
RESEARCH ARTICLE

Parametric CAD modeling for open source

scientific hardware: Comparing OpenSCAD

and FreeCAD Python scripts

Felipe MachadoID*, Norberto Malpica☯, Susana Borromeo☯

Area of Electronics Technology, Universidad Rey Juan Carlos, Móstoles, Spain

☯ These authors contributed equally to this work.

* felipe.machado@urjc.es

Abstract

Open source hardware for scientific equipment needs to provide source files and enough

documentation to allow the study, replication and modification of the design. In addition,

parametric modeling is encouraged in order to facilitate customization for other experiments.

Parametric design using a solid modeling programming language allows customization and

provides a source file for the design. OpenSCAD is the most widely used scripting tool for

parametric modeling of open source labware. However, OpenSCAD lacks the ability to

export to standard parametric formats; thus, the parametric dimensional information of the

model is lost. This is an important deficiency because it is key to share the design in the

most accessible formats with no information loss. In this work we analyze OpenSCAD and

compare it with FreeCAD Python scripts. We have created a parametric open source hard-

ware design to compare these tools. Our findings show that although Python for FreeCAD is

more arduous to learn, its advantages counterbalance the initial difficulties. The main bene-

fits are being able to export to standard parametric models; using Python language with its

libraries; and the ability to use and integrate the models in its graphical interface. Thus, mak-

ing it more appropriate to design open source hardware for scientific equipment.

Introduction

Over the last years there have been a movement towards creating and sharing Open Source

Hardware (OSH). This trend has been empowered by open source hardware projects such as

the RepRap 3D printers [1] and the Arduino platform [2], which have made manufacturing

and electronic technology accessible and affordable. As a result to this movement many efforts

have been made to define open source hardware and set its best practices [3] [4] [5].

Inspired by this movement, an engineering research area has emerged to develop open

source scientific hardware and laboratory equipment [6] [7] [8] [9] [10]. Open source scientific

hardware not only allows a more affordable laboratory equipment, but also contributes to the

development of Open Science by facilitating the replication and comparison of the scientific

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 1 / 30

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Machado F, Malpica N, Borromeo S

(2019) Parametric CAD modeling for open source

scientific hardware: Comparing OpenSCAD and

FreeCAD Python scripts. PLoS ONE 14(12):

e0225795. https://doi.org/10.1371/journal.

pone.0225795

Editor: Talib Al-Ameri, University of Glasgow,

UNITED KINGDOM

Received: August 12, 2019

Accepted: November 12, 2019

Published: December 5, 2019

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles.

The editorial history of this article is available

here: https://doi.org/10.1371/journal.

pone.0225795

Copyright: © 2019 Machado et al. This is an

open access article distributed under the

terms of the Creative Commons Attribution

License, which permits unrestricted use,

distribution, and reproduction in any medium,

provided the original author and source are

credited.

Data Availability Statement: Source files and CAD

files are available in these two repositories: For

http://orcid.org/0000-0001-7674-0943
https://doi.org/10.1371/journal.pone.0225795
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225795&domain=pdf&date_stamp=2019-12-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225795&domain=pdf&date_stamp=2019-12-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225795&domain=pdf&date_stamp=2019-12-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225795&domain=pdf&date_stamp=2019-12-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225795&domain=pdf&date_stamp=2019-12-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225795&domain=pdf&date_stamp=2019-12-05
https://doi.org/10.1371/journal.pone.0225795
https://doi.org/10.1371/journal.pone.0225795
https://doi.org/10.1371/journal.pone.0225795
https://doi.org/10.1371/journal.pone.0225795
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

experiments. Moreover, it favors the enhancement of experiments by letting others to improve

and customize the devices for different purposes.

As stated in the Open Source Hardware Statement of Principles [3], open source hardware

is hardware for which the design is made publicly available so that anyone can study, modify,

distribute, make, and sell the design or hardware based on that design.

Making OSH is not a matter of just providing an open source license for the hardware; in

addition, design files, documentation and any source code should be available in the preferred

format for making modifications to them and with an acceptable open license. Furthermore, it

is encouraged that these files are made editable with free and open source software (FOSS) [4]

[7] [11] [12].

Ideally, in order to maximize the ability of individuals to use and make the hardware, open

source hardware should provide unrestricted content, and use readily-available components

and materials, standard processes, open infrastructure and open-source design tools [3] [7].

The Open Source Hardware Definition [3] is based on the Open Source Definition for

Open Source software (OSS) [13] and adapted to the realms of tangible things. However, there

are some aspects of hardware that differ from software. First, unlike software, most of a hard-

ware project will fall within the scope of patent law rather than copyright law [14]. Secondly,

hardware designs demand a wider range of expertise because new areas of knowledge are

involved, particularly when including mechanics, electronics and software [15] [16].

And lastly, the source in hardware is not as clearly defined as in software, as Bonvoisin et al.

show from their study of several OSH products [5]. Their analysis reveals a wide range of inter-

pretations of open source hardware, exposing that many projects lack enough documentation

to replicate or modify the product.

This last issue unveils one of the main problems for OSH: the deficiency in documentation

to consider it truly open [5] [15] [17]. Bonvoisin et al. [5] assert that while software source

code unambiguously defines the software, i.e. the product; the source for tangible things is not

so clearly defined. Consequently, unlike OSH, the openness of OSS is implicitly fulfilled just by

providing the source code. Although this statement can be considered accurate; it could never-

theless be argued that proper documentation for OSS is also a need, especially for large projects

[18] [19]. It is unpractical to try to understand large and complex OSS projects without ade-

quate documentation. The 2017 Open Source GitHub Survey supports this idea by highlight-

ing that incomplete documentation is the biggest concern for OSS [20].

In addition to the stated OSH requirements, Oberloier et al. [7] encourage parametric

design of OSH for scientific equipment. Parametric design enables customization by providing

the flexibility to alter the model dimensions for other experimental purposes. Parametric mod-

els can be created using script-based computer-aided design (CAD) tools such as OpenSCAD

[21]. OpenSCAD is an open source software tool that may be considered the defacto standard

for OSH parametric design [8] as it has been widely used to create parametric OSH for labora-

tory equipment [7] [8] [22] [23] [24] [25] [26] [27].

The benefits of using a script-based CAD tool such as OpenSCAD are twofold. First, it

allows model customization by means of a parametric design. Secondly, it provides a source

code for the mechanical design, making it more similar to software. Thereby, addressing the

hardware absence of source code that Bonvoisin et al. pointed out [5]. Having a source code

for the hardware may mitigate the difficulties of OSH projects in defining their true openness.

Besides, it allows OSH projects to use software management tools such as control version, soft-

ware documentation and collaborative tools. In a way, the mechanical design would be similar

to the electronic design of digital circuits with hardware description languages; although in the

electronic field there is less availability of FOSS design tools to cover the whole process [16]

[28]

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 2 / 30

OpenSCAD: https://github.com/felipe-m/oscad_

filter_stage For FreeCAD: https://github.com/felipe-

m/freecad_filter_stage.

Funding: N.M. and S.B. were supported by

Spanish Department of Economy and

Competitiveness grant RTC-2015–4167-1 (http://

www.mineco.gob.es/; this department changed its

name); and Spanish Department of Science,

Innovation and Universities grant RTC-2017-6218-

1 (http://www.ciencia.gob.es/). The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0225795
https://github.com/felipe-m/oscad_filter_stage
https://github.com/felipe-m/oscad_filter_stage
https://github.com/felipe-m/freecad_filter_stage
https://github.com/felipe-m/freecad_filter_stage
http://www.mineco.gob.es/
http://www.mineco.gob.es/
http://www.ciencia.gob.es/

Unfortunately, one of the major limitations of OpenSCAD is its inability to export to indus-

try standard CAD file formats such as STEP [29] [30]. Although OpenSCAD can export the

models to tessellated formats that can be read in most CAD tools, these formats are only

approximate because they have lost their parametric dimensions. As many authors suggest

[12] [16] [31] [32], providing a standard file format is crucial since it allows others to modify

the OSH design with different CAD tools. This is a critical issue since the user may not be

familiar with a script-based CAD tool such as OpenSCAD.

In this paper we review script-based FOSS CAD tools in order to find an alternative to

OpenSCAD. Among these tools, we have found FreeCAD [33] to be a suitable candidate,

since it is able to export to standard parametric CAD formats. Although FreeCAD is mainly

used through its graphical user interface (GUI), it also allows creating CAD models using

Python programming language [34]. Therefore, in this paper we analyze OpenSCAD, which

is the most extensively used tool for modeling open scientific equipment with a program-

ming language, and compare it with Python scripts for FreeCAD (hereafter FreeCAD

Python).

In order to compare these tools, we have created a configurable OSH model of a motorized

optical filter stage. The filter stage has four components that have been modeled with both

OpenSCAD and FreeCAD Python. Modeling these parts with both tools has allowed us to ana-

lyze their strengths and weakness.

As a result of our analysis we suggest that although FreeCAD Python has a larger learning

curve, it has an extensive set of features that makes it more suitable and powerful for modeling

open source labware.

This paper is organized as follows. In the next section, script-based FOSS CAD tools are

reviewed. Next, the CAD models used as a test-bench are presented. Afterwards, the parame-

trization of the CAD models is described. The following section discusses the benefits and

drawbacks of the two CAD tools analyzed: OpenSCAD and FreeCAD Python. Conclusions are

drawn in the final section.

Script-based CAD tools for parametric modeling

In this study we analyze CAD tools for open source scientific equipment. Computer software

for solid modeling can be broadly classified into two types: parametric and free form mesh

modelers. The former create exact and complex mathematical data structures and models.

The latter generate a simple mesh of polygonal surfaces, also known as tessellated geometries.

Having the purpose of designing mechanical pieces, whose dimensions must be accurate,

parametric modelers are better fitted for the task. In addition to using a parametric modeler,

parametric modeling is also recommended for OSH labware [7]. In parametric modeling,

designers define the size, shape and position of geometric features and assembly components

in term of parameters [35] [36] [37] [38]. Since scripting is particularly appropriate for

parametric design [31] [39] [40], we have limited the analysis to CAD tools with scripting

capabilities. Finally, following the best practices for OSH [4] [7] [11] [12] we have only selected

free and open source software.

We had initially chosen OpenSCAD for being the most widely CAD tool used in parametric

modeling for open source scientific equipment. However, we needed to find an alternative

because OpenSCAD is not able to export to a standard parametric CAD file format such as

STEP [30].

There are other available FOSS CAD tools for solid modeling using a programming lan-

guage. Examples of these tools are BRL-CAD [41], CadQuery [42], PythonOCC [43], FreeCAD

[33], ImplicitCad [44], OpenJSCAD [45] and Blender [46].

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 3 / 30

https://doi.org/10.1371/journal.pone.0225795

Blender was rejected for being a free form mesh modeler, which is more suitable to create

natural or artistic designs rather than precise mechanical designs.

