualizing recursion [17], was adopted, so any user-defined 
recursive algorithm could be visualized using SRec. 

Secondly, SRec not only supports understanding and analy-
sis tasks, but also provides limited support to algorithm con-
struction tasks. In particular, SRec can assist in the conversion 
of redundant recursive algorithms into efficient ones [18]. This 
process is supported by adequate graphical representations, 
and by the user’s interaction with such representations. 

This paper is structured as follows. Section II gives relevant 
background for the experiment. Sections III and IV present the 
experimental design and the results obtained, respectively. 
Section V presents additional evidence, gathered after the ex-
periment, that reinforces the evaluation results. Sections VI 
and VII discuss the results and draw conclusions. 

II. BACKGROUND 
This section introduces three elements of the overall evalua-

tion presented here. First, the main features of the SRec pro-
gram visualization system are summarized. Second, the use of 
SRec to convert redundant algorithms into efficient ones is 
shown. Finally, self-determination theory, a framework for 
analyzing motivation in educational contexts, is briefly intro-
duced. 

A. An Overview of SRec 
SRec [17] is a program visualization system aimed at dis-

playing recursive processes coded in Java. The system sup-
ports a number of representations; this study focuses on recur-
sion trees [19], dependency graphs [20] and tables [20]. The 
user typically interacts with SRec by iterating the following 
process: 1) load a Java class; 2) select a method; 3) launch the 
execution of one or several test cases; and 4) interact with the 
visualizations generated. 

SRec’s user interface consists of three panels, namely the 

editor panel and two visualization panels. Fig. 1 shows a 
screenshot of the system user interface, where the editor panel 
had been hidden to make room for visualizations. The user 
launched the execution of the recursive definition of Fibonacci 
numbers for eight test cases, ranging from fib(3) to fib(10). 
The bottom visualization panel shows eight miniatures of the 
recursion trees generated. The sixth (in the rectangle frame), 
corresponding to fib(8), is displayed in the top panel at a larger 
scale. 

Note in the top panel that the tree view was designed to 
cope with large trees by means of an overview+detail inter-
face. The overview window allows the user to navigate 
through a large tree without becoming disoriented. The part of 
the tree framed in the overview window is displayed on a larg-
er scale in a detail window, so that details can be read com-
fortably. Furthermore, the bottom panel can be hidden to make 
room for the top panel. 

In general, first attempts at generating a visualization are not 
completely satisfactory, so the user must interact with the vis-
ualization to tailor it to requirements. SRec provides a com-
prehensive set of interaction facilities [21]; a detailed account 
of these is not given, for reasons of space, but the interactions 
used to obtain Figs. 2 and 3 are identified. 

Finally, SRec provides several educational facilities, includ-
ing that of exporting visualizations into graphical files, which 
provided most of the figures shown here. SRec is freely avail-
able at: http://www.lite.etsii.urjc.es/srec/ and only requires a 
Virtual Java Machine. 

B. Support for a Programming Task: Removal of Redundant 
Recursion 

Typically, visualization systems are intended to assist stu-
dents in understanding or analyzing individual algorithms, or 
in comparing the performance of different algorithms that 
solve the same problem. The authors are not aware of any vis-
ualization system that assists students in construction tasks. 
SRec is therefore an innovative visualization tool in that it 
assists programmers in a specific case of algorithm construc-
tion [18], that is, the systematic conversion of redundant, mul-
tiple recursive algorithms into equivalent, efficient algorithms. 

Redundant, multiple recursive algorithms have prohibitive 
algorithmic complexity. Unless these algorithms are applied to 
input data of very small size, redundancy must be removed. 
This can be found, for instance, in the recursive equations de-

Fig. 1. Screenshot of the SRec system in a session. 
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signed in a first stage of dynamic programming solutions. The 
recursion removal methodology is not described here in detail, 
for reasons of space, but the interested reader can find either 
informal descriptions in algorithm textbooks [22], [23], formal 
descriptions in technical publications [20], or a more detailed 
account of the support provided by SRec in [18]. 

