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Subharmonic wave transition in a quasi-one-dimensional noisy fluidized shallow granular bed
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We present an experimental and theoretical study of the pattern formation process of standing subharmonic
waves in a fluidized quasi-one-dimensional shallow granular bed. The fluidization process is driven by means
of a time-periodic air flow, analogous to a tapping type of forcing. Measurements of the amplitude of the
critical mode close to the transition are in quite good agreement with those inferred from a universal stochastic
amplitude equation. This allows us to determine both the bifurcation point of the deterministic system and the
corresponding noise intensity. We also show that the probability density distribution is well described by a
generalized Rayleigh distribution, which is the stationary solution of the corresponding Fokker-Planck equation
of the universal stochastic amplitude equation that describes our system.
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I. INTRODUCTION

In the course of recent decades, much effort has been
devoted to the study of the phenomena exhibited by granular
matter [1-3]. However, the richness and complexity of the
static and dynamical behaviors of granular materials still
present a major challenge in physics and in engineering sci-
ences. Special interest has been given to the possibility of
observing fluidization in granular materials. To fluidize a
granular system, energy must be injected, for example, by
mechanical agitation or an up flow of gas strong enough to
counter gravity. The later mechanism is used in industry for
mixing solid particles with liquids or gases [4]. This system
is of prominent technological importance in catalysis of gas-
sphere reactors, transport of powders, and combustion of
ores to mention a few [4].

A fundamental question that emerges is the characteriza-
tion of the self-organized dynamics exhibited by these sys-
tems, such as the transition of a granular system from a lig-
uid to solid or gaseous state and pattern formation (see the
reviews [1,2] and references therein). In particular, the study
of mechanisms of bed instabilities is an active research area
in the engineering community. Current fluidization studies
mainly focus on thick fluidized beds—deep granular beds—
where the thickness of the granular bed is composed by a
large number of granular layers. On the other hand, there
have been only few studies of instabilities in granular beds
formed by a small number of layers, defined as shallow beds
[5-7]. For instance, in Ref. [7], the phase diagram of a flu-
idized shallow quasi-two-dimensional bed composed of
150 wm diameter bronze particles is reported. The observed
patterns include subharmonic squares and stripes, quasiperi-
odic patterns, and disordered structures.

The main difference of granular systems with molecular
fluids is that, at collisions, grains dissipate kinetic energy
into their internal degrees of freedom. Another important dif-
ference is that the individual constituents, the grains, are
macroscopic, so that their typical energy is many orders of
magnitude larger than the thermal excitation energy k7,
where k is the Boltzmann constant and 7 is the temperature
of the grains. In spite of these fundamental differences, flu-
idized granular matter exhibits a variety of phenomena that
resemble those of molecular fluids. Yet, the possibility of
finding a continuous or macroscopic description of granular
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flows is still an open question. There are several models with
different approximation schemes that produce different
hydrodynamic phenomena under certain limited conditions
[8-16].

Granular flows are intrinsically noisy because of their
relatively small number of constituents compared to their
molecular counterparts. Thus, any attempt for defining field
variables, such as local density and velocity, should consider
the fact that these are fluctuating quantities [17]. In the case
of molecular fluids, one of the earliest works in this direction
is the study of the effect of the noise at the onset of Bénard
convection [18]. It is important to note that in this seminal
work, the Swift-Hohenberg model is proposed, which is a
prototype model for pattern formation. From a theoretical
point of view, a relevant problem is the influence of noise on
self-organization phenomena, such as uncontrollable fluctua-
tions that develop in granular flows and patterns. These fluc-
tuations can transform a simple supercritical bifurcation into
an imperfect one or they can amend or shift a bifurcation
point, destroy an hysteresis region, induce pattern formation,
and so forth (see Ref. [19] and references therein). The
changes in dynamical systems generated by the effect of
noise, in particular multiplicative noise, have also been stud-
ied in the context of oscillatory instabilities [20] even in the
presence of periodical forcing [21]. In particular, the prob-
ability distribution function of the oscillating field and its
bifurcation diagram has been characterized. Experimentally,
the effects of uncontrollable fluctuations in granular fluids
have been analyzed in Ref. [17] for the case of a vertically
oscillated quasi-two-dimensional layer of grains below the
critical acceleration for the onset of standing waves. Numeri-
cal simulations of a noisy Swift-Hohenberg model are con-
trasted with the experimental observations [17] and
molecular-dynamics simulations [22], which show to be in
qualitative agreement. However, as result of the universal
nature of pattern formation, one expects that at the onset of
the spatial supercritical bifurcations, several noisy models
describing the appearance of a supercritical pattern will show
the same universal features. It is important to note that a
spatial supercritical bifurcation is described in a unified man-
ner by the Ginzburg-Landau equation with real coefficients
[26]. Hence, methods and tools of qualitative partial differ-
ential theory such as amplitude equations, bifurcation theory,
and stochastic processes [23-25] become fundamental to
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grasp the complex and wealthy phenomena exhibited by flu-
idized granular systems.