Both OpenJSCAD and ImplicitCad are similar to OpenSCAD. OpenJSCAD uses JavaScript

as a programming language. ImplicitCad is an entirely separate project from OpenSCAD, but

it has an OpenSCAD language interpreter. Thus, OpenSCAD designs can be imported to

ImplicitCad. However, neither OpenJSCAD nor ImplicitCad are able to export to standard

parametric file formats. Therefore, they have not been considered in the analysis as they do

not provide a solution for the main OpenSCAD disadvantage.

FreeCAD is a very active project that is able to export to standard parametric CAD formats.

Besides, it allows both GUI modeling and script-based modeling using Python. FreeCAD can

be totally controlled by Python scripts and provides an Application Programming Interface

(API) for solid modeling using Python scripts. Therefore, FreeCAD can be used by both

graphical designers and CAD programmers.

PythonOCC is a Python library that provides 3D modeling features. PythonOCC is a wrap-

per of the OCCT library [47], which is the same geometric modeling kernel that FreeCAD

uses. PythonOCC is able to export to standard parametric formats; nonetheless, as a Python

library without graphical interface, it may be too challenging for designers with less program-

ming experience.

BRL-CAD is a powerful solid modeler that has been active for more than 30 years; however,

it is an expert oriented tool with a long learning curve. Since the OSH labware designer is not

necessarily an expert CAD designer, we consider that an easier tool would be preferable.

CadQuery is a Python library that allows creating parametric models with a reduced

amount of code. CadQuery has two working versions: v1.2 [42] and v2.0 [48]. The former is

built on top of FreeCAD API and can be installed as a FreeCAD workbench. The latter is built

on PythonOCC. Both versions are able to export to standard parametric formats.

CadQuery v1.2 can be easily integrated into FreeCAD and be used with FreeCAD graphical

interface. Thus, CadQuery v1.2 will be included in the analysis as a part of FreeCAD. On the

other hand, CadQuery v2.0 is a new fork of CadQuery that is independent from FreeCAD. We

have not included it in our analysis because it has been recently released (December 2018) and

it is in an early development stage; however, we consider that it could be a promising alterna-

tive. At the present day the two versions remain compatible; hence, the CadQuery filter stage

model and the code snippets shown in this paper are valid for both versions.

Table 1 shows a summary of the FOSS CAD tools with scripting capabilities. For each tool,

the central column shows if it is able to export to the STEP standard parametric format. In

addition, the last column shows an important characteristic of the tool.

As it has been said, OpenSCAD is the prevalent CAD tool for OSH scientific equipment;

however, OpenSCAD has a major drawback related to exporting to standard exchange for-

mats. In order to find an alternative CAD tool, this article compares OpenSCAD with Free-

CAD Python. In this analysis, we will also include CadQuery v1.2 as a part of FreeCAD

workbenches.

Open hardware models created as test-bench

In order to compare the proposed CAD scripting tools, we have designed a parametric OSH

motorized optical filter stage. The stage allows positioning an optical filter along a linear axis.

The stage has four printable pieces modeled in both OpenSCAD and FreeCAD Python. They

have also been modeled using CadQuery library v1.2, which is installed as a workbench in

FreeCAD. The source code of the models is available in two software repositories: one for the

OpenSCAD models [49] and the other for the FreeCAD and CadQuery models [50].

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 4 / 30

https://doi.org/10.1371/journal.pone.0225795

These pieces are: a stepper motor bracket; an optical filter holder that can be attached to a

linear guide; and two pieces that are parts of a timing belt tensioner. The models are configur-

able; hence, they can be easily modified by just changing the model parameters. Fig 1 shows an

arrangement example of the configurable filter stage with its printable parts highlighted.

Following, the printable pieces used for the analysis will be explained with more detail. For

more information about the designs, the software repositories contain step-by-step tutorials

explaining the generation of the models [49] [50].

Motor bracket

The purpose of this piece is mounting the stepper motor to a structure. It has four holes

aligned to the mounting holes of the motor, and it has two slots to provide flexibility in secur-

ing the bracket to a surface. Besides, the bracket is reinforced along the sides to be able to hold

heavy motors (Fig 2A). Fig 2B illustrates how the motor is mounted on an aluminum profile.

Filter holder

The filter holder is a single printable piece to place an optical filter. It has various holes to

attach the piece to a linear guide. It has more bolt holes than needed to provide flexibility to

Table 1. FOSS CAD tools with scripting capabilities.

CAD tool STEP export Main characteristic

OpenSCAD No Widely used for parametric OSH labware

Blender No Not intended for mechanical CAD

OpenJSCAD No JavaScript, similar to OpenSCAD

ImplictiCad No Similar to OpenSCAD

FreeCAD Yes Both GUI and scripted modeling

PythonOCC Yes Just for scripting, no GUI

BRL-CAD Yes Expert oriented

CadQuery v1.2 Yes FreeCAD workbench

CadQuery v2.0 Yes Recently released, built on PythonOCC

Positive features for designing OSH labware are shaded in light blue. Negative features are shaded in light red. Non

shaded cell describe neutral features or that could be considered positive or negative.

https://doi.org/10.1371/journal.pone.0225795.t001

Fig 1. Arrangement example of the configurable filter stage. Printable parts are highlighted with colors: motor bracket (green), filter holder (yellow),

belt tensioner (blue and orange).

https://doi.org/10.1371/journal.pone.0225795.g001

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 5 / 30

https://doi.org/10.1371/journal.pone.0225795.t001
https://doi.org/10.1371/journal.pone.0225795.g001
https://doi.org/10.1371/journal.pone.0225795

use it with different linear guides or other structures. The piece has two timing belt clamps to

pull the filter along the desired direction (Fig 3A). Fig 3B shows the exploded view of the filter

holder mounted on a linear guide.

Belt tensioner

The belt tensioner is a more complex unit because it is composed by two printable parts and

some other elements such as an idler pulley, and a few bolts, nuts and washers. The printable

parts are an idler pulley tensioner and a tensioner holder. Fig 4 shows the belt tensioner with

its parts from two different perspectives. The tensioner holder (blue) and the idler tensioner

(orange) are the printable parts.

Fig 2. Motor bracket. (A) Drawing of the motor bracket. (B) Side view of the motor mount. The bracket and the

stepper motor are partially transparent to show the internal parts.

https://doi.org/10.1371/journal.pone.0225795.g002

Fig 3. Filter holder. (A) Drawing showing the filter holder parts. (B) Exploded view of the filter holder assembly to a

linear guide.

https://doi.org/10.1371/journal.pone.0225795.g003

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 6 / 30

https://doi.org/10.1371/journal.pone.0225795.g002
https://doi.org/10.1371/journal.pone.0225795.g003
https://doi.org/10.1371/journal.pone.0225795

To help understanding of the belt tensioner assembly, Fig 5 shows an exploded view of its

parts.

The belt tensioner works by turning the leadscrew. The leadscrew nut cannot rotate because

it is inserted inside the idler tensioner; thus, depending on the direction of the leadscrew rota-

tion, the belt tensioner will retract (Fig 6A) or extend (Fig 6B) the idler tensioner (orange). As

a consequence, this operation tightens or loosens the timing belt.

3D printing the models

These four pieces have been designed to be 3D printed without support structures. Printing

without support is faster, minimizes waste material, produces better surface finishing, reduces

Fig 4. Belt tensioner. (A) Belt tensioner side-front view. (B) Belt tensioner side-back view.

https://doi.org/10.1371/journal.pone.0225795.g004

Fig 5. Exploded view of the belt tensioner. The two printable parts are drawn in colors: tensioner holder (blue) and

idler tensioner (orange).

https://doi.org/10.1371/journal.pone.0225795.g005

Fig 6. Belt tensioner operation. The leadscrew tightens or loosens the idler tensioner (orange). (A) Side view of the

retracted belt tensioner. (B) Side view of the extended belt tensioner.

https://doi.org/10.1371/journal.pone.0225795.g006

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 7 / 30

https://doi.org/10.1371/journal.pone.0225795.g004
https://doi.org/10.1371/journal.pone.0225795.g005
https://doi.org/10.1371/journal.pone.0225795.g006
https://doi.org/10.1371/journal.pone.0225795

post processing work and thus, decreases the probability of damaging the piece due to the post

processing.

Fig 7 shows the orientation to print the pieces without support structures.

Parametric design

One of the main advantage of script-based modeling is the ability to change parameters values

and generate variations of the original model with little effort. Programmed modeling can be

time consuming compared to traditional graphical design, but the effort pays off when many

variations of the model are needed, or when not all the specifications have been set from the

beginning; thus, the final dimensions may change.

We have defined several parameters for the proposed models. Following, the main parame-

ters for the motor bracket, the filter holder and the belt tensioner will be described.

Motor bracket parameters

Depending on the stepper motor size the resulting bracket will have different dimensions;

hence, the main parameter is the standardized NEMA size of the motor. For example, the

NEMA size will define the parameter motorbolt_sep shown in Fig 8 and will also deter-

mine the minimum inner space for the motor. Other parameters such as walls thickness, the

length and width of the slots can be modified. Some of the main parameters are shown in

Fig 8.

As an example, Fig 9 shows the resulting brackets for two different motor sizes. Note that

the length of the slots have also been modified.

Filter holder parameters

The filter holder can be configured to carry different filter sizes and to be attached to almost

any bolt arrangement. For this purpose, the bolt hole positions and sizes are configurable. Fig

10 shows the main filter holder parameters. There are other parameters that are less critical

and are documented in the source code.

As an example, Fig 11 shows two filter holders that have been generated with different

parameters.

Fig 7. 3D printing orientation of the four printable models to avoid supports.

https://doi.org/10.1371/journal.pone.0225795.g007

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 8 / 30

https://doi.org/10.1371/journal.pone.0225795.g007
https://doi.org/10.1371/journal.pone.0225795

Belt tensioner parameters

Unlike the motor bracket and the filter holder, the belt tensioner is composed by various ele-

ments; consequently, some of the dimensions of these elements are interdependent. In these

cases, parametric design plays a significant role because it allows to establish the dependencies

Fig 8. Motor bracket main parameters.

https://doi.org/10.1371/journal.pone.0225795.g008

Fig 9. Two brackets for different stepper motor sizes.

https://doi.org/10.1371/journal.pone.0225795.g009

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 9 / 30

https://doi.org/10.1371/journal.pone.0225795.g008
https://doi.org/10.1371/journal.pone.0225795.g009
https://doi.org/10.1371/journal.pone.0225795

among the components. Thus, relieving the user from considering these relationships because

they are automatically taken into account by the parametric model.

Basically, the tensioner holder depends on the idler tensioner dimensions, and the idler ten-

sioner depends on the idler pulley dimensions. In particular, the parameters that determine

the dimensions of the idler tensioner are:

• Idler pulley size.

• Tensioner stroke.

• Thickness of the walls.

• Leadscrew metric.

The parameters that determine the dimensions of the tensioner holder are:

• Idler tensioner size (determined by the aforementioned parameters).

Fig 10. Main filter holder parameters.

https://doi.org/10.1371/journal.pone.0225795.g010

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 10 / 30

https://doi.org/10.1371/journal.pone.0225795.g010
https://doi.org/10.1371/journal.pone.0225795

• Belt height.