The methodology can be briefly illustrated with the follow-
ing algorithm, implemented as Java method f. This method 
was used in the evaluation described in Section III: 

 
public static int f (int y, int x) { 
   if (y==0) 
      return x; 
   else if (x==0) 
      return y; 
   else 
      return f(y,x-1) + f(y-1,x) + f(y-1,x-1); 
} 

 
If this recursive method is applied to y=2, x=4, the recursion 

tree of Fig. 2 is obtained. The figure only shows the tree shape, 
but SRec’s several interaction facilities allow observation and 
analysis of the details of very large recursion trees. The user 
can perform various operations, most notably filtering (e.g., 
hiding parameters or methods), zooming, and exploring (by 
scrolling or by using the overview+detail interface shown in 
Fig. 1). 

Although Fig. 2 is unreadable at the scale shown, it never-
theless allows the redundancy of method f to be detected. Re-
dundancy can be checked by searching and highlighting equal 
calls. For instance, if occurrences of call f(1,3) are searched, 
three calls are highlighted as a result (see Fig. 2). SRec also 
allows a user to query the number of nodes in the recursion 
tree. The tree has 61 nodes, but the number of different recur-
sive calls is (2+1)·(4+1)=15. This disparity is due to repeated 
(i.e., redundant) invocation of many recursive calls. 

The next step is to analyze the recursion pattern. The recur-
sion tree is transformed into a dependency graph (i.e., an acy-
clic directed graph) by joining equal nodes while preserving 
arcs. The dependency graph obtained for f(2,4) is similar to 
that shown in Fig. 3. In this case, the graph generated is regu-
lar, but for other algorithms graph nodes must be spatially re-
arranged until a meaningful pattern is identified. 

The next step is to design a table that can store at least as 
many subproblem values as the dependency graph. Fig. 3 
shows that subproblem values can be stored in a bi-
dimensional array of (x+1)·(y+1) cells, where x and y are the 
argument values in the initial invocation of f. 

Given the table, the user can decide their approach to im-
plementing an equivalent, non-redundant algorithm, either 
tabulation [20] or memoization [24]. Any alternative algorithm 

must return the same result as the original algorithm, assisted 
by the table, but without producing redundant computations. 
Although SRec does not support this final coding phase, it is 
usually trivial from the table design. In particular, dynamic 
programming algorithms are implemented using tabulation. 

C. Self-Determination Theory 
Self-determination theory is a framework frequently used to 

analyze motivation in educational contexts [25]. Self-
determination is based on intrinsic motivation (the manifesta-
tion of the human tendency toward learning and creativity) and 
on self-regulation (the way in which how people assume social 
values and extrinsic contingencies that are progressively trans-
formed into personal values and self-motivation). The theory 
structures motivation into three different dimensions, from the 
highest to the lowest self-determination: 
1) Intrinsic motivation. In this dimension the subject does 

something because it is inherently interesting or enjoyable 
to him/her. Intrinsic motivation is an important phenome-
non for successful learning [26]. 

2) Extrinsic motivation. This refers to the implication of ex-
ternal aspects in the subject. Two sublevels can be differ-
entiated: 
− Extrinsic motivation via identified regulation. This di-

mension of motivation occurs when the behavior is 
considered important for the subject’s goals and values. 

− Extrinsic motivation via external regulation. This has 
less self-determination than identified regulation; here, 
doing something leads to a separable outcome (to ob-
tain a reward or to avoid a punishment). 

3) Amotivation. This occurs when individuals perceive no 
relationship between the behavior and its consequences, 
and behavior has no intrinsic or extrinsic motivators. 

Note that, considering the two sublevels of extrinsic motiva-
tion from a practical point of view, in practice four dimensions 
can be differentiated. 

The SIMS scale was developed to assess motivation accord-
ing to self-determination theory [27]. A Spanish version of 
SIMS, the EMSI scale [28], was used for this study; it has 14 
items grouped into the four dimensions of motivation in self-
determination theory. Both scales were validated in education-
al contexts. 

One important feature of the EMSI questionnaire is that 
global motivation can be computed in terms of its four constit-
uent dimensions according to the following formula [29]: 

M = 2·IM + EMI – EME – 2·AM 
where M = “motivation“, IM = “implicit motivation”, EMI = 

Fig. 2. Recursion tree for f(2,4). 

Fig. 3. Table generated from the recursion tree in Fig. 2. 
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“extrinsic motivation via identified regulation”, EME = “ex-
trinsic motivation via external regulation”, and AM = “amoti-
vation”. 

III. EXPERIMENTAL DESIGN 
This section presents the experimental design of the con-

trolled evaluation, giving the hypothesis, and describing the 
variables, the measurement instrument, the participants and the 
protocol followed in the evaluation. 