Here, we present an experimental and theoretical study of
the pattern formation process of standing subharmonic waves
in a fluidized quasi-one-dimensional shallow granular bed
composed by monodisperse grains. The fluidization process
is driven with a time-periodic air flow. We characterize the
bifurcation diagram of the standing subharmonic waves. We
show that the transition from a flat interface to standing
waves is smooth rather than abrupt. This is a direct conse-
quence of noise effects in the pattern dynamics, modifying
the deterministic bifurcation curve, such that the critical
point and the physical mechanisms are masked by fluctua-
tions [19,26]. The experimental observation of the amplitude
of the critical mode is in good agreement with those inferred
from a stochastic amplitude equation. In particular, this is
applied to the bifurcation curve of the amplitude of standing
subharmonic waves. This allows the determination of the
bifurcation point, the intensity of pattern fluctuations, and the
characterization of the appearance of precursors and patterns.
We show that the probability density distribution is described
by a generalized Rayleigh distribution, which is the station-
ary solution of the corresponding Fokker-Planck equation of
the universal stochastic amplitude equation.

II. EXPERIMENTAL SETUP

The experimental setup is displayed in Fig. 1. The experi-
mental cell is 45-mm wide, 200-mm tall, and 3.5 mm in
depth. The cell is divided it two parts, top and bottom, sepa-
rated by a thick bandlike porous sponge placed horizontally
(2-mm thick, 45-mm wide, and 20-mm tall, Tesa sponge
55604-00007). Approximately 14 000 monodisperse bronze
spheres, of diameter d=350 um, are introduced into the cell
from above, deposited on top of this horizontal sponge floor.
In practice, the mass of grains was used as a control param-
eter, corresponding to M=2.8 g for the results presented in
this paper. Typically, the height of deposited grains is about
4 mm. Thus, the granular bed is about 1284 wide, 6d
in depth, and 114 tall. The grain’s sponge floor acts as an
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FIG. 1. (Color online) Sche-
matic diagram of the experimen-
tal setup. Grains are deposited
on top of a porous material in-
side a quasi-two-dimensional cell.
These are fluidized with a peri-
odic air flow. The air flow produc-
tion and control stages are shown
as well as the image acquisition
equipment.

Pressure control
regulator

homogenization stage, reducing also turbulent fluctuations
within the flow.

The granular system is excited by means of a periodic air
flow which is generated by an air compressor (Bauker
TD4050) and regulated by an electromechanical proportional
valve (Teknocraft 203319) via a precision control regulator
(Controlair 100) and an air lung. The response time of the
valve is less than 4 ms. Its aperture is set by a variable
voltage signal controlled by a function generator (Agilent
33250A) through a power amplifier (NF model HFA4011).
The proportional valve remains closed for an applied voltage
lower than 4 V. Its maximum aperture is obtained at 27 V.
For a variable voltage control, the valve presents hysteresis
of about 10%. The pressure oscillations induced by the vari-
able air flow are measured before the flow enters the cell
with a dynamic pressure sensor (PCB 106B) and an oscillo-
scope (Tektronix TDS2012B). The two plastic hoses that
connect the proportional valve to the dynamic pressure sen-
sor and this sensor to the experimental cell are sufficiently
short (~50 cm) such that the pressure drop between the
pressure measurement point and the actual cell air inlet is
very small (<1%).

We use a symmetrical triangular signal with a nonzero
offset to generate a time-modulated controllable pressure sig-
nal. This choice is driven by the motivation of studying the
response of a shallow granular bed fluidized by a periodic
forcing that is not purely sinusoidal. With our symmetrical
triangular signal forcing plus an offset, during a certain pe-
riod of time of the forcing cycle the proportional valve re-
mains closed, reducing to zero the flow velocity. In vibrof-
luidized granular systems, this would correspond to a
tapping type of forcing. In addition, in order to observe flu-
idization in our current setup with a sinusoidal periodic sig-
nal, the offset is so large that grains show mainly a disor-
dered fluidized state.