• Profile size where it is going to be mounted and its bolts size.

• Thickness of the walls.

Following, these parameters are explained in detail.

Idler pulley. Some of the dimensions of the printable pieces depend on the idler pulley

size. Idler pulleys can be easily acquired; but also, they can be made using bearings and wash-

ers, or they can be 3D printed. Fig 12 shows an example of an idler pulley made of a specific

bearing and some washers.

The idler pulley can be made with different component sizes. For example, Fig 13 shows

two possible configurations and their influence on the idler tensioner size. The figure shows

that the width of the idler tensioner is determined by the pulley size. Also, the space for the pul-

ley will vary depending on the pulley size.

Tensioner stroke. The tensioner stroke defines the length of the tensioner; that is to say,

how much it can be extended or retracted. Fig 14 shows three different tensioner stroke values

and their influence on the tensioner length.

Wall thickness. The thickness of the walls has an effect on the overall height of the ten-

sioner (Fig 15). The wall thickness has also a small influence on the length.

Fig 11. Two filter holders for different filter sizes and linear guides.

https://doi.org/10.1371/journal.pone.0225795.g011

Fig 12. Example of an idler pulley made out of a bearing and some washers.

https://doi.org/10.1371/journal.pone.0225795.g012

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 11 / 30

https://doi.org/10.1371/journal.pone.0225795.g011
https://doi.org/10.1371/journal.pone.0225795.g012
https://doi.org/10.1371/journal.pone.0225795

Leadscrew diameter. Depending on the leadscrew diameter, a different size for the nut

hole will be needed. This will have a small effect on the idler tensioner length (Fig 16). Obvi-

ously, the diameter of the leadscrew hole will also change.

Idler tensioner size. All the previous parameters determine the idler tensioner dimen-

sions. Since the idler tensioner is coupled inside the tensioner holder, the idler tensioner size

Fig 13. Comparing two idler tensioners made out of different components. The size of the idler tensioner is smaller when

it contains an idler pulley using a M3 bolt (A), than when using a M4 bolt (B). For example, the space for the pulley or

the tensioner width are smaller for case A than case B, as the figure shows that sep_m3 < sep_m4 and tens_w_m3 <
tens_w_m4.

https://doi.org/10.1371/journal.pone.0225795.g013

Fig 14. Idler tensioners with different stroke lengths.

https://doi.org/10.1371/journal.pone.0225795.g014

Fig 15. Idler tensioners with different wall thickness.

https://doi.org/10.1371/journal.pone.0225795.g015

Fig 16. Idler tensioners with different leadscrew diameters.

https://doi.org/10.1371/journal.pone.0225795.g016

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 12 / 30

https://doi.org/10.1371/journal.pone.0225795.g013
https://doi.org/10.1371/journal.pone.0225795.g014
https://doi.org/10.1371/journal.pone.0225795.g015
https://doi.org/10.1371/journal.pone.0225795.g016
https://doi.org/10.1371/journal.pone.0225795

impacts on the size and shape of the tensioner holder. Fig 17 shows two idler tensioners having

different parametric values. The corresponding tensioner holders also result in different shapes

and sizes. Note how the wall thickness is the same parameter for both the holder and the

tensioner.

Belt height. This parameter sets the position of the bottom of the belt along the height of

the tensioner (Fig 18A). Changes in this parameter will generate taller or shorter tensioner

holders as shown in Fig 18B.

Base width. The base width or profile size indicates the profile size where the belt ten-

sioner will be mounted. Fig 19 shows the resulting belt tensioners for three different profile

sizes.

Other parameters. There are other parameters but they do not have a considerable influ-

ence over the size. Examples of such parameters are the radius of the fillets or the size of the

profile bolts. They are documented in the source code [49] [50].

Discussion

In this section we compare OpenSCAD and FreeCAD Python. The analysis will include Cad-

Query v1.2 as a part of FreeCAD since, as stated above, CadQuery v1.2 can be added as an

Fig 17. Tensioner holder dimensions depending on idler tensioner sizes.

https://doi.org/10.1371/journal.pone.0225795.g017

Fig 18. Belt height parameter. (A) Definition of the belt height. (B) Belt tensioners with different belt heights.

https://doi.org/10.1371/journal.pone.0225795.g018

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 13 / 30

https://doi.org/10.1371/journal.pone.0225795.g017
https://doi.org/10.1371/journal.pone.0225795.g018
https://doi.org/10.1371/journal.pone.0225795

external FreeCAD workbench. Throughout this section, we will use the terms CadQuery work-

bench or just CadQuery to refer to CadQuery v1.2.

We have organized the discussion in four main topics: the geometric modeling kernel, the

usability, the programming language characteristics and the tool features.

Geometric modeling kernel

Both OpenSCAD and FreeCAD use an external library as a geometric modeling kernel.

OpenSCAD uses the CGAL constructive solid geometry library [51]. In constructive solid

geometry (CSG) solid models are created by applying successive operations to a set of basic

shapes. These shapes are called primitives and the operations can be rigid motions (such as

translation and rotation) or boolean operations (union, intersection and difference) [52] [53].

FreeCAD uses the Open Cascade Technology (OCCT) libraries [47]. OCCT is based on

boundary representation (B-rep), in which objects are represented by their topological bound-

aries. A solid model is defined by a set of surface elements that delimit the boundary between

the interior and the exterior of the solid. The surface elements are often defined by parametric

equations [52] [53].

CadQuery v1.2 is a Python library built on top of FreeCAD API; consequently, it ultimately

also uses the OCCT kernel.

One of the most serious disadvantages of OpenSCAD is the use of CGAL because CGAL

works with polygonal meshes rather than parametric models. On the other hand, this problem

is not present in FreeCAD because OCCT is a parametric modeler.

Easy of use

The usability has been divided into two subsections: how difficult is to step up the tool to just

start coding and how easy is to model with the given language.

Tool setup. OpenSCAD is extraordinarily easy to set up. OpenSCAD has an editor win-

dow where any code can be tested; thus, it is a matter of start coding and then, clicking a but-

ton to save, preview, render or generate the resulting STL file of the model. The code can be

saved in a text file with an �.scad extension.

Moreover, OpenSCAD has some model examples that can be loaded from the menu. This

is a simple but a very useful characteristic to test the tool capabilities and learn by example.

Fig 19. Belt tensioners with different base width.

https://doi.org/10.1371/journal.pone.0225795.g019

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 14 / 30

https://doi.org/10.1371/journal.pone.0225795.g019
https://doi.org/10.1371/journal.pone.0225795

OpenSCAD allows to have file dependencies in order to keep commonly used functions or

constants in a different file. To define the location of these files, the relative path has to be

included in the appropriate command.

On the other hand, using Python scripts in FreeCAD is not that simple. Actually, the tuto-

rial about using Python in FreeCAD is placed in a section called “Power users hub” [54], what

suggest that FreeCAD is not intended to be used in this way by the novice.

Since modeling in FreeCAD is primarily conceived to be done graphically instead of pro-

grammed, there is no code editor window when starting FreeCAD as in OpenSCAD. Instead,

we have found two options.

The first option is the Macro Editor, where Python scripts can be executed and saved in the

User macro directory.

The second option is the Python Console, where any command can be executed; however,

it is a console, not a file editor where the user can save their design in a text file, as it is in

OpenSCAD. From this console, any Python file can be loaded, but it is not straightforward.

Similarly, loading other files dependencies is not direct unless the files are kept inside some

specific directories.

The associated FreeCAD Python software repository of the OSH filter stage design [50]

includes further information about how to execute the scripts.

Alternatively, the CadQuery workbench can be easily installed in FreeCAD through the

Addon Manager, which is available from the graphical user interface. This workbench includes

an editor window that allows editing and executing Python code. Furthermore, this work-

bench has several CadQuery example designs that can be loaded to learn by example.

CadQuery workbench and its editor can be used to design using both CadQuery and Free-

CAD APIs. Therefore, it is a good place to start modeling with FreeCAD Python scripts in any

of these two options available. Nonetheless, we find that the error messages given through the

CadQuery workbench are more obscure than those given through FreeCAD Python console.

Thus, we find debugging with CadQuery more difficult than using the FreeCAD console.

Modeling. OpenSCAD language is similar to C programming language. OpenSCAD has a

few basic 2D and 3D primitives (such as circle, square, polygon, cube, sphere, polyhedron and

cylinder) and some operations and transformations. With these basic primitives and opera-

tions almost any technical piece can be modeled. Nevertheless, there are some operations that

we missed, such as filleting or chamfering.

Since OpenSCAD has a limited set of primitives and functions, it is relatively easy to learn.

There are good step-by-step tutorials that provide all the information to become skillful within

a short time [21] [55].

As an example, Fig 20A shows the OpenSCAD code to model a box (rectangular cuboid).

FreeCAD uses Python; thus, there is no need to learn a new programming language for

those who already know it. FreeCAD offers a Python Application Programming Interface

(API) to its OCCT kernel [47]. This API allows creating and accessing OCCT geometric primi-

tives and functions. Essentially, there are two different kind of objects in FreeCAD Python:

OCCT shapes and FreeCAD objects. OCCT shapes are the underlying OCCT solid models.

On the other hand, FreeCAD objects link the OCCT shapes to their graphical representation.

Therefore, in order to display an OCCT shape in FreeCAD graphical interface, there should be

a FreeCAD object associated to that OCCT shape.

Fig 20B shows a FreeCAD Python script where these two objects are created. The OCCT

shape (sbox) is created in line 5. The FreeCAD object is created in line 6; thus, drawing the

OCCT shape in the graphical interface. In addition to these objects, the code include lines 2

and 3 to import libraries, and line 4 to create a FreeCAD document to be able to save it. Once

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 15 / 30

https://doi.org/10.1371/journal.pone.0225795

the FreeCAD document is saved, not only the source code can be shared but also the FreeCAD

model, allowing it to be modified through the FreeCAD graphical interface.

Alternatively, FreeCAD API offers functions that automatically create FreeCAD objects

with its underlying OCCT shape. These functions hide the OCCT shape from the user. Fig

20C shows an example where a FreeCAD object (fbox) is created in line 4. This FreeCAD

object already links to its OCCT shape, which can be accessed through an attribute. Lines 6 to

8 are used to assign the box dimensional values.

Although there are some tutorials about FreeCAD Python scripting [54], they are not com-

prehensive and the documentation is neither complete nor well organized. However, since

FreeCAD GUI commands are just Python scripts, and these scripts can be redirected to Free-

CAD Python console, an alternative way to learn is to create models with FreeCAD GUI com-

mands and observe their corresponding Python scripts in the console.

CadQuery v1.2 is a Python library on top of the FreeCAD API. CadQuery eases parametric

feature-based modeling by providing methods to facilitate the location and creation of fea-

tures. Nevertheless, although the design approach is intuitive for simple or symmetrical mod-

els, we have found that it may be confusing for intricate pieces. CadQuery has well organized

documentation and tutorials, what improves the learning process [56].

