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Abstract

In the standard continuous time random walk the initial state is taken as a non-equilibrium

state, in which the random walking particle has just arrived at a given site. Here we consider

generalizations of the continuous time random walk to accommodate arbitrary initial states.

One such generalization provides information about the initial state through the introduction of

a first waiting time density that is taken to be different from subsequent waiting time densities.

Another generalization provides information about the initial state through the prior history of

the arrival flux density. The master equations have been derived for each of these generalizations.

They are different in general but they are shown to limit to the same master equation in the

case of an equilibrium initial state. Under appropriate conditions they also reduce to the master

equation for the standard continuous time random walk with the non-equilibrium initial state.

The diffusion limit of the generalized master equations is also considered, with Mittag-Leffler

waiting time densities, resulting in the same fractional Fokker-Planck equation for different initial

conditions.
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1. Introduction

The continuous time random walk (CTRW) [1] describes the random motion of a particle

that steps from one lattice site to another and waits at a given site before taking another step.

The length of the step is governed by a step length probability density and the waiting time

is governed by a waiting time probability density. In the standard CTRW it is assumed that
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the particle has arrived at a given position x0 at an initial time t = 0 and the particle then

commences its random walk, from that location. The CTRW was revisited by Tunaley [2] who

considered a more general initial condition in which the probability density for the particle to

be at position x at an initial time t0 is given, along with the waiting time density for the first

step, ψ0(t). In this formulation it is envisaged that the particle may have arrived at x at an

earlier time and thus the waiting time density for the first step, ψ0(t), is different to the waiting

time density, ψ(t), in subsequent steps. The waiting time density for the first step can be related

to the waiting time density for subsequent steps if it is assumed that the system is initially

in an equilibrium state [3, 4]. In Section II we have derived the generalized master equation

for the CTRW, with a distinct first waiting time density, and we have obtained reductions for

the standard non-equilibrium initial state and for an equilibrium initial state. The equilibrium

initial state that we consider is well posed for both Markovian, and non-Markovian waiting time

densities, in difference to the equilibrium initial state that had been proposed earlier in this

context [2, 3, 4].

The specification of a distinct first waiting time is not the only way to generalize the CTRW to

include more general initial conditions. In Section III we have considered an alternate formulation

of the CTRW, in which information about the initial condition is provided through the prior

history of the flux density for arriving particles. We have derived the generalized master equation

for this CTRW and we have obtained reductions for the standard non-equilibrium initial state

and for an equilibrium initial state, recovering the master equations for the standard CTRW and

the CTRW with a distinct first waiting time, respectively.

The two formulations of CTRWs and their master equations considered here; one that utilizes

information about a first waiting time density, and the other that utilizes information about the

prior history of the arrival flux density, provide alternate and distinct ways to treat CTRWs with

general initial conditions.

In Section IV we have derived diffusion limit equations, with Mittag-Leffler waiting time

densities, for the generalized master equations derived in Section II and in Section III. The

fractional Fokker-Planck equations are shown to be the same in this limit, independent of the

initial conditions considered, thus providing another example of CTRW models with different

generalized master equations but common diffusion limits [5].

The work described here is related to the problem of ageing CTRWs [6, 7]. In ageing CTRWs

it is considered that the walkers have been initiated at a time prior to the start of the observation

time. Assuming that all walkers are initiated at the same time, the probability density for the
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first waiting time is different to the CTRW waiting time density for subsequent (or preceding

jumps). The initial waiting time density was obtained for cases in which the average CTRW

waiting time is finite and when the CTRW waiting time density is power law distributed [6]. In

addition, a generalization of the Montroll-Weiss equation [1] for the probability density function

describing the ageing CTRW was given in Fourier-Laplace space, and a long time asymptotic

solution was obtained from this, along with calculations of moments.

There are two fundamental differences between ageing CTRWs and the CTRWs considered

here. Firstly in the ageing CTRWs it was assumed that all particles start at the origin at an

initial time t = 0, whereas in the CTRWs considered here the initial distribution of the particles is

given as an arbitrary probability density function or an initial arrival density is given. Secondly,

we have obtained explicit results for the generalized master equations and for the diffusion limit

Fokker-Planck equations with the above initial conditions.