A typical pressure temporal signal is shown in Fig. 2(a).
From this kind of pressure signal, we compute the peak pres-
sure amplitude P, of the Fourier transform related to the
forcing frequency f,. As we will show later, the most domi-
nant component of the pressure oscillations is related to the
forcing frequency f,,. The relation between the applied peak-
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FIG. 2. (Color online) (a) Typical temporal trace of air flow
pressure oscillations, which shows the tappinglike forcing. In this
case, the peak-to-peak voltage is V;,,;=1420 mV. (b) Peak pressure
amplitude P, vs V,,, obtained for increasing (A) and decreasing (V)
voltage ramps. In this case f,=10 Hz, the power amplifier gain is
20 and the voltage offset is 200 mV.

peak voltage V,, and P, is displayed in Fig. 2(b), which is
roughly linear. It presents a low level of hysteresis at low-
pressure values, consistent with the proportional valve hys-
teresis reported by its fabricator. For our experimental setup,
the control parameters are the forcing frequency f, and the
peak amplitude P, of the pressure fluctuations at f,,.

The granular bed is illuminated with two high-power
halogen lamps and the collective motion of the granular layer
is recorded against a black background with a high-speed
digital camera (IDT X-Stream X3) at 50 fps during 50 s
using a 600 X400 pixel> window. For each acquired video,
its sequence of images and the corresponding pressure signal
are processed and analyzed with a desktop computer using
MATLAB.

The granular pattern amplitude is calculated by an image-
processing method where the granular layer surface profile is
obtained for each image. A summary of the main steps is
shown in Fig. 3. Examples of raw images, with and without
surface waves, are shown in panels (a) and (b). Smoothing is
required in order to eliminate single particles that are ejected
from the interface which can pollute its correct determina-
tion. This smoothing is obtained by filtering the image as
shown in figures (c) and (d). After, the granular surface pro-
file h(x,r) is deduced by using an intensity threshold. Ex-
amples of such surface profiles are shown with continuous
lines in figures (e) and (f). The black background ensures
that the profile is well defined for each image, even if the
granular bed shows low-density regions beneath its surface.

III. EXPERIMENTAL RESULTS

Increasing P, for a fixed value of f,, density fluctuations
in the granular layer develop which are related to the small
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FIG. 3. Image processing method procedure. Left (right) side
corresponds to a flat (surface wave) surface, obtained with f,
=10 Hz, P,=438 Pa (731 Pa). [(a) and (b)] Raw images; [(c) and
(d)] neighbor-averaged smoothed images; [(e) and (f)] superposition
of surface profile /(x,?), obtained with an intensity threshold.

displacement (less than a diameter) of particles in the bulk.
Larger fluctuations are found at the surface of the layer,
where fewer collisions occur. As P, continues to increase,
fluctuations of a characteristic wavelength and frequency de-
velop over the surface from time to time, disappearing also
randomly with a typical lifetime. This type of fluctuation is
commonly known as a precursor [27]. In this context, it
precedes the appearance of a spatial instability of the flat
interface of the granular bed. For larger values of P,, an
oscillating pattern with a fluctuating amplitude appears over
the surface of the granular bed oscillating at half the forcing
frequency with a wavelength A .. Hence, the system develops
stationary subharmonic waves through a parametric instabil-
ity, which is one of the granular counterparts of the well-
known subharmonic wave instability in Newtonian fluids,
known as the Faraday instability [28]. The small amplitude
pattern is smooth and can be well fitted by a sinusoidal func-
tion. In a frequency band of f, between 5 and 20 Hz, no
distinguishable change in A\, is observed. This effect is as-
cribed to the small size of the container under consideration,
which discretizes strongly the available wave numbers. For a
fixed excitation frequency, there is a smooth transition from
the flat interface state to a subharmonic oscillating pattern.
The transition value of P, where the flat interface destabi-
lizes is roughly linear in f,. In what follows, we will fix the
excitation frequency at f,=10 Hz, which fixes the typical
wavelength N\ of the pattern at 1.2 cm.

The left panel of Fig. 3 shows that for P, below a certain
threshold value, the fluidized granular bed is flat in average.
The right panel of Fig. 3 shows an example of the subhar-
monic surface waves that appear above the pressure thresh-
old value. As previously noted, the transition between these
states is not abrupt. Instead, it is rather smooth. Thus, a good
order parameter has to be defined. In order to do so, we now
turn to the characterization of the time dependence of the
amplitude of the critical mode and the evolution of its enve-
lope.