CadQuery creates its own type of objects for solid modeling. Since CadQuery is a library on

top of the FreeCAD API, CadQuery objects also link to the underlying OCCT shapes. In addi-

tion, if we want to represent the shapes in the FreeCAD GUI, a FreeCAD object has also to be

created.

Fig 20D shows an example of a CadQuery script. A CadQuery object is created in line 4.

This object includes the underlying OCCT shape. Line 5 creates the FreeCAD object that

draws the shape in FreeCAD GUI, although the user may not realize that a FreeCAD object

has been created. Line 4 of Fig 20D exposes a differentiated CadQuery characteristic: CadQu-

ery builds the geometry from defined planes (Workplane).

As a summary, Fig 20 shows different codes to model a rectangular cuboid. The three

FreeCAD Python examples (B, C, D) contrast with OpenSCAD simplicity (A) and illustrate

the initial difficult that the newcomer may face using FreeCAD scripts. He will not only

need to learn how to describe a model using a programming language, but also he would

have to understand the intricacies of the different objects, methods, libraries and the

underlying OCCT kernel. It may not be a problem if the designer has a programming back-

ground, but if the designer has little experience in programming, the initial barrier could be

high.

Fig 20. Sample codes to model a rectangular cuboid. Code (A) is modeled in OpenSCAD. Codes (B) and (C) are modeled using FreeCAD Python

scripts. Code (D) is modeled using a Python script for FreeCAD CadQuery workbench.

https://doi.org/10.1371/journal.pone.0225795.g020

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 16 / 30

https://doi.org/10.1371/journal.pone.0225795.g020
https://doi.org/10.1371/journal.pone.0225795

Programming language characteristics

In this subsection, some of the most significant programming language characteristics of both

tools are compared. The analysis includes the programming paradigm, the scope of variables,

the data types and the libraries.

Programming paradigm. Programming languages can be classified based on their fea-

tures. OpenSCAD is a declarative, purely functional language [55]; whereas Python supports

multiple programming paradigms, including procedural, object-oriented, and functional pro-

gramming [34].

As a consequence of OpenSCAD functional programming paradigm, variables are set at

compile time, not at run time. Therefore, variables keep a constant value during their entire

lifetime. If a variable is assigned a value multiple times, only the last value is used in all places

of the code. This characteristic can be confusing for programmers used to procedural lan-

guages such as C or Python. For example, in Fig 21A variable x will have a constant value of

10; consequently, this script will create two spheres of the same radius 10. The assignment in

line 1 has no effect and may mislead the designer in thinking that the spheres will have differ-

ent size. The sphere created in line 2 will have a radius of 10 even that the final assignment of

variable x is made afterwards (line 3).

For this same reason, the assignment x = x + 1 is not valid in OpenSCAD (Fig 21B).

On the other hand, Python is a multi-paradigm language and variables can be modified at

running time as in procedural languages. Furthermore, it can make use of other paradigms

such as object oriented programming, which is extensively adopted in FreeCAD Python.

Functional languages have benefits such as being more predictable and less prone to bugs;

however, the programmer used to procedural paradigms may find functional programming

too rigid to make fully parametric designs.

Scope of variables. Variables are created within a scope in OpenSCAD; thus, their values

are not available outside that scope. Fig 22A shows a situation where the variable scope may

produce a different behavior than expected. Since y is assigned both outside and inside the if

statement, y will have two different values depending on the scope. As a consequence, the

Fig 21. OpenSCAD sample codes to show the effect of its functional programming paradigm. (A) Assignment in

line 1 has no effect since variables keep a constant value during their entire lifetime. (B) The code shows an invalid

assignment since variables cannot change their values.

https://doi.org/10.1371/journal.pone.0225795.g021

Fig 22. Sample codes to show the variable scope in OpenSCAD. (A) Assignment in line 4 has no effect outside the if

statement; therefore the sphere in line 7 will have a radius of 1. (B) This code produces the same result as in (A) even

that the variable assignments are placed after the sphere function calls that use those variables.

https://doi.org/10.1371/journal.pone.0225795.g022

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 17 / 30

https://doi.org/10.1371/journal.pone.0225795.g021
https://doi.org/10.1371/journal.pone.0225795.g022
https://doi.org/10.1371/journal.pone.0225795

sphere in line 7 will not be affected by the assignment of y inside the if statement (line 4); thus,

producing spheres of different size.

Note how scripts in Fig 22A and 22B are equivalent. The differences lie in the assignments

placement, but since OpenSCAD is a functional language, both descriptions generate the same

model.

OpenSCAD scoping rules can make parametric models more complicated to design when

establishing variable dependencies. For example, suppose we want to create a cylinder whose

height depends on its radius value. If the radius is 5, the height will be 15; otherwise, the height

will be 20. Fig 23 shows shows three attempts to do this.

The first attempt (Fig 23A) will not work because h has not been assigned outside the if

statement; therefore, it will be undefined when calling the cylinder function.

The second script (Fig 23B) has solved the problem by creating the cylinder inside the if

alternatives. Nevertheless, this solution lacks efficiency because the same function call has to

be repeated. For this small example we had to repeat the cylinder function call in lines 4 and 7.

The third example (Fig 23C) uses the conditional ? to avoid assigning h in an inner scope.

Although we can resort to the conditional ? to create variables in an outer scope, it can be

cumbersome to use it when there are many alternatives or when there are more than one vari-

able to assign. We have experienced this problem when defining the dependencies of the belt

tensioner, as it can be seen in OpenSCAD file kidler.scad [49]. Nonetheless, it can be

used efficiently in combination with vectors, as some libraries of technical components have

done [57] [58] [59].

Python does not have this behavior. Variables can be updated anywhere in the code, and

they keep their value within their scope. Unlike OpenSCAD, the programmer can define the

scope of variables using local, global and nonlocal variables.

Data types. OpenSCAD has a limited set of data types: number (64 bit floating point),

boolean, string, range, vectors and undefined. There are not user defined types in OpenSCAD.

In contrast, Python has several data types. Python provides the standard built-in data types,

but also other specialized data types defined in the Python standard library and other available

modules. In addition, programmers can create their own data types.

The standard data types can be summarized in numbers (integer, floating point and com-

plex), strings, lists, tuples, sets and dictionaries. Some of them can be very useful for managing

information, like lists and dictionaries. We have extensively used them to define the dimen-

sions of the components of our OSH test-bench.

For example, Fig 24A shows how a dictionary can be used to get the thickness of a DIN 125

washer. In Fig 24B a two-dimensional dictionary is used.

It is possible to have relatively analogous structures in OpenSCAD to get same result. Like

using the conditional ? with vectors (similar to Fig 23C). However, Python data types allow

Fig 23. Parametric design and variable scope in OpenSCAD. Code (A) will not work because h has not been defined outside the if statement.

Codes (B) and (C) will work.

https://doi.org/10.1371/journal.pone.0225795.g023

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 18 / 30

https://doi.org/10.1371/journal.pone.0225795.g023
https://doi.org/10.1371/journal.pone.0225795

much more flexibility; moreover, Python offers a set of optimized methods and functions to

manipulate these data structures efficiently.

Libraries. OpenSCAD has a limited set of functions; however, anyone can create libraries

to facilitate the design process. OpenSCAD has some libraries available ranging from mathe-

matical functions to the creation of useful shapes and mechanical parts [57] [58] [59] [60].

FreeCAD has libraries of components [57] [61] and also has modules to extend FreeCAD

functionality, such as CadQuery [42]. These modules provide a wide set of tools varying from

advanced modeling to the creation of all kind of mechanical objects. The modules are available

through the graphical interface as workbenches [62] [63].

In addition to these specific FreeCAD extensions, the FreeCAD Python programmer can

resort to the rich and versatile Python standard library and other specialized modules. Python

libraries are developed by a vast community, much larger than the FreeCAD or OpenSCAD

specific communities. This is of paramount importance because it provides innumerable stan-

dardized solutions to FreeCAD Python.

As an example, file manipulation in FreeCAD Python is made through Python libraries,

not because FreeCAD developers implemented that functionality. Consequently, if a FreeCAD

Python designer wants to include the ability to read data from a file, she would just need to use

the appropriate Python library to read and parse that file. In contrast, adding the ability to read

and manipulate files in OpenSCAD would require OpenSCAD developers to implement that

functionality.

This characteristic allows Python programmers to count on libraries for innumerable tasks.

Examples of this kind of tasks are reading text files to get parameter values; writing text files to

generate reports or bill of materials; performing many kind of computations, such as mathe-

matical, matrix and finite elements; error handling; working with data interchange formats,

like JSON, XML, YAML; among many other tasks. As a result, Python libraries add a broad

range of capabilities to FreeCAD Python.

Tool features

Both OpenSCAD and FreeCAD are multiplatform (Windows, MacOS and Linux) free and

open source software. OpenSCAD is under GPL2 and FreeCAD under LGPL2+.

This subsection analyzes two important features: the graphical interface and the import/

export capabilities. In addition, we explore some characteristics like the performance and the

suitability for modeling complete systems. To end, we look into the status of the software proj-

ect development.

Graphical user interface (GUI). OpenSCAD GUI has commands for visualization such

as zoom, rotation, change of perspective, among a few other commands. There is the option

to include axis and perform animations. OpenSCAD also allows changing the color and

Fig 24. Sample codes of dictionaries for defining component dimensions in Python. (A) Dictionary DIN125_H defines the height

(thickness) of some DIN 125 washers. Keys can be a float number, as in line 2. Line 6 shows how to obtain the height (0.5) of a DIN125

M2.5 washer from the dictionary. (B) Dictionaries can be multidimensional and can have strings as keys.

https://doi.org/10.1371/journal.pone.0225795.g024

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 19 / 30

https://doi.org/10.1371/journal.pone.0225795.g024
https://doi.org/10.1371/journal.pone.0225795

transparency of the objects, although it cannot be done through the GUI, but must be defined

in the code. OpenSCAD also features a parameter customizer that allows changing the model

parameters from the GUI.

On the other hand, since FreeCAD has been mainly devised to be used through its GUI, it

has all kind of commands to visualize, measure and transform the models. Commands are

organized in workbenches to perform related tasks. As an example, it has the Technical Draw

Workbench, which produces basic technical drawings of the models similar to Figs 8 and 10.

Another remarkable feature of FreeCAD is its ability to integrate the scripts as commands

in the graphical interface, allowing designers to generate and customize the models through

the GUI. Therefore, regular users would not need to work with the source code. As a conclu-

sion, FreeCAD GUI is clearly more powerful and flexible than OpenSCAD.

Import/Export capabilities. As we have said, OpenSCAD has limited export/import

capabilities. OpenSCAD can import some 2D file formats but only imports 3D tessellated file

formats such as STL. The problem with these file formats is that they no longer contain

parametric information.

This is an important limitation when working in projects with different CAD tool users.

The OpenSCAD designer cannot incorporate exact models from other CAD tools in her/his

design.