A. Detailed Hypotheses 
The previous section introduced self-determination theory 

and the four dimensions of motivation it differentiates. The 
hypothesis given in Section I can now be refined, as motiva-
tion can be measured either globally or disaggregated into di-
mensions. By considering the sign of each dimension contribu-
tion to global motivation (see the formula in Section II.C), four 
additional hypotheses can be derived, resulting in a set of five 
hypotheses: 

H. Students are more motivated in their programming tasks 
by using visualization tools than by using traditional tools.  

H-IM. Students are more intrinsically motivated in their 
programming tasks by using visualization tools than by using 
traditional tools. 

H-EMI. Students are more extrinsically motivated via iden-
tified regulation in their programming tasks by using visualiza-
tion tools than by using traditional tools. 

H-EME. Students are more extrinsically motivated via ex-
ternal regulation in their programming tasks by using visuali-
zation tools than by using traditional tools. 

H-AM. Students are more amotivated in programming tasks 
by using visualization tools than by using traditional tools. 

B. Variables and Measurement Instrument 
Obviously, the independent variable is the tool adopted to 

solve the assignment, either the SRec visualization tool or any 
conventional programming tool. The course is based on Java, 
with students being proficient in the use of several IDEs, at 
least in BlueJ and Eclipse. 

The dependent variable is the increase in students’ motiva-
tion. As introduced in Section II.C, the EMSI questionnaire 
was used to measure students’ four dimensions of motivation. 
Students were asked to complete an EMSI questionnaire be-
fore and after the experiment. Consequently, the increase of 
students’ motivation was defined as the motivation measured 
in the post-test minus the motivation measured in the pre-test. 
Each hypothesis is measured by subtracting the corresponding 
motivation scores in the pre- and the post-test. 

C. Population and Educational Context 
The evaluation was conducted in the academic year 2015/16 

in a fourth-year elective course on advanced algorithms. The 
course was offered at the authors’ university to computer sci-
ence majors. Forty-seven students were enrolled in the course. 

The course is structured around algorithm design tech-
niques, such as branch-and-bound, dynamic programming, and 
approximate algorithms. The evaluation was conducted in the 

context of the dynamic programming technique. Students have 
severe difficulties in grasping dynamic programming [30]. To 
make it easier for them to assimilate, the technique is intro-
duced in two steps, to separate challenging items [31]: 
1) Methodology for removal of redundant recursion. The 

methodology outlined in Section II.B is presented in detail 
and exercised, adapted to derive either tabulated or mem-
oized algorithms. The algorithms used to illustrate the 
methodology are numeric, such as the recursive declara-
tions of Fibonacci or combinatorial numbers. Typically, 
these algorithms have regular dependency graphs [20]. 

2) The dynamic programming technique. Emphasis is given 
to the design of recursive equations. Recursion removal is 
accomplished exclusively by tabulation. Optimization 
problems are solved, for instance the 0/1 knapsack prob-
lem or the multistage graph problem. These are often in-
tricate algorithms, with irregular dependency graphs [20]. 

Students had to solve one assignment per syllabus chapter, 
so had to solve two assignments for these two chapters. The 
effect of SRec on students’ motivation was evaluated in the 
assignment on recursion removal. 

D. Protocol 
The evaluation was conducted in a laboratory session. The 

goal of these sessions was to allow students to start solving the 
corresponding assignment, and give them a chance to ask the 
instructor questions. Attendance is voluntary. Students are 
encouraged to get as far as possible with the assignment during 
the lab session, but they have one week to deliver an assign-
ment report through the virtual campus. 

For the evaluation, students were given an assignment 
statement containing the redundant algorithm included in Sec-
tion II.B, and were asked to convert it into two efficient algo-
rithms (a tabulated algorithm and a memoized one). Students 
worked individually. 

Students were randomly divided into two groups, whose 
homogeneity of knowledge was checked to avoid motivation 
bias due to different knowledge levels. This was done by en-
suring that grades obtained in previous assignments were simi-
lar in each group (means compared using the Student’s t-test, 
with p-value = .17). The experimental group used SRec to 
solve the assignment; the control group could use any Java 
programming tools they had mastered (typically, BlueJ or 
Eclipse). 