For each image, the surface-profile curve h(x,r) is nu-
merically Fourier transformed to find the critical wave num-
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FIG. 4. (Color online) (a) Temporal trace of the fluctuating criti-
cal amplitude A, (continuous line) and its envelope A, (dashed line)
for P,=655 Pa in a 10 s time window. (b) PSD of the fluctuating
critical amplitude A...

ber k. related to the critical wavelength \. of the pattern. The
average critical wave number over the image sequence is
then used to compute the amplitude of the critical mode A,. of
the granular pattern for each image. This quantity oscillates
with time because of the surface wave subharmonic nature.
In addition, due to the intrinsic noisy character of this fluid-
ized granular system, the envelope of critical mode A.. is also
a temporally fluctuating quantity.

To illustrate this behavior, a temporal trace of the critical
amplitude A, and its envelope A, is displayed in Fig. 4(a).
There is a strong harmonic oscillation and also slow modu-
lations of amplitude associated to large-scale modulations
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and inherent fluctuations of the granular bed. From the tem-
poral trace, we compute its power spectrum density (PSD),
which is shown in Fig. 4(b). Due to the global motion of the
granular bed at f,, there as a large resonance peak at the
harmonic frequency. Also, there is resonance peak at f,/2,
which shows the subharmonic character of the spatial insta-
bility. For lower frequencies, large amplitude fluctuations de-
velop which are related to the large scale fluctuations of the
pattern.

The first cumulants of A,, i

i e Ry

standard deviation o, =\(A;)—(A,)", are computed from
the temporal trace of the envelope of the critical amplitude.
Figure 5 shows the typical bifurcation diagram for A, for
increasing and decreasing ramps of P,, where symbols stand
for (A,) and error bars for 04, The amplitude of the subhar-
monic pattern grows smoothly from almost zero, which is
related to the minimal discretization of the pattern (the par-
ticle radius). No abrupt change is evident, so no critical value
of P, is found for this transition. Hysteresis is not observed
between increasing and decreasing P, ramps. There is also
no significant change in the critical wave number k. of the
pattern. It should be noticed that this type of bifurcation dia-
gram has been found in experiments using glass particles
[29].

The following theoretical discussion will shed light into
why this transition is rather smooth. In summary, the inher-
ent noise present in the fluidized granular bed changes the
qualitative form of the bifurcation diagram. By fitting the
experimental data with a modified expression, both noise
intensity and the bifurcation point of the deterministic sys-
tem can be obtained. None of them changes between in-
creasing and decreasing P, ramps. In Fig. 5, the continuous
lines correspond to fits of our theoretical prediction that in-
cludes effects of noise (see Sec. IV). The dashed lines cor-
respond to the deterministic bifurcation diagram obtained
from a theoretical prediction without noise, (A,)=a,&, where

e., its mean value (A,) and

0.2

0.18

0.16

0.14

0.12

0.1

<Ae> [cm]

0.08

0.06

0.04

0.02

FIG. 5. (Color online) Main: bifurcation dia-
gram of A, for increasing (I>) and decreasing
(1) values of P,. Continuous lines are theo-
retical fits to a model that considers the effect
of additive noise (see Sec. IV). For the increas-
ing (decreasing) P, ramp, the obtained param-
eters are the critical pressure P;=619*15 Pa
(P;=606%26 Pa), the noise intensity 7
=(3.9+2.1)x1073 [7=(5.1%3.5)x1073],
and the scale factor «@;=0.362=0.05 cm
(;=0.36 £0.07 cm). Dashed lines are the theo-
retical predictions (A,)=a,[(P,~P%)/PS]'? for
increasing and decreasing ramps using the previ-
ous adjusted parameters. (Inset) Bifurcation dia-
gram of A, as a function of the reduced control
parameter e=(P,—P;)/P; for increasing (>)
and decreasing (<{) ramps. Continuous line is the
theoretical fit to a model that considers the effect
of additive noise (see Sec. IV). Dashed line is the

700

750 800 theoretical prediction (4,)=a,e">.
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e=[(P,—PS)/ PS]"? is the reduced control parameter, but us-
ing the adjusted parameters with the theoretical prediction
with noise. For the deterministic bifurcation, the parameters
are the critical pressure P and the scale factor «,. These
curves fit quite well our data, but, as expected, only for a
subset above the bifurcation point.

IV. THEORETICAL DESCRIPTION

To understand the formation process of the fluctuating
subharmonic waves observed in the previously described ex-
perimental setup, we consider the use of amplitude equation
techniques, bifurcation theory, and stochastic processes. This
is a consequence of lack of a continuous or macroscopic
description of granular flows, as we have mentioned before.
Hence, our theoretical description is based on a universal
description of the appearance of subharmonic standing
waves.