Likewise, OpenSCAD can only export to tessellated 3D file formats. These formats are suit-

able for 3D printing, but not to get an exact representation of the model. From our point of

view, this is one of the main OpenSCAD drawbacks, since it inhibits sharing exact dimensional

models. It seems that OpenSCAD is more oriented to the creation of models for 3D printing,

but not to create exact dimensional models of the pieces that can be used in other CAD tools.

Actually, as it has been said, the question is that OpenSCAD uses a kernel that works with

polygonal meshes rather than parametric models. Therefore, despite that the design have been

modeled parametrically in OpenSCAD, the parametric information is lost once the internal

model is generated.

Fig 25 visually explains this situation with an example. On the left we have the source codes

for OpenSCAD (Fig 25A) and FreeCAD (Fig 25B). OpenSCAD can only generate 3D tessel-

lated models, which can be exported to mesh file format such as a STL. As it can be observed,

the tessellated model is made of a polygonal mesh, what implies that the parametric dimen-

sions, such as the radius of the primitives (sphere, cone and cylinder), have been lost.

On the other hand, FreeCAD generates a parametric model that can be exported to a stan-

dard parametric file format such as STEP. This file format preserves its original dimensional

information and can be manipulated by most of CAD tools; that is to say, it can be used as a

source for future modifications in other CAD tools. This is an important feature, since other

potential users may not be interested in coding, or they use a CAD tool that cannot import

the source code. In addition, FreeCAD can also generate the tessellated model used for

production.

In addition to FreeCAD ability to import/export to standard parametric models, FreeCAD

has a workbench to offer interoperability with OpenSCAD. This workbench contains func-

tions to import and repair OpenSCAD models. Nevertheless, depending on the OpenSCAD

primitives used, some of the parametric information may be lost.

Speed. We have attempted to compare the time taken to generate the models in both

tools. However, since OpenSCAD creates a tessellated model, the speed depends on the mesh

resolution. The resolution can be defined by OpenSCAD special variables $fa, $fs and $fn.

Variable $fa defines the minimum angle for a fragment, $fs defines the minimum size of a

fragment.

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 20 / 30

https://doi.org/10.1371/journal.pone.0225795

On the other hand, there is no need to specify the mesh resolution in FreeCAD unless a tes-

sellated model is needed. Table 2 shows the time in seconds that took FreeCAD to generate the

parametric models. FreeCAD CadQuery models take a similar time than plain FreeCAD

Python because they use the same FreeCAD API. Actually, some of CadQuery models used in

this study took slightly less time because, in order to make the tutorials, the FreeCAD Python

models include the graphical representation of every step of the construction process. Never-

theless, since the execution times are very similar, for clarity purposes, only the execution time

of the plain FreeCAD Python models will be included.

In order to compare the speed, all the scripts have been executed in a computer with an Intel

Core i7-4700Q CPU at 2.4GHz and 8 GB RAM running 64 bit Windows 10 Home. In FreeCAD

Python the completion time has been measured with the function datetime.now() (code

is available in [50]). In OpenSCAD the completion time has been obtained by the provided ren-

dering report. This report does not provide fractions of seconds.

The tessellated models generated by both tools are different, as it can be appreciated in Fig

25. We have not found any option in OpenSCAD to generate a different kind of mesh.

Fig 25. Source codes and their generated models. (A) OpenSCAD can export to polygonal mesh models, but not export to parametric models. (B)

FreeCAD can export to both polygonal mesh models and standard parametric models.

https://doi.org/10.1371/journal.pone.0225795.g025

Table 2. Time to generate parametric models.

Parametric time OpenSCAD FreeCAD

Motor bracket � 0.43 s

Filter holder � 0.76 s

Idler tensioner � 0.45 s

Tensioner holder � 0.61 s

� OpenSCAD does not generate parametric models.

https://doi.org/10.1371/journal.pone.0225795.t002

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 21 / 30

https://doi.org/10.1371/journal.pone.0225795.g025
https://doi.org/10.1371/journal.pone.0225795.t002
https://doi.org/10.1371/journal.pone.0225795

FreeCAD has three meshing options: standard, Mefisto and Netgen. Each option has their

own parameters to adjust the resolution and sometimes the shape of the mesh. FreeCAD stan-

dard mesh seems to be the most similar to OpenSCAD mesh. FreeCAD standard mesh has

two parameters to define the mesh resolution: the angular deviation (ad) measured in angular

degrees, and the deviation of the surface (sd) measured in millimeters. The former limits the

angle between subsequent segments in a polyline. The latter limits the distance between a

curve and its tessellation [64]. Note that these parameters do not correspond to OpenSCAD

special variables; although in both cases, the smaller the values are, the higher the resolution

will be.

Starting from values that in our experience have provide a good 3D printing quality, we

have increased the resolution of both meshes in order to have more data to compare. We have

defined three levels of coarseness: coarse, normal and fine. Table 3 shows the chosen values for

these parameters.

Table 4 shows the number of elements (vertices, edges and facets) of each of the generated

meshes of the motor bracket. From the table we can see that the meshes generated by Open-

SCAD and FreeCAD are different, since for a similar number of vertices, FreeCAD meshes

have a much larger number of edges and facets than OpenSCAD meshes.

FreeCAD is clearly faster generating meshes, especially when the resolution is increased.

OpenSCAD times rise at a much higher rate for finer resolutions. At the finest resolution Free-

CAD is more than ten times faster.

FreeCAD generates the meshes from the parametric model. Therefore, once the parametric

model has been generated, the parametric time (Table 2) can be subtracted from the total time

(Table 4). Comparing the time values of these tables, it can be observed that FreeCAD only

uses a fraction of the total time to generate the mesh of the motor bracket.

Table 5 shows the same information for the filter holder. The filter holder is the most com-

plex piece. As a result, it has the largest amount of elements and it takes more time to generate

the meshes. Again, it can be observed that for larger meshes FreeCAD is much faster than

OpenSCAD. For the fine resolution is more than 50 times faster.

The idler tensioner and the tensioner holder are not intricate pieces. Their complexity lies

on their parameters dependencies, but once the pieces are created, the meshes are relatively

Table 4. Motor bracket: Number of vertices, edges and facets of the meshes and time to generate them.

Motor bracket OpenSCAD FreeCAD

Coarse Normal Fine Coarse Normal Fine

Vertices 479 807 1,568 402 722 3,394

Edges 719 1,211 2,352 1,242 2.202 10,218

Facets 242 406 786 828 1,468 6,812

Total time a 2 s 4 s 8 s 0.45 s 0.47 s 0.57 s

aFreeCAD time includes the generation of the parametric model (Table 2)

https://doi.org/10.1371/journal.pone.0225795.t004

Table 3. Selected parameter values to get different mesh resolutions.

OpenSCAD FreeCAD

$fa $fs ad sd

Coarse 6˚ 0.4 mm 30˚ 0.1 mm

Normal 6˚ 0.2 mm 15˚ 0.05 mm

Fine 3˚ 0.1 mm 3˚ 0.01 mm

https://doi.org/10.1371/journal.pone.0225795.t003

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 22 / 30

https://doi.org/10.1371/journal.pone.0225795.t004
https://doi.org/10.1371/journal.pone.0225795.t003
https://doi.org/10.1371/journal.pone.0225795

simple. (Table 6) shows their meshes size and the time to create them. The resulting data is in

line with of these tables support the previous analysis.

Fig 26 summarizes the total time to generate the meshes. As can be seen in the graph, the

worst case in FreeCAD (filter holder fine mesh) is slightly faster than the best case in Open-

SCAD (motor bracket coarse mesh). Nevertheless, given that the meshes are not equivalent

and the limited number of pieces used in the study, the results should be treated with caution.

System modeling. A complete mechanical system can be modeled with OpenSCAD and

there are some very good examples in OpenSCAD gallery [65]. Nevertheless, we believe that

OpenSCAD is more oriented to create solid models of individual pieces with the purpose of

3D printing. We find some arguments to support this idea.

First, a system model is useful to get a visual idea, document and share the complete device.

However, OpenSCAD lacks a powerful graphical interface and no model transformations can

be done through it.

Secondly, OpenSCAD import/export capabilities are limited to tessellated file formats; thus,

OpenSCAD models cannot be integrated in a design of a different CAD tool without losing

information. Conversely, a parametric model created in other CAD tool cannot be integrated

in a OpenSCAD design without information loss.

An example of the relevance of the import/export capabilities for generating a system

model is the collaboration between Electronic CAD (ECAD) and Mechanical CAD (MCAD)

tools to generate models that integrate electrical and mechanical components [66]. FreeCAD

Table 6. Idler tensioner: Number of vertices, edges and facets of the meshes and time to generate them.

Idler tensioner OpenSCAD FreeCAD

Coarse Normal Fine Coarse Normal Fine

Vertices 474 830 1,610 316 580 2,694

Edges 713 1,247 2,417 972 1,764 8,106

Facets 241 419 809 646 1,174 5,400

Total time a 4 s 7 s 13 s 0.54 s 0.54 s 0.61 s

Tensioner holder OpenSCAD FreeCAD

Coarse Normal Fine Coarse Normal Fine

Vertices 535 778 1,498 322 591 2,741

Edges 777 1,142 2,192 990 1,797 8,247

Facets 246 368 698 660 1,198 5,498

Total time a 6 s 8 s 16 s 0.63 s 0.64 s 0.71 s

aFreeCAD time includes the generation of the parametric model (Table 2)

https://doi.org/10.1371/journal.pone.0225795.t006

Table 5. Filter holder: Number of vertices, edges and facets of the meshes and time to generate them.

Filter holder OpenSCAD FreeCAD

Coarse Normal Fine Coarse Normal Fine

Vertices 1,972 2,746 5,422 1,178 2,282 11,114

Edges 2,958 4,119 8,133 3,600 6,912 33,408

Facets 1,000 1,387 2,725 2,400 4.608 22,272

Total time a 30 s 45 s 102 s 0,87 s 0,90 s 1,47 s

aFreeCAD time includes the generation of the parametric model (Table 2)

https://doi.org/10.1371/journal.pone.0225795.t005

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 23 / 30

https://doi.org/10.1371/journal.pone.0225795.t006
https://doi.org/10.1371/journal.pone.0225795.t005
https://doi.org/10.1371/journal.pone.0225795

parametric models of electronic components can be exported to electronic design tools such as

KiCad [67]. As a result, KiCAD can generate the whole CAD model of the electronic board

with its components. Finally, the resulting CAD model of the board could be integrated into

FreeCAD in order to create the CAD model of the whole electromechanical system. There is

even a FreeCAD workbench aiming to foster the collaboration between KiCad and FreeCAD

[68]. Although there is a way to do it in OpenSCAD, it is not direct and the parametric infor-

mation is lost.

Thirdly, OpenSCAD rendering speed slows in complex models, what supports the idea that

it is not a tool to generate a whole system.

In contrast, FreeCAD is conceived to model both individual pieces or a complete system. It

has a powerful GUI and it is mainly developed to be used in this way, but at the same time, it

has powerful programming capabilities. The generated models can be exported and imported

into standard formats, so CAD files can be incorporated and shared to the public without los-

ing information. As an example, the complete parametric OSH system presented in this article

(Fig 1) has been modeled using FreeCAD Python.