2. Master Equation for CTRWs with a Distinct First Waiting Time Density

To begin with we consider the derivation of the master equation for the CTRW with a distinct

first waiting time density. The Fourier-Laplace representation of the master equation for this

problem has appeared previously [2, 4]. The main reason for including a derivation of the space-

time representation here is to set the notation and to enable direct comparison with the alternate

formulation of CTRWs with arbitrary initial conditions, considered in the next section.

We consider a particle undergoing a CTRW on a one dimensional lattice. We suppose that the

initial particle probability density function ρ0(x) is aribitrary and we do not know the distribution

of arrival times. Following the approach suggested by [2] we compensate for the unknown arrival

times by having the initial waiting time density, for the first step, different to subsequent waiting

times densities. We let qn(x, t) denote the arrival flux density at position x, at time t after n

steps. After one step we have

q1(x, t) =
∑
x′

Ψ0(x, x′, t)ρ0(x) (1)

where Ψ0(x, x′, t) is the probability of a transition from x′ to x at time t. In subsequent steps

the arrival flux density satisfies the recursion relation

qn+1(x, t) =
∑
x′

∫ t

0+

Ψ(x, x′, t, t′)qn(x′, t′) dt′, n ≥ 1 (2)
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where Ψ(x, x′, t, t′) is the probability density for transitions from x′ at time t′, to x at time t. In

the remainder we will assume the separable transition densities,

Ψ0(x, x′, t) = λ(x, x′)ψ0(t), (3)

Ψ(x, x′, t, t′) = λ(x, x′)ψ(t− t′), (4)

identifying λ(x, x′) as the step length density, ψ0(t) as the waiting time density for the first step,

and ψ(t) as the waiting time density for subsequent steps.

We can sum over all steps, defining

q(x, t) =

∞∑
n=1

qn(x, t) (5)

as the arrival density after any number of steps. If we sum over all steps in Eq.(2), using the

result in Eq.(1), we obtain

q(x, t) =
∑
x′

λ(x, x′)

(
ψ0(t)ρ0(x′) +

∫ t

0+

ψ(t− t′)q(x′, t′) dt′
)

(6)

The probability density for a particle to be at position x at time t is then given by

ρ(x, t) =

∫ t

0+

q(x, t′)Φ(t− t′) dt′ + Φ0(t)ρ0(x), (7)

where

Φ0(t) = 1−
∫ t

0

ψ0(t′) dt′ (8)

is the survival probability for the first step and

Φ(t− t′) = 1−
∫ t−t′

0

ψ(t′′) dt′′, (9)

is the survival probability for subsequent steps.

We now differentiate Eq.(7) with respect to time to obtain

∂ρ

∂t
= q(x, t)−

∫ t

0+

q(x, t′) ψ(t− t′) dt′ − ψ0(t)ρ0(x). (10)

We can replace the first term on the right hand side of this equation, using Eq.(6). This results

in

∂ρ

∂t
=
∑
x′

λ(x, x′)

(
ψ0(t)ρ0(x′) +

∫ t

0+

ψ(t− t′)q(x′, t′) dt′
)
− ψ0(t)ρ0(x)−

∫ t

0+

q(x, t′)ψ(t− t′) dt′

(11)
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The remaining dependence on q(x, t) in this equation can be replaced by a dependence on ρ(x, t)

using Laplace transform methods. Using the notation f̂(s) to denote the Laplace transform of

f(t) with respect to time t we have the Laplace transforms of Eq.(7) and Eq.(11) given by

ρ̂(x, s) = q̂(x, s)Φ̂(s) + Φ̂0(s)ρ0(x), (12)

and

sρ̂(x, s)− ρ0(x) =
∑
x′

λ(x, x′)
(
ψ̂0(s)ρ0(x′) + ψ̂(s)q̂(x′, s)

)
− ψ̂0(s)ρ0(x)− ψ̂(s)q̂(x, s), (13)

respectively. We can use Eq.(12) to eliminate the q̂(x, s) dependence in Eq.(13) and write

sρ̂(x, s)− ρ0(x) =
∑
x′

λ(x, x′)

(
(ψ̂0(s)− ψ̂(s)

Φ̂(s)
Φ̂0(s))ρ0(x′) +

ψ̂(s)

Φ̂(s)
(ρ̂(x′, s))