Let us consider a forced one-dimensional extended sys-
tem that exhibits a supercritical subharmonic standing-wave
bifurcation which is described by the field #(x, ). This bifur-
cation accounts for the transition from a flat or uniform state
i(x,1)=1, to a standing wave oscillating to the half of the
forcing frequency f,. Many pattern forming systems that are
driven out of equilibrium exhibit traveling waves, standing
waves, or alternating waves (periodic or even chaotic)
[25,32]. Then, a natural description of these systems is to
consider the dynamics of two counter propagating waves,
which corresponds to the usual description in the Andronov-
Hopf instability [25]. However, our parametrically driven
system near resonance is characterized by exhibiting stand-
ing waves. Therefore, the central manifold (i.e., the minimal
set of variables that describes the phenomena under study)
that accounts for the stationary waves is attractive [30]. That
is, if one considers as an initial condition a traveling wave,
after a transient the system converges to a standing wave (see
review [40]). Based on Floquet theory, the relation between
the original variables and the critical mode is done by means
of an asymptotic change of variable with periodic coeffi-
cients [31]. Hence, close to the bifurcation of our parametri-
cally forced system, we consider the standing-wave central
manifold. Thus, we present the following Ansatz for the sub-
harmonic standing waves:

i(x,1) = iig + (Ae™** + Ae"**)F(1)ii + HOT, (1)

where A(x, 1) stands for the complex envelop of subharmonic
waves, ii accounts for the critical mode, F(z) is a periodic
function of period 1/f,, and HOT are the higher-orders terms
in the description of i(x,7). This means that the system is
forced at f, and it responds at f,,/2. We assume the system
possesses a natural frequency f, and that f,, is close to twice
fn- The difference between 2f,, and the forcing frequency is
the called detuning.

Based on bifurcation theory, close to the bifurcation point,
the envelope can be described as a slow spatiotemporal vari-
able. The system under study is isotropic and homogeneous.
Thus, the spatial translation symmetry x— x+x, leads to a
phase invariance symmetry for the envelope, A — Ae’*c*0, The
spatial reflection symmetry x— —x leads to the conjugation
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symmetry for the envelope A—A. Therefore, using the
above symmetries and the fact that the transition is super-
critical the amplitude equation reads

GA = eA — |APA +\ne(As), )

where & is the bifurcation parameter, {(A;f) accounts for
random fluctuations of A, that is, it is a noise term and 7 is
the noise level intensity. In this sense, Eq. (2) is simply a
Ginzburg-Landau equation with real coefficients. It is impor-
tant to note that in the unforced system—this means a system
without parametric forcing—the appearance of standing or
traveling waves, or even transitions between them, is not
described appropriately by the above ansatz (1) because one
needs to consider different amplitudes for the left and right
traveling waves, that is i(x,)=ig+a,e'*=) 4 q_e itker+on
+--- [21]. In this case, the system is described by two
coupled Ginzburg-Landau equations (see [24,32] and refer-
ences therein). In this framework, the unforced system close
to the standing-wave transition is described by a Ginzburg-
Landau equation [24]. This corresponds to Eq. (2) with com-
plex coefficients.

A. Deterministic amplitude equation

In the deterministic case, =0, for negative &, the stable
equilibrium is the zero amplitude state which represents a flat
interface oscillating at the forcing frequency f,. For positive
&, the model (2) exhibits a family of stable equilibrium states
of the form A=\ge'?, where ¢ is an arbitrary constant related
to the phase invariance of the pattern. For a given ¢, this
state accounts for the amplitude of the standing waves.
Hence, A increases as \& and for e=0 the model (2) exhibits
a spatial bifurcation.

The stochastic term breaks all the mentioned symmetries
of the envelope and is always present in the amplitude equa-
tion. This is due to the fact that this type of term cannot be
removed using a change of variable, i.e., this is a resonant
term (Appendix A of [33]). Close to the bifurcation point, the
envelope is small, thus we can rewrite the stochastic term
generically in the form

(A= 2 7, A"A" 5, (1), (3)
n,m=1
where 7,,, are constant parameters of order 1, £,,(7) are
stochastic terms modeled by Gaussian processes with zero
mean value ({(£,,,)=0), and correlation

0, n+pFm+q+2
{an(D)pg (1)) = St =1")Cpgr N+P=m+q+2
4)
and
_ 0, n+p#*Fm+gq
(Gm()pg(t')) = Nt =1")Cppg» N+p=m+q, )
where C,,,,, is the correlation matrix of the initial physical

system, which characterizes the correlation between different
constituent of the noise. The properties described above are a
result of the change of variable from the physical variables to

046208-5



ORTEGA et al.

the envelope ones. The noise term appearing in Eq. (2) is
deduced from a spatial average of the noise of the primary
physical model (see, for instance, [26]). When the noise is
independent of amplitude A, is usually denominated additive
noise [34]. Otherwise, it is termed multiplicative noise.