Tool development. To end this subsection we analyze both projects in terms of their

development. The objective is to compare the data publicly available in an attempt to obtain

some metrics in order to characterize the development. We have chosen some of the metrics

suggested by Crowston and Howison [69], such as the number of developers (contributors),

the level of activity (commits), cycle time (releases) and popularity (downloads). We also

include the number of lines of code to offer a intuitive metric of the project size. The informa-

tion have been gathered from [70] [71] [72] and the projects website, although we could not

find download statistics for OpenSCAD.

We observe from Table 7 that although both projects have a high level of activity, FreeCAD

is notably more active and have frequents releases. That could be predicted since a graphical

CAD tool would attract more users than a scripting CAD tool. However, from the analysis of

the contributions on parametric OSH for scientific equipment, we would think that there

probably are many more users of OpenSCAD than FreeCAD Python scripts.

Summary

To recapitulate, OpenSCAD is easy to setup and its modeling language hides the low level

details related to the internal data structures and their interaction with the geometry kernel.

Fig 26. Mesh generation times in OpenSCAD an FreeCAD.

https://doi.org/10.1371/journal.pone.0225795.g026

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 24 / 30

https://doi.org/10.1371/journal.pone.0225795.g026
https://doi.org/10.1371/journal.pone.0225795

Consequently, OpenSCAD is accessible to the non-expert programmer and allows designers

to focus on the CAD modeling.

However, OpenSCAD functional programming paradigm and its scoping rules may seem

cumbersome for those who are not used to them. Nonetheless, OpenSCAD main drawback is

that its kernel works with tessellated models, in which the parametric geometry is lost. As a

result, the interoperability with other CAD tools is dramatically reduced since it is not able to

export to standard parametric formats.

On the other hand, FreeCAD Python users need a programming language background to

deal with the setup and the intricate programming structures that are exposed. However,

installing FreeCAD CadQuery workbench allows FreeCAD users to avoid the setup difficulties

and provides them with a friendlier coding interface. Once this barrier is overcome, the Free-

CAD Python designer can enjoy a design tool that provides a plethora of advantages, such as

exporting to standard parametric formats, using CadQuery library and any other Python

libraries, and incorporating the scripted models into its graphical user interface, among many

others.

Finally, Table 8 outlines the comparison of both tools.

Conclusions

Designing open source scientific hardware using a programming language offers two clear

benefits: it allows parametric design and provides a source code for the hardware. Parametric

is design is a highly desirable characteristic for open source labware because it enables custom-

ization to suit different experiment purposes. On the other hand, providing a source code for

the hardware helps to make the hardware truly open by mending the lack of enough documen-

tation that OSH have.

Designing open source hardware using Python for FreeCAD has distinct advantages over

OpenSCAD. We consider that the longer learning curve of Python for FreeCAD is largely

compensated by three major benefits. First, the ability to export to standard parametric CAD

formats. Secondly, the usage of a widespread programming language with an extensive stan-

dard library. Lastly, the ability to use and integrate the generated models and the scripts in the

FreeCAD graphical interface; thus, allowing non-programmers designers to use and configure

the models.

Table 7. General project metrics.

Metric OpenSCAD FreeCAD

Lines of codea 129,641 3,181,812

Commits during last yearb 1,327 3,469

Contributors during last yearb 32 112

Latest release May 2019 (0.18.3) July 2019

Latest major release May 2019 (0.18.0) Mar. 2019

Previous major release Mar. 2015 (0.17.0) Apr. 2018

Downloads of latest major releasec N/A (0.18) 1,298,693

Downloads of previous major releasec N/A (0.17) 1,698,323

aNot including comment lines or blank lines.
bFrom Sep. 2018 to Sep. 2019.
cIncluding all minor releases. Downloads until Sep. 25th, 2019.

https://doi.org/10.1371/journal.pone.0225795.t007

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 25 / 30

https://doi.org/10.1371/journal.pone.0225795.t007
https://doi.org/10.1371/journal.pone.0225795

In the light of these clear benefits, we hope that our analysis and companion step-by-step

tutorials will encourage the scientific community to adopt Python for FreeCAD for modeling

parametric open source scientific equipment.

Future work will involve (1) the creation of modules to isolate the CAD designer from the

lower level kernel structures; (2) the integration of the scripted models in the FreeCAD graphi-

cal interface to allow non-programmers to easily parametrize the designs; and (3) exploration

of methodologies to aid parametric system modeling.

Table 8. Tool characteristics summary. The table is divided in the four topics: (1) geometric modeling kernel; (2) easy

of use, (3) programming languages characteristics and (4) tool features.

Topic OpenSCAD FreeCAD Python

KERN Computational Geometry Algorithms Library

(CGAL)

Open Cascade Technology (OCCT)

Based on Constructive Solid geometry (CSG) Based on boundary representation (B-rep)

Polygonal mesh model Parametric model (B-rep)

EASY Usable, easy to setup Complex setup—Improved with CadQuery

workbench

Easy to learn: reduced set of primitives and

functions

Complex to learn: many kind of functions and objects

Easy to learn: higher abstraction level Complex to learn: dealing with kernel structure

Step-by-step thorough tutorials Few scripting tutorials—Good tutorials for CadQuery

PROG Parametric design, code based, version control Parametric design, code based, version control

Specific programming language Widespread programming language (Python)

Declarative, purely functional paradigm Multi-paradigm, including procedural and object-

oriented

Cumbersome scoping rules Scope of variables can be defined

Data types: number, boolean, string, range, vector Whole range of Python data types and user defined

Specific OpenSCAD libraries Specific FreeCAD libraries

No libraries other than from OpenSCAD Python libraries provide solutions to countless

problems

Not good at handling input/output text files All kind of functions to read/write text files

No fillet or chamfer transformations Fillet and chamfer transformations

Minkowski and Hull transformations No Minkowski or Hull transformations

TOOL Multiplatform FOSS under GPL2 Multiplatform FOSS under LGPL2+

No modifications through GUI All kind of transformations through the GUI

No script integration in GUI Scripts can be integrated in the GUI

No import/export to standard parametric formats Import/export to standard parametric formats

Slow model generation Fast model generation

Difficult for system modeling Suitable for system modeling

Vibrant community creating OSH scientific

equipment

Almost no one creating open source labware

Active software development project Very active software development project

KERN, geometric modeling kernel; EASY, Easy of use; PROG, programming language characteristics; TOOL, tool

features.

Positive features are shaded in light blue. Negative features are shaded in light red. Non shaded cell describe neutral

features or that could be considered positive or negative. Negative FreeCAD features that improve when using the

CadQuery workbench are shaded yellow.

https://doi.org/10.1371/journal.pone.0225795.t008

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 26 / 30

https://doi.org/10.1371/journal.pone.0225795.t008
https://doi.org/10.1371/journal.pone.0225795

Author Contributions

Conceptualization: Felipe Machado.

Data curation: Felipe Machado.

Formal analysis: Felipe Machado.

Funding acquisition: Norberto Malpica, Susana Borromeo.

Investigation: Felipe Machado.

Methodology: Felipe Machado.

Project administration: Norberto Malpica, Susana Borromeo.

Resources: Felipe Machado, Norberto Malpica, Susana Borromeo.

Software: Felipe Machado.

Supervision: Norberto Malpica, Susana Borromeo.

Validation: Felipe Machado.

Visualization: Felipe Machado.

Writing – original draft: Felipe Machado.

Writing – review & editing: Felipe Machado, Norberto Malpica, Susana Borromeo.

References
1. Jones R, Haufe P, Sells E, Iravani P, Olliver V, Palmer C, et al. RepRap—the replicating rapid prototy-

per. Robotica. 2011; 29(1):177–191. https://doi.org/10.1017/S026357471000069X

2. Arduino [Internet]. Available from: https://www.arduino.cc/. Archived 2019 Sep 23: https://web.archive.

org/web/20190923025007/https://www.arduino.cc/.

3. Open source hardware definition v1.0. 2011 Feb. In: Open Source Hardware Association [Internet].

Available from: https://www.oshwa.org/definition/. Archived 2019 Sep 20: https://web.archive.org/web/

20190920191338/https://www.oshwa.org/definition/.

4. Bonvoisin J, Schmidt KC. Best practices of open source mechanical hardware. Report. Technische Uni-

versität Berlin. 2017 Feb. Available from: https://depositonce.tu-berlin.de/handle/11303/6164.

5. Bonvoisin J, Mies R, Boujut JF, Stark R. What is the “source” of open source hardware?. Journal of

Open Hardware. 2017; 1(1):5. https://doi.org/10.5334/joh.7

6. Gathering for open science hardware [Internet]. Available from: http://openhardware.science/. Archived

2019 Oct 6: https://web.archive.org/web/20191006135812/http://openhardware.science/.

7. Oberloier S, Pearce JM. General design procedure for free and open-source hardware for scientific

equipment. Designs. 2017; 2(1):2. https://doi.org/10.3390/designs2010002

8. Pearce J. Open-source lab: how to build your own hardware and reduce research costs. 1st ed. Else-

vier; 2014.

9. Chagas AM. Haves and have nots must find a better way: the case for open scientific hardware. PLoS

Biol. 2018; 16(9):e3000014. https://doi.org/10.1371/journal.pbio.3000014

10. Drack M, Hartmann F, Bauer S, Kaltenbrunner M. The importance of open and frugal labware. Nat Elec-

tron. 2018; 1(9):484–486. https://doi.org/10.1038/s41928-018-0133-x

11. Best practices for open-source hardware 1.0. 2013 Apr. In: Open Source Hardware Association [Inter-

net]. Available from: https://www.oshwa.org/sharing-best-practices/. Archived 2019 Apr 15: https://web.

archive.org/web/20190415235203/https://www.oshwa.org/sharing-best-practices.

12. Vallance R, Kiani S, Nayfeh S. Open design of manufacturing equipment. In: CHIRP 1st Intl. Conf. on

agile, reconfigurable manufacturing; 2001. p. 33–43. Available from: https://pdfs.semanticscholar.org/

a3bf/d104dbc6b1d59a379ec708489ffb28be6b0f.pdf.

13. The open source definition. 2007 Mar. In: The Open Source Initiative [Internet]. Available from: https://

opensource.org/docs/osd. Archived 2019 Sep 21: https://web.archive.org/web/20190921171008/

https://opensource.org/docs/osd.