Each group worked in a different computer lab. An instruc-
tor was present in each lab; they periodically swapped labs to 
avoid any influence on students. Both instructors are coauthors 
here, but only one was involved in the development of SRec. 

The two-hour session had the following schedule (with ap-
proximate timings of each phase): 
1) The goal of the assignment was described, explaining that 

the goal of the evaluation was to enhance instruction and 
that participation was voluntary (3 minutes). 

2) Students completed a motivation pre-test (5 minutes). The 
pre-test was an instantiation of the EMSI questionnaire, 
with the question “Why do you think that you need to 
solve this assignment on redundant multiple recursion?” 
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3) All students downloaded the assignment statement availa-
ble at the virtual campus (3 minutes). Students in the ex-
perimental group also downloaded SRec and installed it 
on their computers (3 additional minutes). 

4) For the experimental group only, the instructor gave a 
quick demo of SRec (5 minutes), including: installation, 
launching animations, generation of visualizations (recur-
sion trees, dependency graphs, and tables), and exporting 
visualizations into graphical files. 

5) Students worked on the assignment (about 100 minutes). 
6) Students filled in a motivation post-test (5 minutes), based 

on the question “Considering what you did in the session, 
why do you think that you need to solve this assignment 
on redundant multiple recursion?” For the experimental 
group, the question had the additional phrase “using 
SRec”. 

7) For the control group only, the instructor gave the same 
quick demo already given to the experimental group (5 
minutes), and SRec was made available to them in the vir-
tual campus. 

Note that the protocol was designed to make the evaluation 
possible, but also to give both groups of students the same 
materials and opportunities to solve the assignment by the giv-
en deadline. 

Although both groups had the same number of students, not 
all of them attended the lab. In the experimental group 19 stu-
dents attended, and in the control group 17 students attended. 

IV. RESULTS 
The pre-test was completed by 17 students in the control 

group. One student gave the same mark to all the questions in 
the post-test; he was felt to have answered hastily and contra-
dictorily, so his test was discarded. Consequently, 16 valid 
questionnaires were left in the post-test for the control group. 
In the experimental group, 19 pre-test questionnaires and 15 
post-test questionnaires were gathered. 

Table I shows the results of global motivation obtained for 
the control and the experimental groups, respectively, in the 
pre- and post-test. Tables II and III show similar results ob-
tained for all the dimensions of motivation. 

 
TABLE I. DESCRIPTIVE STATISTICS OF GLOBAL MOTIVATION FOR BOTH 

GROUPS 

 
Control group Experimental group 

Pre-test 
(N=17) 

Post-test 
(N=16) 

Pre-test 
(N=19) 

Post-test 
(N=15) 

Mean 4.76 4.30 2.81 5.49 
Median 5.00 3.92 3.08 6.57 
Variance 26.63 24.52 10.87 27.27 
Std. deviation 5.16 4.95 5.22 3.30 

 
TABLE II. DESCRIPTIVE STATISTICS OF THE FOUR DIMENSIONS FOR THE CON-

TROL GROUP 

Dimensions 
Pre-test (N=17) Post-test (N=16) 

IM EMI EME AM IM EMI EME AM 
Mean 4.75 5.65 5.06 2.66 4.59 5.13 4.73 2.64 
Median 5.00 5.67 5.00 2.25 4.75 5.00 5.00 2.25 
Variance 1.31 0.84 2.35 1.54 0.74 1.51 1.57 1.67 
Std. deviation 1.15 0.92 1.53 1.24 0.86 1.23 1.25 1.29 

 
TABLE III. DESCRIPTIVE STATISTICS OF THE FOUR DIMENSIONS FOR THE EX-

PERIMENTAL GROUP 

Dimensions 
Pre-test (N=19) Post-test (N=15) 

IM EMI EME AM IM EMI EME AM 
Mean 4.05 4.51 4.28 2.76 4.95 5.19 4.67 2.47 
Median 4.00 4.59 5.33 2.75 5.00 5.22 4.67 2.25 
Variance 0.59 0.61 0.86 1.17 1.22 0.89 3.57 1.28 
Std. deviation 0.77 0.78 0.92 1.08 1.10 0.94 1.89 1.13 

 
Table I shows the results of global motivation for both 

groups. There is an increase in the mean for the experimental 
group, but hardly any variation for the control group. Table II, 
for the control group, shows a decrease in the means of all the 
dimensions of motivation except amotivation between the pre- 
and the post-test. However, Table III shows that the experi-
mental group exhibits an increase in the three first kinds of 
motivation and a decrease in amotivation. 