B. Amplitude equation with additive noise

As stated above, the amplitude of the standing wave is
small close to the bifurcation. Thus, the fluctuations can be
modeled by an additive noise and the amplitude equation
reads as

GA =eA - |A]PA + \*'77500(1‘)~ (6)

Note that the supercritical pattern formation in one-
dimensional systems is described by the above stochastic

equation [26]. Introducing the vectorial notation §=(A,A)
and 5:(4“00, o) the above equation can be rewritten as

F —
PR V7g"(1), (7)

4" ==

where F=-g|A]>+|A|*/2 is a Lyapunov potential, {v,u}
=1,2 are indexes where there is sum over the repeated in-
dexes, " is an invertible symmetrical tensor defined as

0, v=
6= g (®)
1, v#u,
and the autocorrelation function of §&X%(f) satisfies

(& (1)&M(t")y=e"*8(t—1"). Hence, the dynamics of the deter-
ministic model (6) is characterized by the minimization of F.
The equation of the density probability function evolution of

the complex amplitudes A and A [P(A,A;1)] associated to
the Langevin Eq. (6) is the Fokker-Planck equation that has
the form [34]

op=-" (w (9Fp)+ i (w i P) (9)
T ag” dq* nﬁq” aq" )’

where the terms SV'U“;_i and ne"* are the drift and diffusion
matrix of the density probability function. It is important to
notice that given an initial distribution, it is a difficult task to
find an analytical expression for probability density function
as a function of time. However, in the stationary regime, it
can be characterized by a simple expression. In the case of
null flux boundary condition (which physically means that
particles are not lost at the edges), it is trivial to show that
the stationary density probability reads

P(A,A) = ce™F/7 = ce-2elAPHAM 20 (10)

where c is a normalization constant and F is usually denomi-
nated nonequilibrium potential [35,36]. As mentioned above,
experimentally we measure the envelope A, of the critical
mode A, which is, except a scale factor, equal to the modu-
lus of the amplitude A. Introducing the modulus and phase
variables A=Re'’, we have A,=a,R, where « is a scale fac-
tor. Thus, the above probability density reads
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FIG. 6. (Color online) Computed histograms of A, (bars) and
theoretical generalized Rayleigh distribution (lines) [Eq. (11)] for
increasing e.

P(R,e,m) =0(e, n)Re[zst_RA]/zﬂ (11)

after integrating on the phase variable, where the constant of
normalization is

O(s, n) = 2\2e P erte(— e\2 gy, (12)

Below the bifurcation (¢<<0) and neglecting the quartic
term, the above probability density is the Rayleigh distribu-
tion [37], which describes the speed distribution of a bidi-
mensional ideal gas. Hence, we have termed generalized
Rayleigh distribution the distribution (11), which is valid be-
low and above the subharmonic wave transition. This sta-
tionary probability density distribution is shown in Fig. 6 and
compared to the experimental distribution for different val-
ues of the bifurcation parameter e. The different colors bars
in Fig. 6 stand for the normalized histogram obtained experi-
mentally in the quasi-one-dimensional fluidized shallow
granular bed close to subharmonic wave transition. It should
be noticed that another generalization of the Rayleigh distri-
bution has been obtained in oscillatory instabilities with lin-
ear multiplicative noise [20,21].

The probability density distribution (11) is an asymmetri-
cal function with respect to its maximum. Thus, as shown in
Ref. [26], the most relevant quantity for characterizing
P(R,&, 7) is its most probable value and not its mean value.
The value of R, corresponding to the maximum of
P(R,&,7) occurs at

e+\e?+2y
Rmax= 2 . (13)

The average of R can also be computed but its analytical
form is much more complex. The simplicity of this expres-
sion allows a direct interpretation of its parameters and, as it
will be shown later, is a fairly good approximation to the
average value of R. For large positive &, the expression (13)
for the most probable value can be accurately approached by
Ry ™ Ve. Hence, the amplitude of the subhamonic waves
increases with the square root of bifurcation parameter . For
negative &, the most probability value is approached by
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R...x =\ 71/2|el, that is, the amplitude of the precursor of the
standing wave is proportional to square root of noise level
intensity and inversely proportional to the bifurcation param-
eter. Figure 5 shows the experimental mean value for A, in
our quasi-one-dimensional fluidized shallow granular bed
close to subharmonic wave transition and its comparison to
the theoretical expression (13). More precisely, defining the
experimental control parameter e=(P,—P¢)/ P;, the continu-
ous curves in Fig. 5 are fits of the form