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 27 / 30

https://doi.org/10.1017/S026357471000069X
https://www.arduino.cc/
https://web.archive.org/web/20190923025007/https://www.arduino.cc/
https://web.archive.org/web/20190923025007/https://www.arduino.cc/
https://www.oshwa.org/definition/
https://web.archive.org/web/20190920191338/https://www.oshwa.org/definition/
https://web.archive.org/web/20190920191338/https://www.oshwa.org/definition/
https://depositonce.tu-berlin.de/handle/11303/6164
https://doi.org/10.5334/joh.7
http://openhardware.science/
https://web.archive.org/web/20191006135812/http://openhardware.science/
https://doi.org/10.3390/designs2010002
https://doi.org/10.1371/journal.pbio.3000014
https://doi.org/10.1038/s41928-018-0133-x
https://www.oshwa.org/sharing-best-practices/
https://web.archive.org/web/20190415235203/https://www.oshwa.org/sharing-best-practices
https://web.archive.org/web/20190415235203/https://www.oshwa.org/sharing-best-practices
https://pdfs.semanticscholar.org/a3bf/d104dbc6b1d59a379ec708489ffb28be6b0f.pdf
https://pdfs.semanticscholar.org/a3bf/d104dbc6b1d59a379ec708489ffb28be6b0f.pdf
https://opensource.org/docs/osd
https://opensource.org/docs/osd
https://web.archive.org/web/20190921171008/https://opensource.org/docs/osd
https://web.archive.org/web/20190921171008/https://opensource.org/docs/osd
https://doi.org/10.1371/journal.pone.0225795

14. Weinberg M. Licensing open source hardware. In: Gibbs A, editor. Building open source hardware. 1st

ed. Upper Saddle River, NJ: Addison-Wesley Professional; 2014.

15. Murillo LF, Kauttu P. Open hardware as an experimental innovation platform: preliminary research

questions and findings. CERN Ideasq J Exp Innov. 2017; 1(1):26.

16. Serrano J. Open hardware and collaboration. In: 11st Intl. W. on personal computers and particle accel-

erator controls. Campinas, Brazil; 2016.

17. Balka K, Raasch C, Herstatt C. The effect of selective openness on value creation in user innovation

communities. J Prod Innov Manage. 2014; 31(2):392–407. https://doi.org/10.1111/jpim.12102

18. Fogel K. Producing open source software, how to run a successful free software project. 2nd ed.

O’Reilly Media; 2009. Available from: https://producingoss.com/.

19. Clements P, Garlan D, Bass L, Stafford J, Nord R, Ivers J, et al. Documenting software architectures:

views and beyond. 2nd Ed. Boston. Pearson Education; 2010.

20. Open source survey [Internet]. 2017. Available from: https://opensourcesurvey.org/2017/. Archived

2019 Sep 18: https://web.archive.org/web/20190918005627/https://opensourcesurvey.org/2017/.

21. OpenSCAD [Internet]. Available from: http://openscad.org. Archived 2019 Sep 22: https://web.archive.

org/web/20190922022025/http://www.openscad.org/.

22. Zhang C, Anzalone NC, Faria RP, Pearce JM. Open-source 3D-printable optics equipment. PLoS One.

2013; 8(3):e59840. https://doi.org/10.1371/journal.pone.0059840 PMID: 23544104

23. Salazar-Serrano LJ, Torres JP, Valencia A. A 3D printed toolbox for opto-mechanical components.

PLoS One. 2017; 12(1):e0169832. https://doi.org/10.1371/journal.pone.0169832 PMID: 28099494

24. Chagas AM, Prieto-Godino LL, Arrenberg AB, Baden T. The €100 lab: a 3D-printable open-source plat-

form for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of

zebrafish, Drosophila, and Caenorhabditis elegans. PLoS Biol. 2017; 15(7):e2002702. https://doi.org/

10.1371/journal.pbio.2002702

25. Sharkey JP, Foo DCW, Kabla A, Baumberg JJ, Bowman RW. A one-piece 3D printed flexure translation

stage for open-source microscopy. Rev Sci Instrum. 2016; 87(2):025104. https://doi.org/10.1063/1.

4941068 PMID: 26931888

26. Baden T, Chagas AM, Gage G, Marzullo T, Prieto-Godino LL, Euler T. Open labware: 3-D printing your

own lab equipment. PLoS Biol. 2015; 13(3):e1002086. https://doi.org/10.1371/journal.pbio.1002086

PMID: 25794301

27. Delmans M, Haseloff J. µCube: a framework for 3D printable optomechanics. Journal of Open Hard-

ware. 2018; 2(1):2. https://doi.org/10.5334/joh.8

28. Gupta G, Nowatzki T, Gangadhar V, Sankaralingam K. Kickstarting semiconductor innovation with

open source hardware. Computer. 2017; 50(6):50–59. https://doi.org/10.1109/MC.2017.162

29. ISO 10303-21:2016 Industrial automation systems and integration—Product data representation and

exchange—Part 21: Implementation methods: Clear text encoding of the exchange structure. 2016.

International Organization for Standardization. Available from: https://www.iso.org/standard/63141.htm

purchase required. Archived 2019 Sep 24: https://web.archive.org/web/20190924193644/https://www.

iso.org/standard/63141.html

30. Pratt MJ. Introduction to ISO 10303—the STEP Standard for product data exchange. J Comput Inf Sci

Eng. 2001; 1(1):102–103. https://doi.org/10.1115/1.1354995

31. Salim FD, Burry J. Evaluating parameters of parametric modeling tools to support creativity and multi-

disciplinary design integration. In: Taniar D, Gervasi O, Murgante B, Pardede E, Apduhan BO, editors.

Comput Sci Appl; Springer Berlin Heidelberg; 2010. p. 483–97.

32. Lunenburg J, Soetens R, Schoenmakers F, Metsemakers P, van de Molengraft R, Steinbuch M. Shar-

ing open hardware through ROP, the Robotic Open Platform. In: RoboCup 2013: Robot World Cup

XVII. Berlin, Heidelberg: Springer; 2014. p. 584–591.

33. FreeCAD [Internet]. Available from: https://www.freecadweb.org. Archived 2019 Sep 21: https://web.

archive.org/web/20190921165427/https://freecadweb.org/

34. Python [Internet]. Available from: https://www.python.org. Archived 2019 Sep 24: https://web.archive.

org/web/20190924172850/https://www.python.org/

35. Bettig B, Hoffmann C. Geometric constraint solving in parametric computer-aided design. J Comput Inf

Sci Eng. 2011 Jun 1; 11(2). https://doi.org/10.1115/1.3593408

36. Shahin T. Feature-based design—An overview. Comput Aided Des Appl. 2008 Jan 1; 5(5):639–53.

37. Hoffmann C, Joan-Arinyo R. Parametric modeling. In: Farin G, Hoschek J, Kim M-S, editors. Handbook

of Computer Aided Geometric Design. Elsevier; 2002.

38. Shah JJ. Designing with parametric CAD: classification and comparison of construction techniques. In:

Kimura F, editor. Geometric Modelling. Boston, MA: Springer 1998.

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 28 / 30

https://doi.org/10.1111/jpim.12102
https://producingoss.com/
https://opensourcesurvey.org/2017/
https://web.archive.org/web/20190918005627/https://opensourcesurvey.org/2017/
http://openscad.org
https://web.archive.org/web/20190922022025/http://www.openscad.org/
https://web.archive.org/web/20190922022025/http://www.openscad.org/
https://doi.org/10.1371/journal.pone.0059840
http://www.ncbi.nlm.nih.gov/pubmed/23544104
https://doi.org/10.1371/journal.pone.0169832
http://www.ncbi.nlm.nih.gov/pubmed/28099494
https://doi.org/10.1371/journal.pbio.2002702
https://doi.org/10.1371/journal.pbio.2002702
https://doi.org/10.1063/1.4941068
https://doi.org/10.1063/1.4941068
http://www.ncbi.nlm.nih.gov/pubmed/26931888
https://doi.org/10.1371/journal.pbio.1002086
http://www.ncbi.nlm.nih.gov/pubmed/25794301
https://doi.org/10.5334/joh.8
https://doi.org/10.1109/MC.2017.162
https://www.iso.org/standard/63141.htm
https://web.archive.org/web/20190924193644/https://www.iso.org/standard/63141.html
https://web.archive.org/web/20190924193644/https://www.iso.org/standard/63141.html
https://doi.org/10.1115/1.1354995
https://www.freecadweb.org
https://web.archive.org/web/20190921165427/https://freecadweb.org/
https://web.archive.org/web/20190921165427/https://freecadweb.org/
https://www.python.org
https://web.archive.org/web/20190924172850/https://www.python.org/
https://web.archive.org/web/20190924172850/https://www.python.org/
https://doi.org/10.1115/1.3593408
https://doi.org/10.1371/journal.pone.0225795

39. Moreno R, Bazán AM. Design automation using script languages. High-level CAD templates in non-

parametric programs. IOP Conf Ser Mater Sci Eng. 2017 Oct.

40. Heikkinen T, Johansson J, Elgh F. Review of CAD-model capabilities and restrictions for multidisciplin-

ary use. Comput Aided Des Appl. 2018 Jul 4; 15(4):509–19. https://doi.org/10.1080/16864360.2017.

1419639

41. BRL-CAD [Internet]. Available from: https://brlcad.org. Archived 2019 Sep 21: https://web.archive.org/

web/20190921115443/http://www.brlcad.org/.

42. CadQuery v1.2 [software]. Availabe from: https://github.com/dcowden/cadquery. Archived 2019 Oct

17: https://web.archive.org/web/20191017141307/https://github.com/dcowden/cadquery.

43. pythonOCC [Internet]. Available from http://www.pythonocc.org. Archived 2019 Aug 30: https://web.

archive.org/web/20190830185954/http://www.pythonocc.org/.

44. ImplicitCAD [Internet]. Available from http://www.implicitcad.org/. Archived 2019 Aug 9: https://web.

archive.org/web/20190809150350/http://www.implicitcad.org/.

45. OpenJSCAD [Internet]. Available from https://openjscad.org/. Archived 2019 Aug 9: https://web.

archive.org/web/20190809082819/https://openjscad.org/.

46. Blender [Internet]. Available from https://www.blender.org/. Archived 2019 Oct 16: https://web.archive.

org/web/20191016064839/https://www.blender.org/.

47. Open CASCADE Technology [Internet]. Available from: https://dev.opencascade.org/. Archived 2019

Aug 31: https://web.archive.org/web/20190831110734/https://dev.opencascade.org/.

48. CadQuery v2.0 [software]. Availabe from: https://github.com/CadQuery/cadquery. Archived 2019 Oct

17: https://web.archive.org/web/20191017221741/https://github.com/CadQuery/cadquery.

49. Machado F. Filter stage designed with OpenSCAD [software]. Available from: https://github.com/felipe-

m/oscad_filter_stage. Archived 2019 Oct 24: https://web.archive.org/web/20191024154350/https://

github.com/felipe-m/oscad_filter_stage.

50. Machado F. Filter stage designed with FreeCAD Python [software]. Available from: https://github.com/

felipe-m/freecad_filter_stage. Archived 2019 Oct 24: https://web.archive.org/web/20191024154331/

https://github.com/felipe-m/freecad_filter_stage.

51. CGAL: the computational geometry algorithms library [Internet]. Available from: https://www.cgal.org/.

Archived 2019 Sep 21: https://web.archive.org/web/20190921070500/https://www.cgal.org/.

52. Requicha A, Rossignac J. Solid Modeling and Beyond. IEEE Comput Graph Appl. 1992; 12(5):31–44.

https://doi.org/10.1109/38.156011

53. Hoffmann C, Saphiro V. Solid modeling. In: Toth C, O’Rourke J, Goodman J, editors. Handbook of dis-

crete and computational geometry. CRC Press; 2017.