)

− (ψ̂0(s)− ψ̂(s)

Φ̂(s)
Φ̂0(s))ρ0(x)− ψ̂(s)

Φ̂(s)
(ρ̂(x, s). (14)

We now introduce the memory kernels K(t) and J(t) defined by the Laplace transforms

K̂(s) =
ψ̂(s)

Φ̂(s)
, (15)

Ĵ(s) = ψ̂0(s)− ψ̂(s)

Φ̂(s)
Φ̂0(s), (16)

and take the inverse Laplace transform of Eq.(14) to obtain

∂ρ

∂t
=
∑
x′

λ(x, x′)

(
J(t)ρ0(x′) +

∫ t

0

K(t− t′)ρ(x′, t′) dt′
)

− J(t)ρ0(x)−
∫ t

0

K(t− t′)ρ(x, t′) dt′. (17)

Note that

ψ̂(s) = 1− sΦ̂(s), (18)

ψ̂0(s) = 1− sΦ̂0(s), (19)

so that we can also write

Ĵ(s) = 1− Φ̂0(s)

Φ̂(s)
. (20)

2.1. Non-equilibrium initial arrivals

In the standard CTRW it was assumed that the random walking particle arrived at x0 at

time t = 0. In this case ρ0(x) = ρ(x, 0) = δx,x0 and ψ0(t) = ψ(t). It further follows that in this

case, Φ0(t) = Φ(t), hence J(t) = 0, and the master equation reduces to

∂ρ

∂t
=
∑
x′

λ(x, x′)

∫ t

0

K(t− t′)ρ(x′, t′) dt′ −
∫ t

0

K(t− t′)ρ(x, t′) dt′. (21)
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2.2. Equilibrium initial arrivals

In general, a particle that is at a particular site at time t = 0 may have arrived at that site

at an earlier time and been there for a time t0. In equilibrium we suppose that the distribution

of these times, t0, is given by the waiting time density ψ(t0). Following the approach in Lax and

Scher [3] we introduce ψ(t|t0), as the conditional density for waiting an additional time t, after

time t = 0, given that the particle has already been there for a time t0, before time t = 0. The

expected waiting time density for the first step after time t = 0 is then given by

ψ0(t) =

∫∞
0
ψ(t|t0)ψ(t0) dt0∫∞
0
ψ(t0) dt0

. (22)

This can be re-written as

ψ0(t) =

∫ ∞
0

ψ(t+ t0)
ψ(t0)

φ(t0)
dt0. (23)

where we have used the result

ψ(t|t0)Φ(t0) = ψ(t+ t0), (24)

together with the normalization of the density ψ(t). The approach above differs from Lax

and Scher, who average over the survival probability, rather than the waiting time density, in

the integrals in Eq.(22). It is a simple exercise to show that the replacement of the waiting

time density with the survival probability in Eq.(22) yields the same final result for the first

waiting time density in the Markovian case where waiting time density for subsequent steps is

an exponential waiting time density,

ψ(t) = αe−αt, (25)

but it leads to singularities for non-Markovian, power law tailed waiting time densities. The

expression in Eq.(22) is well defined for both Markovian and non-Markovian densities.

3. Master Equation for CTRWs with a Prior History of the Arrival Flux Density

Rather then prescribe an initial waiting time density, distinct to subsequent waiting time

densities we can instead suppose that the process could have started at any time in the past and

the arrival density at position x and time t after n steps is represented by the unknown arrival

density qn(x, t). In this case we have the recursion relation

qn+1(x, t) =
∑
x′

∫ t

−∞
Ψ(x, t, x′, t′)qn(x′, t′) dt′. (26)
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The arrival density after any number of steps is now represented by a doubly infinite sum

q(x, t) =

+∞∑
n=−∞

qn+1(x, t), (27)

and then, using Eq.(26), we have the recursion relation

q(x, t) =
∑
x′

∫ t

−∞
Ψ(x, t, x′, t′)q(x′, t′) dt′ (28)

=
∑
x′

∫ t

−∞
λ(x, x′)ψ(t− t′)q(x′, t′) dt′ (29)

where we have assumed that Ψ(x, t, x′, t′) = λ(x, x′)ψ(t− t′).