Normality was tested to check whether mean variations 
were statistically significant, using a confidence interval of 
95%, comparing the means obtained in the pre- and the post-
test. The normality of these samples was analyzed using the 
Shapiro-Wilk test; the results are shown in Table IV. 

 
TABLE IV. SHAPIRO-WILK’S NORMALITY TESTS 

Group M IM EMI EME AM 
Control .59 .31 .01 .07 .03 
Experimental .61 .93 .28 .58 .10 

 
The p-values obtained guarantee normality in both groups 

for data gathered in pre- and post-tests, except in the control 
group for extrinsic motivation via identified regulation (p=.01) 
and amotivation (p=.03). Therefore, non-parametric tests [32] 
(Wilcoxon test) were used for these two sets of data, whereas 
parametric tests (Student’s t-test) were applied to the remain-
ing sets of data. The results obtained for mean contrast are 
shown in Table V. 

 
TABLE V. MEAN CONTRAST BETWEEN PRE- AND POST-TEST (P-VALUE) 

Group M IM EMI EME AM 
Control .79 .66 .22a .51 .97a 
Experimental .09 .01 .03 .47 .44 

a Non-parametric test of Wilcoxon 
 
The increase in global motivation is not statistically signifi-

cant (p=.09) but is close. It is therefore convenient to make a 
separate analysis for each motivation dimension. A p-value 
greater than .05 was obtained in all disaggregated cases, except 
for the experimental group in the dimensions of intrinsic moti-
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vation (p=.01) and extrinsic motivation via identified regula-
tion (p=.03). Consequently, statistical differences in the two 
dimensions with the highest degrees of self-determination are 
significant. 

V. PERCEPTION OF SREC 
This section presents additional perception results for SRec 

usage. This data was obtained outside the controlled experi-
ment at a later date, but is included because they provide addi-
tional support for the results of the controlled experiment, 
providing a triangulation of results. 

Forty-five final assignment reports were submitted one 
week after the lab session. For all the assignments, the work 
had been carried out with SRec. Note that this number is 
greater than the number of students who attended the laborato-
ry (36), because lab attendance was voluntary.  

The report outline included a final section in which students 
were encouraged to draw their personal conclusions, and 
comment on any aspect of interest to them, such as any diffi-
culties they faced in solving the assignment. The authors were 
surprised to notice the very large percentage of students who 
included comments on SRec (84.5%, see Table VI). 

 
TABLE VI. STUDENT COMMENTS ON SREC (N=45) 

Comments on SRec # students % students 
No comments 2 4.4% 
Comments, not on SRec 5 11.1% 
Comments about SRec and other issues 30 66.7% 
Comments only about SRec 8 17.8% 

 
The comments were analyzed qualitatively. The content 

analysis was conducted as an informal combination of two 
methods: conventional analysis [33] and theoretical reading 
[34]. In the former, there are no previously existing categories, 
as advocated by grounded theory [35]. In the latter, current 
knowledge is used to scaffold the identification of categories; 
in particular, concepts from user interaction, such as ease of 
use or user’s effort, were considered. 

Comments were decomposed into “simple comments” to fa-
cilitate the coding phase, because each comment often com-
prised several opinions. As a consequence, the 38 contributing 
students supplied 47 simple comments. 

Categories emerged, from regularities and similarities be-
tween different simple comments, and these were refined in 
several rounds. The resulting categories are shown in Table 
VII. “Acceptance” denotes that students liked SRec. 

 
TABLE VII. CATEGORIES OF COMMENTS WRITTEN ABOUT SREC (N=47) 

Categories of comments # comments % students 
Usefulness 35 74.5% 
Ease of use 6 12.8% 
Acceptance 3 6.4% 
Improvement suggestions 3 6.4% 

 
Students’ comments on SRec’s usefulness were further ana-

lyzed. These comments were decomposed into “simple forms 
of usefulness”, resulting in 50 simple comments. Four catego-

ries of usefulness were identified, as shown in Table VIII. 
 