€+ \rez+27]
(A,) = ay - (14)

where P; is the critical P, and # is the noise intensity. Here,
the fitting parameters are P, 7, and the scale factor «,. For
our experimental setup, the value of noise intensity is #
~35X 1073, which is within the experimental and numerical
ranges already reported in [17,22]. As already stated in [22],
this noise intensity is almost 1 order of magnitude larger than
the largest noise strength obtained in experiments in ordinary
fluids near the critical point, while values typical for convec-
tion are closer to 1072 [38].

The generalized Rayleigh distribution possesses only one
maximum. Below the bifurcation point, the maximum of the
distribution is reached for a small value of R,,. As the bi-
furcation parameter is increased, the maximum of the distri-
bution decreases and R,,,,, moves to larger values (cf. Fig. 6).
Increasi_nthhe bifurcation parameter up to the critical value
e,=7/32 [26], the maximum of the distribution continues
systematically to decrease, while R_,, moves further to a
larger values. Note that this behavior of probability density
function even occurs for values above the bifurcation point
(0<e=g,). Increasing further the bifurcation parameter, the
maximum moves to larger values, however, the maximum
systematically increases with the bifurcation parameter as is
illustrated in Fig. 6. Hence, a bigger dispersion of the
system—that is, the system is more noisy—is expected close
to the transition at e=g.. The probability density distribution
shown in Fig. 6 depicts the above scenarios close to the
bifurcation.

However, for even larger values of the bifurcation param-
eter, the experimental normalized histograms change their
behavior. Namely, the maximum of probability density func-
tion decreases when the pressure amplitude P, is increased.
Ultimately, it increases again. Figure 7 illustrates this behav-
ior. Therefore, the generalized Rayleigh distribution formula
(11) only describes the probability density distribution close
to subharmonic wave transition of forced systems. For larger
distances to the bifurcation point, additive noise is not
enough to explain the experimentally observed behavior.

C. Amplitude equation with multiplicative noise

To understand the density distribution function far from
the transition point, we must to take into account in the the-
oretical description the amplitude dependence of noise—
multiplicative noise. For the sake of the simplicity, we can
approach the multiplicative noise term by
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FIG. 7. (Color online) Theoretical interpolations of the probabil-
ity density distributions obtained from the experimental normalized
histograms of the amplitude fluctuations for increasing e.

L(Ast) = Loolt) + aALyo(1) + BALo (1), (15)

where a and B are arbitrary coefficients. y(1), {,0(2), and
£o1(1) have zero mean values and are delta-correlated follow-
ing Eq. (5). Hence, all noise terms are independent. Using
the vectorial notation of the previous section, the amplitude
equation reads

JF
gq"=-g" aq” Vi + k(q.0)]. (16)

where the extra multiplicative noise terms are K=[aA{(1)
+BALy (1), @A L 1o(1) + BALy (1)].

Analogously to the model represented by Eq. (6), the de-
terministic dynamics of the new model is characterized by
the minimization of the Lyapunov function F. The equation
of the density probability distribution now reads [34]

d IF d d
opP=—\e" Pl+ny gt P
dq aq* aq” aq*

J , d
€ D s
+ 17— | e NAP— P (17)
dq gt

where y= a?+ % The second line is directly the corrective
term associated to the effect of the simple multiplicative term
we have added to our model. To characterize the stationary
regime and considering that close to the bifurcation the am-
plitude A is small, then we assume y]A|>< 1. Hence, the last
term of Eq. (17) can be considered as a perturbation. Then,
the stationary probability satisfies

b 9F 1.9
1+ vAPlag"  Pag”

Expanding the left-hand side in 7 series and considering the
ansatz for the probability P=ce~"*9/7, where ® <1, we ob-
tain after straightforward calculations
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FIG. 8. (Color online) Theoretical probability density distribu-
tions formula (20) as function of bifurcation parameter with %
=0.1 and y=0.2. ¢ increases to the right with a step of 0.2. Arrow
shows the curve for £=0.0.