The probability density for the particle to be at position x at time t is now given by

ρ(x, t) =

∫ t

−∞
Φ(t− t′)q(x, t′) dt′. (30)

It is convenient to define

ρ0(x, t) =

∫ 0

−∞
Φ(t− t′)q(x, t′) dt′ (31)

and then

ρ(x, t) = ρ0(x, t) +

∫ t

0

Φ(t− t′)q(x, t′) dt′. (32)

We note that the waiting time density is the negative of the derivative of the survival probability,

i.e.,

ψ(t) = −dΦ(t)

dt
. (33)

Using this result it is straightforward to differentiate Eq.(32), and Eq.(31) with respect to time

to obtain
∂ρ

∂t
= −j0(x, t) + q(x, t)−

∫ t

0

ψ(t− t′)q(x, t′) dt′, (34)

where

j0(x, t) =

∫ 0

−∞
ψ(t− t′)q(x, t′) dt′. (35)

Using Eq.(35) we can re-write Eq.(29) as

q(x, t) =
∑
x′

λ(x, x′)j0(x′, t) +
∑
x′

∫ t

0

λ(x, x′)ψ(t− t′)q(x′, t′) dt′, (36)

and then substitute this result into the second term of Eq.(34) to obtain

∂ρ

∂t
=
∑
x′

λ(x, x′)j0(x′, t)− j0(x, t) +
∑
x′

∫ t

0

λ(x, x′)ψ(t− t′)q(x′, t′) dt′ −
∫ t

0

ψ(t− t′)q(x, t′) dt′.

(37)
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The dependence on q(x, t) in Eq.(37) after time t = 0 can be eliminated using Laplace transform

methods. Using the hat notation adopted earlier and also denoting the Laplace transform of f(t)

with respect to t by L [f(t)|t, s], where s is the Laplace transform variable, we have

Φ̂(s)q̂(x, s) = ρ(x, s)− ρ0(x, s), (38)

and

L
[∫ t

0

ψ(t− t′)q(x, t′) dt′|t, s
]

= ψ̂(s)q̂(x, s). (39)

We now define the memory kernel K(t) through the Laplace transform,

K̂(s) =
ψ̂(s)

Φ̂(s)
(40)

and combine this with the results of Eqs.(38), (39), (40) to arrive at

L
[∫ t

0

ψ(t− t′)q(x, t′) dt′|t, s
]

= K̂(s)(ρ̂(x, s)− ρ̂0(x, s)). (41)

Finally we invert the Laplace transform in Eq.(41) and substitute this into Eq.(37) to arrive at

∂ρ

∂t
=
∑
x′

λ(x, x′)j0(x′, t) +
∑
x′

λ(x, x′)

∫ t

0

K(t− t′)(ρ(x′, t′)− ρ0(x′, t′)) dt′

− j0(x, t)−
∫ t

0

K(t− t′)(ρ(x, t′)− ρ0(x, t′)) dt′. (42)

The arbitrary initial condition is expressed in the relation for j0(x, t), or ρ0(x, t), which involve

the arrival density q(x, t) prior to the time t = 0. As an alternative if we knew the probability

density i(x,−t) for the particle to be at x, given that it arrived there at time t < 0 then we could

readily obtain

q(x, t) =
i(x,−t)
Φ(−t)

. (43)

3.1. Non-equilibrium initial arrivals

In the formulation of the model in this section, the standard CTRW initial condition, that

the random walking particle arrived at x0 at time t = 0, is given by

q(x, t) = δ(t)δx,x0 t ≤ 0. (44)

If we substitute this into Eq.(31) and Eq.(35) we obtain

ρ0(x, t) = Φ(t)δx,x0 , (45)

j0(x, t) = ψ(t)δx,x0
. (46)
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Taking the Laplace transforms of Eq.(45) and Eq.(46) and using the definition of K̂(s) in Eq.(15)

it follows that ĵ0(x, s) = K̂ρ̂0(x, s) and thus

j0(x, t) =

∫ t

0

K(t− t′)ρ0(x, t′) dt′. (47)

Substituting, Eq.(47) into Eq.(42) we arrive at the standard generalized master equation, Eq.(21).