TABLE VIII. CATEGORIES OF USEFULNESS IN SREC (N=50) 
Categories of usefulness # comments % students 
Facilitate understanding 22 44% 
Less effort 20 40% 
Safety or accuracy 7 14% 
Generic comment 1 2% 

Notice that about half the comments claimed that SRec 
made understanding the various parts of the task easier, and 
the other half said that SRec made it possible to accomplish 
the assignment with less effort or faster than otherwise. These 
opinions were held by students regardless of which group they 
were in during the evaluation session. 

Two eulogistic but representative comments, from two stu-
dents who were in different groups during the evaluation ses-
sion, follow: 

 “As a conclusion, this tool is, in my opinion, the 
most useful of those we have used in the course” (Exper-
imental group, student 04.) 

“On the other hand, I liked the SRec tool because I 
had never before seen a program that drew specific trees 
so fast for me, that is very easy to use and that will assist 
me in the future in other assignments and courses” (Con-
trol group, student 02.) 

VI. DISCUSSION 
The controlled evaluation revealed a tendency towards in-

creased motivation for the experimental group (p=.09) and 
hardly any variation for the control group. Therefore, hypothe-
sis H was not confirmed. Actually, the increase in motivation 
for the experimental group was due to the two dimensions with 
the highest degree of self-determination. Hypotheses H-IM 
and H-EMI were thus confirmed (p=.01 and p=.03, respective-
ly), but this was not the case for hypotheses H-EME and H-
AM. As a reminder, in the dimension of intrinsic motivation, 
the subject does something because it is inherently interesting 
or enjoyable to him/her. Furthermore, the dimension of extrin-
sic motivation via identified regulation occurs when the behav-
ior is considered important for the subject’s goals and values. 
Given these results, it may be claimed that program visualiza-
tion is a motivating educational mechanism (at least, in the 
specific way used for the evaluation). 

The students’ reports provide additional evidence of these 
positive results. Students were not asked to comment on any 
specific aspect of the assignment, but most of them praised 
SRec, noting its usefulness either in understanding the assign-
ment solution or in completing the assignment with less effort 
or in a shorter time. 

The experimental results verify (and are consistent with) the 
motivational expectations of educational software visualiza-
tion. The reader may wonder whether the results are transfera-
ble to other visualization systems or educational contexts. That 
visualization is motivating per se, independent of the features 
of the visualization system or the educational use of visualiza-
tion, cannot be claimed from the experimental results. Identi-
fying the circumstances, if any, under which software visuali-
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zation is motivating remains an open issue. 
Several features of SRec were especially relevant in the con-

trolled experiment and may have contributed to the positive 
results. Firstly, SRec partially supports an algorithm construc-
tion process (by means of conversions between several graph-
ical representations). This is in contrast to alternative pro-
gramming tools that do not support this construction method-
ology. Such a constructive use of visualization is uncommon 
and can be very appealing for programmers. 

A second relevant factor could be the high interactivity of 
SRec. Such interactivity constitutes a powerful means of han-
dling any situation, in particular very large trees in the task 
addressed in the evaluation. Debuggers present in conventional 
programming tools are also highly interactive, but their text-
oriented format does not fit well with the task addressed in the 
experiment. 

It would be important in the future to enquire further into 
the likely effect of these factors on students’ motivation. 

VII. CONCLUSION 
The most notable result of the controlled experiment was a 

statistically significant increase in the two dimensions of moti-
vation with the highest degree of self-determination, that is, 
intrinsic motivation and extrinsic motivation via identified 
regulation. This is especially noteworthy as it is the first for-
mal evaluation of motivation due to visualization documented 
in the literature. 

In addition, students’ feedback in their final reports provid-
ed informal evidence and reinforced those positive results. 
Most students freely praised SRec and remarked on its useful-
ness either in understanding of the assignment solution or ac-
complishing the assignment with less effort or in shorter time. 

The study has two limitations. Firstly, the research was con-
ducted with a small number of participants. Secondly, the re-
search was conducted under specific conditions of tool and 
task. Consequently, results cannot be straightforwardly trans-
ferred to other contexts where software visualization is used. 

In the near future, several challenges can be addressed. 
First, in the mid term, an evaluation of students’ motivation 
using SRec is being planned. Second, SRec is being extended 
to semi-automatically generate Java code from tables. Finally, 
it would be very interesting to replicate this study under differ-
ent conditions. This evaluation was conducted for a program 
construction task, but other conditions can also be established, 
such as understanding or analyzing recursive algorithms. 
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