90 a
— = —[yAP+ Y|A|*]—F. 18
P [AA[ + 7 I]aqﬂ (18)

Introducing the expression of the Lyapunov function and in-
tegrating, we find

Y Ol ﬁ) (@ @)
®~’y<82—3—’)/283—4. (19)

Hence, the density probability distribution for the amplitude
modulus for multiplicative noise takes the form

P(R,&,7) ~ cR PLER* =R} 2-A(s(R*12)-RO13)+*(2(R%/3)-R¥/4) ) (20)

This probability density distribution has qualitatively the
same form of the generalized Rayleigh distribution (11).
Nevertheless, the behavior of its maximum as a function of
the bifurcation parameter changes. As the bifurcation param-
eter moves further away from the bifurcation point, the
maximum initially increases and later decreases, as it is
shown in Fig. 8. Experimentally, we observe qualitatively the
same evolution of probability density distribution. This is a
signature of the effect of multiplicative noise in the system
under study. To accurately describe this behavior, a quantita-
tive description requires higher-order terms in the drift and

Rmax L.

Mean value

(Additive noise) 1.
__ Mean value

(Multiplicative noise)

T

T
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the noise terms. Another strategy to study theoretically the
probability density distribution is to consider the weak noise
limit (7—0), where the nonequilibrium potential can be
written as polynomial expansion in the amplitude [36]. Nev-
ertheless, given that the system under study is composed by
a few constituents (in comparison to Avogadro’s number, for
instance), the intensity of the noise, which is related to the
fluctuations of the internal degrees of freedom of the granu-
lar layer, is not small at all. Hence, the strategy described
above does not apply. Experimentally, we have compared the
amplitude modulus of the subharmonic standing waves to the
simple expression for the most probable value [Eq. (13)] as it
is depicted in Fig. 5. Figure 9 shows the mean value obtained
with the probability density distribution of the modulus for
additive and multiplicative noises, which are indistinguish-
able. In this figure, we also present a comparison of the mean
and most probable values, following formula (13), where one
can conclude that the most probable value is an adequate
statistical quantity [26].

V. CONCLUSIONS AND COMMENTS

Fluidized granular matter lacks of a well-established mac-
roscopic continuum description, mainly due to the large in-
herent fluctuations which granular matter display. However,
it exhibits similar dynamical behaviors as do everyday fluids.
An example of this fact is the appearance of surface waves.
Here, we show that the pattern formation process of standing
fluctuating subharmonic waves on a fluidized quasi-one-
dimensional shallow granular bed can be understood in terms
of a universal theory of dynamical systems. This approach
succeeds in describing qualitatively, through the use of am-
plitude equations, bifurcation theory, and stochastic pro-
cesses, the growth of the critical mode of the pattern in a
fluctuating medium, such as a fluidized shallow granular
layer. Measurements of the amplitude of the critical mode of
the fluctuating subharmonic waves close to the transition are
in quite good agreement with those inferred from a universal
stochastic amplitude equation. This allows us to determine
the bifurcation point, the noise intensity, and, even, to char-
acterize the appearance of precursors to the surface wave

FIG. 9. (Color online) Mean values and most
probable value as functions of bifurcation param-
eter with #=0.1 and y=0.2. The continuous dark,
light, and dashed curves, respectively, are the
most probable formula (13) and mean values ob-
taining from the probability density distribution
in the additive and the multiplicative noises.
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pattern. Therefore, close to the spatial instability, the most
appropriate and simplest theoretical description to compare
experimental results is the amplitude equation given by Eq.
(2).

We study also the statistical properties of the amplitude
fluctuations of the pattern. For the stationary state observed
experimentally, we show that probability density distribution
is well described by a generalized Rayleigh distribution,
which we compute directly as the stationary solution of the
Fokker-Planck equation of the amplitude fluctuating evolu-
tion. In addition, we present a theoretical description of the
behavior of the amplitude fluctuations far from the bifurca-
tion point. The large amplitude fluctuations which are ob-
served experimentally are attributed to the multiplicative na-
ture of noise in our system under study. Further questions
remain to be answered, which are related directly to the
mechanism of the instability in air-mediated fluidization. For
instance, subcritical behavior of the pattern amplitude has
been observed in preliminary experiments [29]. Experimen-
tal and theoretical studies are currently being performed in
this direction.

PHYSICAL REVIEW E 81, 046208 (2010)

The presented theoretical description is universal. A sim-
plified form was indeed used to model the experimental data
obtained in a liquid crystal system [26]. It should also be
applicable to other systems that present bifurcations in noisy
environments, such as in a vibrated granular layer that un-
dergoes a subharmonic wave transition [17] and for the os-
cillatory instability of magnetic grains in a turbulent flow
[39]. In fact, the latter work presents bifurcation diagrams
that resemble those presented here.
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