3.2. Equilibrium initial arrivals

In equilibrium we assume that

i(x,−t) = ρ?0(x)ψ(−t), t ≤ 0 (48)

and thus

q(x, t) = ρ?0(x)
ψ(−t)
Φ(−t)

, t ≤ 0. (49)

If we substitute the equilibrium arrival density into Eq.(35), and Eq.(31), then after a simple

change of variables in the integrals, we arrive at the results

j0(x, t) = ρ?0(x)

∫ ∞
0

ψ(t+ t0)
ψ(t0)

Φ(t0)
dt0, (50)

and

ρ0(x, t) = ρ?0(x)

∫ ∞
0

Φ(t+ t0)
ψ(t0)

Φ(t0)
dt0. (51)

Using the expression for the first waiting time density, Eq.(23), in the above we can now write

j0(x, t) = ρ?0(x)ψ0(t), (52)

ρ0(x, t) = ρ?0(x)Φ0(t), (53)

where Φ0(t) is the survival probability for the first waiting time density.

Finally, substituting the results for j0(x, t) and ρ0(x, t) into the generalized master equation,

Eq.(42), we arrive at

∂ρ

∂t
=
∑
x′

λ(x, x′)ρ?0(x′)ψ0(t) +
∑
x′

λ(x, x′)

∫ t

0

K(t− t′)(ρ(x′, t′)− ρ?0(x′)Φ0(t′)) dt′

− ρ?0(x)ψ0(t)−
∫ t

0

K(t− t′)(ρ(x, t′)− ρ?0(x)Φ0(t′)) dt′. (54)

The generalized master equation for equilibrium arrivals derived in this framework can be shown

to be identical to the generalized master equation obtained for distinct first waiting time densities
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in section 2, Eq.(34). To establish this equivalence we consider the Laplace transform of Eq.(54),

sρ̂(x, s)− ρ(x, 0) =
∑
x′

λ(x, x′)ρ?0(x′)ψ̂0(s)− ρ?0(x)ψ̂0(s)

+
∑
x′

λ(x, x′)(K̂(s)ρ̂(x′, s)− K̂(s)Φ̂0(s)ρ?0(x′))

− (K̂(s)ρ̂(x, s)− K̂(s)Φ0(s)ρ?0(x)) (55)

and then re-arrange terms to write

sρ̂(x, s)− ρ(x, 0) =
∑
x′

λ(x, x′)(ψ̂0(s)− K̂(s)Φ̂0(s))ρ?0(x′)− (ψ̂0(s)− K̂(s)Φ̂0(s))ρ?0(x)

+
∑
x′

λ(x, x′)K̂(s)ρ̂(x′, s)− K̂(s)ρ̂(x, s). (56)

Using Eq.(15) and Eq.(16), we can now write this as

sρ̂(x, s)− ρ(x, 0) =
∑
x′

λ(x, x′)Ĵ(s)ρ?0(x′)− Ĵ(s)ρ?0(x)

+
∑
x′

λ(x, x′)K̂(s)ρ̂(x′, s)− K̂(s)ρ̂(x, s), (57)

and taking the inverse Laplace transform we arrive at Eq.(17).

4. Diffusion Limits

In this section we have considered the diffusion limit of the generalized master equations,

Eq.(17), and Eq.(54), for CTRWs with arbitrary initial arrivals. Formally this limit is taken by

introducing a jump length scaling parameter h and a waiting time scale parameter τ and then

considering the limit h → 0 and τ → 0. Following the approach in [5] we will consider nearest

neighbour jumps on a one-dimensional lattice, with the lattice spacing ∆x taken as the jump

scale parameter. In the case of nearest neighbour jumps the step length density is given by

λx,x′ = pr(x
′)δx′,x−∆x + p`(x

′)δx′,x+∆x, (58)

where pr(x) is the probability of jumping from x one lattice spacing to the right and p`(x) is the

probability of jumping from x one lattice spacing to the left. Note that

pr(x) + p`(x) = 1. (59)

The time scale τ is introduced by replacing the densities with scaled densities. The scaled waiting

time density ψτ (t) is related to the standard waiting time density ψ(t) by

ψτ (t) =
1

τ
ψ(
t

τ
). (60)
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From this scaled density we can then obtain the scaled survival probability

Φτ (t) = 1−
∫ t

0

ψτ (t′) dt′, (61)

the scaled first waiting time density

ψ0,τ (t) =

∫ ∞
0

ψτ (t+ t0)
ψτ (t0)

φτ (t0)
dt0, (62)

and the scaled first survival probability

Φ0,τ (t) = 1−
∫ t

0

ψ0,τ (t′) dt′. (63)

The scaled functions Kτ (t) and Jτ (t) are then defined through the Laplace transform relations

in Eq.(15) and Eq.(16) with the densities and replaced by scaled densities.

Using the step density in Eq.(58), with time scaled waiting time densities, Eq.(17) becomes

∂ρ

∂t
= Jτ (t) (pr(x−∆x)ρ0(x−∆x) + p`(x+ ∆x)ρ0(x+ ∆x)− ρ0(x))

+

∫ t

0

Kτ (t− t′) (pr(x−∆x)ρ(x−∆x, t) + p`(x+ ∆x)ρ(x+ ∆x, t)− ρ(x, t)) . (64)

We now expand the spatial functions as Taylor series, and use the identity in Eq.(59) to obtain

∂ρ

∂t
= Jτ (t)

(
∆x2

2

∂2ρ0

∂x2
−∆x2 ∂

∂x

(
(
pr(x)− p`(x)

∆x
)ρ0(x)

))
+

∫ t

0

Kτ (t− t′)
(

∆x2

2

∂2ρ

∂x2
−∆x2 ∂

∂x

(
(
pr(x)− p`(x)

∆x
)ρ(x, t)

))
+O(∆x3) (65)

Finally we introduce the force function

F (x) = lim
∆x→0

1

β

pr(x)− p`(x)

∆x
(66)

and the Fokker-Planck equation is obtained in the limit,

∂ρ(x, t)

∂t
= lim
τ→0,∆x→0

Jτ (t)

(
∆x2

2

d2ρ0(x)

dx2
− β∆x2 d

dx
(F (x)ρ0(x))

)
+ lim
τ→0,∆x→0

∫ t

0

Kτ (t− t′)
(

∆x2

2

∂2ρ(x, t′)

∂x2
− β∆x2 ∂

∂x
(F (x)ρ(x, t′))

)
dt′. (67)

The diffusion limit of Eq.(54), is obtained in a similar fashion. After replacing the densities

with scaled densities and taking Taylor series expansions in the spatial variable we arrive at the

intermediate result

∂ρ(x, t)

∂t
= lim
τ→0,∆x→0

(
∆x2

2

∂2j0(x, t)

∂x2
− β∆x2 ∂

∂x
(F (x)j0(x, t))

)
+ lim
τ→0,∆x→0

∫ t

0

Kτ (t− t′)
(

∆x2

2

∂2(ρ(x, t′)− ρ0(x, t′))

∂x2
dt′ − β∆x2 ∂

∂x
(F (x)(ρ(x, t′)− ρ0(x, t′)))

)
dt′.

(68)
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In the diffusion limit we further have

lim
τ→0

j0(x, t) = lim
τ→0

∫ 0

−∞
ψτ (t− t′)q(x, t′) dt′

=

∫ 0

−∞
δ(t− t′)q(x, t′) dt′

= q(x, t) (69)

and thus

∂ρ(x, t)

∂t
= lim
τ→0,∆x→0

∫ t

0

Kτ (t− t′)
(

∆x2

2

∂2(ρ(x, t′)− ρ0(x, t′))

∂x2

−β∆x2 ∂

∂x
(F (x)(ρ(x, t′)− ρ0(x, t′)))

)
dt′. (70)

In the case of equilibrium initial conditions, Eq.(52) and Eq.(53), it is straightforward to show

that

lim
τ→0,∆x→0

∆x2

∫ t

0

K(t− t′)ρ0(x, t′) dt′ = − lim
τ→0,∆x→0

∆x2J(t)ρ0(x), (71)

so that the Fokker-Plank equations, Eq.(67) and Eq.(68) agree in this limit, as expected.

To proceed beyond the general Fokker-Planck equations in Eq.(67) and Eq.(68) we need to

consider particular cases of the waiting time density.

4.1. Exponential waiting time density

The scaled exponential waiting time density is given by

ψτ =
1

τ
e−

t
τ . (72)

It follows from Eq.(62) that the scaled first waiting time density ψ0,τ (t) = ψτ (t); thus Φ0,τ (t) =

Φτ (t), and then from Eq.(16), we have Jτ (t) = 0. It then follows from Eq.(71) that the terms

depending on ρ0(x) and ρ0(x, t) vanish in Eq.(67) and Eq.(68), respectively. It is then a simple

matter to evaluate

Kτ (t) =
1

τ
δ(t) (73)

and then take the limits in Eq.(67), or Eq.((67), and arrive at the standard Fokker-Planck

equation,
∂ρ

∂t
= D

∂2ρ

∂x2
− 2Dβ

∂

∂x
(F (x)ρ(x, t)) , (74)

where

D = lim
τ→0,∆x→0

∆x2

2τ
. (75)
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4.2. Mittag-Leffler waiting time density

The scaled Mittag-Leffler waiting time density is given by [8]

ψτ (t) =
tγ−1

τγ
Eγ,γ

[
−(

t

τ
)

]
(76)

where

Eα,β [z] =

∞∑
k=0

zk

Γ(kα+ β)
(77)

is the generalized Mittag-Leffler function. The corresponding memory kernel Kτ (t) satisfies the

convolution property (see for example, [5])∫ t

0

Kτ (t− t′)y(x, t′) dt′ =
1

τγ
0D1−γ

t y(x, t) (78)

where

0D1−γ
t y(x, t) =

1

Γ(γ)

d

dt

∫ t

0

y(x, t′)

(t− t′)1−γ dt
′ (79)

is the Riemann-Liouville fractional derivative [9] and it is assumed that the fractional integral

0D−γt y(x, t) vanishes at t = 0.

After substituting the memory kernel into Eq.(70), and taking the limits we arrive at

∂ρ(x, t)

∂t
= 0D1−γ

t

(
Dγ

∂2(ρ(x, t)− ρ̄0(x, t))

∂x2
− 2βDγ

∂

∂x
(F (x)(ρ(x, t)− ρ̄0(x, t)))

)
(80)

where

Dγ = lim
τ→0,∆x→0

∆x2

2τγ
, (81)

and

ρ̄0(x, t) = lim
τ→0,∆x→0

ρ∗0(x)

∫ ∞
0

Φτ (t+ t0)ψτ (t0)

Φτ (t0)
dt0. (82)

The expression for ρ̄0(x, t) can be shown to be equal to zero by first re-writing

ρ̄0(x, t) = lim
τ→0,∆x→0

ρ∗0(x)

∫ ∞
0

Φ
(
t+t0
τ

)
1
τ ψ
(
t0
τ

)
Φτ
(
t0
τ

) dt0, (83)

and then using the change of variables t0 = t′τ ,

ρ̄0(x, t) = lim
τ→0,∆x→0

ρ∗0(x)

∫ ∞
0

Φ
(
t
τ + t′

)
ψ (t′)

Φ (t′)
dt′ = 0. (84)

Hence we recover the fractional Fokker-Planck equation first derived from CTRWs with the

non-equlibrium initial condition q(x, 0) = δx,x0
[10],

∂ρ(x, t)

∂t
= 0D1−γ

t

(
Dγ

∂2ρ(x, t)

∂x2
− 2βDγ

∂

∂x
(F (x)ρ(x, t))

)
. (85)
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Note that if γ = 1, the fractional Fokker-Planck equation reduces to the standard Fokker-Planck

equation, Eq.(74).

The generalized master equations and fractional Fokker-Planck equations from continuous

time random walks with arbitrary initial conditions obtained here can be extended to include

space- and time- dependent forces, following the approach in [11, 12].

4.3. Conclusion

Continuous time random walks provide a useful framework for modelling particle motions in

complex media. Different variants of the CTRWs can be obtained, including different represen-

tations of time dependent forcing [5], and in the cases considered here, different initial states.

The generalized master equations for the time evolution of the probability density governing the

position of particles in the different variants of the CTRWs are in general different. However the

details of the variants, relating to the timing of the forcing, and the initial conditions, do not

carry over in the diffusion limit to the Fokker-Planck equations. The standard Fokker-Planck

equation for Markovian processes and the fractional Fokker-Planck equation for non-Markovian

processes are robust in this sense making them applicable across a broad range of modelling

applications.
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