54. Scripting in FreeCAD. 2019 Jun 16. In: FreeCAD [Internet]. Available from: https://www.freecadweb.

org/wiki/index.php?title=Power_users_hub&oldid=483976#Scripting_in_FreeCAD. Archived 2019 Oct

14: https://web.archive.org/web/20191014171850/https://www.freecadweb.org/wiki/Power_users_

hub#Scripting_in_FreeCAD

55. Wikibooks contributors. OpenSCAD user manual [Internet]. Wikibooks, the free textbook project; 2019

July 22. Available from: https://en.wikibooks.org/w/index.php?title=OpenSCAD_User_Manual&oldid=

3559235. Archived 2019 Aug 09: https://web.archive.org/web/20190809070259/https://en.wikibooks.

org/wiki/OpenSCAD_User_Manual.

56. CadQuery v1.2 Documentation [Internet]. Available from: https://dcowden.github.io/cadquery. Archived

2019 Oct 18: https://web.archive.org/web/20191017221717/https://dcowden.github.io/cadquery.

57. BOLTS open library of technical specifications [Internet]. Available from: https://www.bolts-library.org/.

Archived 2019 Sep 25: http://archive.is/ufp2i.

58. MCAD: OpenSCAD parametric CAD library [software]. Available from: https://github.com/openscad/

MCAD. Archived 2019 Sep 25: https://web.archive.org/web/20190925100821/https://github.com/

openscad/MCAD.

59. Palmer C. NopSCADlib: library of parts modelled in OpenSCAD and a framework for making projects

[software]. Available from: https://github.com/nophead/NopSCADlib. Archived 2019 Sep 25: https://

web.archive.org/web/20190925101028/https://github.com/nophead/NopSCADlib.

60. OpenSCAD libraries. In: OpenSCAD [Internet]. Available from: https://www.openscad.org/libraries.

html. Archived 2019 Sep 25: https://web.archive.org/web/20190824151305/https://www.openscad.org/

libraries.html.

61. A Library of Parts for FreeCAD [software]. Available from: https://github.com/FreeCAD/FreeCAD-

library. Archived 2019 Sep 25: https://web.archive.org/web/20190925102314/https://github.com/

FreeCAD/FreeCAD-library.

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 29 / 30

https://doi.org/10.1080/16864360.2017.1419639
https://doi.org/10.1080/16864360.2017.1419639
https://brlcad.org
https://web.archive.org/web/20190921115443/http://www.brlcad.org/
https://web.archive.org/web/20190921115443/http://www.brlcad.org/
https://github.com/dcowden/cadquery
https://web.archive.org/web/20191017141307/https://github.com/dcowden/cadquery
http://www.pythonocc.org
https://web.archive.org/web/20190830185954/http://www.pythonocc.org/
https://web.archive.org/web/20190830185954/http://www.pythonocc.org/
http://www.implicitcad.org/
https://web.archive.org/web/20190809150350/http://www.implicitcad.org/
https://web.archive.org/web/20190809150350/http://www.implicitcad.org/
https://openjscad.org/
https://web.archive.org/web/20190809082819/https://openjscad.org/
https://web.archive.org/web/20190809082819/https://openjscad.org/
https://www.blender.org/
https://web.archive.org/web/20191016064839/https://www.blender.org/
https://web.archive.org/web/20191016064839/https://www.blender.org/
https://dev.opencascade.org/
https://web.archive.org/web/20190831110734/https://dev.opencascade.org/
https://github.com/CadQuery/cadquery
https://web.archive.org/web/20191017221741/https://github.com/CadQuery/cadquery
https://github.com/felipe-m/oscad_filter_stage
https://github.com/felipe-m/oscad_filter_stage
https://web.archive.org/web/20191024154350/https://github.com/felipe-m/oscad_filter_stage
https://web.archive.org/web/20191024154350/https://github.com/felipe-m/oscad_filter_stage
https://github.com/felipe-m/freecad_filter_stage
https://github.com/felipe-m/freecad_filter_stage
https://web.archive.org/web/20191024154331/https://github.com/felipe-m/freecad_filter_stage
https://web.archive.org/web/20191024154331/https://github.com/felipe-m/freecad_filter_stage
https://www.cgal.org/
https://web.archive.org/web/20190921070500/https://www.cgal.org/
https://doi.org/10.1109/38.156011
https://www.freecadweb.org/wiki/index.php?title=Power_users_hub&oldid=483976#Scripting_in_FreeCAD
https://www.freecadweb.org/wiki/index.php?title=Power_users_hub&oldid=483976#Scripting_in_FreeCAD
https://web.archive.org/web/20191014171850/https://www.freecadweb.org/wiki/Power_users_hub#Scripting_in_FreeCAD
https://web.archive.org/web/20191014171850/https://www.freecadweb.org/wiki/Power_users_hub#Scripting_in_FreeCAD
https://en.wikibooks.org/w/index.php?title=OpenSCAD_User_Manual&oldid=3559235
https://en.wikibooks.org/w/index.php?title=OpenSCAD_User_Manual&oldid=3559235
https://web.archive.org/web/20190809070259/https://en.wikibooks.org/wiki/OpenSCAD_User_Manual
https://web.archive.org/web/20190809070259/https://en.wikibooks.org/wiki/OpenSCAD_User_Manual
https://dcowden.github.io/cadquery
https://web.archive.org/web/20191017221717/https://dcowden.github.io/cadquery
https://www.bolts-library.org/
http://archive.is/ufp2i
https://github.com/openscad/MCAD
https://github.com/openscad/MCAD
https://web.archive.org/web/20190925100821/https://github.com/openscad/MCAD
https://web.archive.org/web/20190925100821/https://github.com/openscad/MCAD
https://github.com/nophead/NopSCADlib
https://web.archive.org/web/20190925101028/https://github.com/nophead/NopSCADlib
https://web.archive.org/web/20190925101028/https://github.com/nophead/NopSCADlib
https://www.openscad.org/libraries.html
https://www.openscad.org/libraries.html
https://web.archive.org/web/20190824151305/https://www.openscad.org/libraries.html
https://web.archive.org/web/20190824151305/https://www.openscad.org/libraries.html
https://github.com/FreeCAD/FreeCAD-library
https://github.com/FreeCAD/FreeCAD-library
https://web.archive.org/web/20190925102314/https://github.com/FreeCAD/FreeCAD-library
https://web.archive.org/web/20190925102314/https://github.com/FreeCAD/FreeCAD-library
https://doi.org/10.1371/journal.pone.0225795

62. Workbenches. 2019 May 15. In: FreeCAD documentation [Internet]. https://www.freecadweb.org/wiki/

index.php?title=Workbenches&oldid=475449. Archived 2019 Sep 4: https://web.archive.org/web/

20190904224737/https://www.freecadweb.org/wiki/Workbenches.

63. External Workbenches. 2019 Jul 28. In: FreeCAD documentation [Internet]. Available from: https://

www.freecadweb.org/wiki/index.php?title=External_workbenches&oldid=498374. Archived 2019 Sep

25: https://web.archive.org/web/20190925103851/https://www.freecadweb.org/wiki/External_

workbenches.

64. Modeling algorithms. In: Open CASCADE technology user guides [Internet]. Available from: https://

www.opencascade.com/doc/occt-7.3.0/overview/html/occt_user_guides__modeling_algos.html#occt_

modalg_11_2. Archived 2019 Sep 25: https://web.archive.org/web/20190925111408/https://www.

opencascade.com/doc/occt-7.3.0/overview/html/occt_user_guides__modeling_algos.html#occt_

modalg_11_2.

65. OpenSCAD gallery. In: OpenSCAD [Internet]. Available from: https://www.openscad.org/gallery.html.

Archived 2019 Aug 30: https://web.archive.org/web/20190830054956/http://www.openscad.org/

gallery.html.

66. Chen K, Schaefer D. MCAD-ECAD integration: overview and future research perspectives. Int Mech

Eng Congress Expo; 2009.

67. KiCad EDA [Internet]. Available from: http://kicad-pcb.org/. Archived 2019 Sep 25: https://web.archive.

org/web/20190925114848/http://kicad-pcb.org/.

68. KiCad StepUp workbench [software]. Available from: https://github.com/easyw/kicadStepUpMod.

Archived 2019 Oct 23: https://web.archive.org/web/20191023153353/https://github.com/easyw/

kicadStepUpMod.

69. Crowston K, Howison J. FLOSS project effectiveness measures. In: Benbya H, Belbaly N, editors. Suc-

cessful OSS project design and implementation. Gower; 2011. p. 149–167.

70. The FreeCAD open source project. In: Open Hub [Internet]. Available from: https://www.openhub.net/p/

freecad. Archived 2019 Sep 25: https://web.archive.org/web/20190925131726/https://www.openhub.

net/p/freecad.

71. The OpenSCAD open source project. In: Open Hub [Internet]. Available from: https://www.openhub.

net/p/openscad. Archived 2019 Sep 25: https://web.archive.org/web/20190925133909/https://www.

openhub.net/p/openscad.

72. FreeCAD Github release stats. In: Github release stats [Internet]. Available from: http://www.

somsubhra.com/github-release-stats/?username=FreeCAD&repository=FreeCAD. Archived 2019 Sep

25: https://perma.cc/LJ99-ZQEV.

Parametric CAD modeling for open source scientific hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0225795 December 5, 2019 30 / 30

https://www.freecadweb.org/wiki/index.php?title=Workbenches&oldid=475449
https://www.freecadweb.org/wiki/index.php?title=Workbenches&oldid=475449
https://web.archive.org/web/20190904224737/https://www.freecadweb.org/wiki/Workbenches
https://web.archive.org/web/20190904224737/https://www.freecadweb.org/wiki/Workbenches
https://www.freecadweb.org/wiki/index.php?title=External_workbenches&oldid=498374
https://www.freecadweb.org/wiki/index.php?title=External_workbenches&oldid=498374
https://web.archive.org/web/20190925103851/https://www.freecadweb.org/wiki/External_workbenches
https://web.archive.org/web/20190925103851/https://www.freecadweb.org/wiki/External_workbenches
https://www.opencascade.com/doc/occt-7.3.0/overview/html/occt_user_guides__modeling_algos.html#occt_modalg_11_2
https://www.opencascade.com/doc/occt-7.3.0/overview/html/occt_user_guides__modeling_algos.html#occt_modalg_11_2
https://www.opencascade.com/doc/occt-7.3.0/overview/html/occt_user_guides__modeling_algos.html#occt_modalg_11_2
https://web.archive.org/web/20190925111408/https://www.opencascade.com/doc/occt-7.3.0/overview/html/occt_user_guides__modeling_algos.html#occt_modalg_11_2
https://web.archive.org/web/20190925111408/https://www.opencascade.com/doc/occt-7.3.0/overview/html/occt_user_guides__modeling_algos.html#occt_modalg_11_2
https://web.archive.org/web/20190925111408/https://www.opencascade.com/doc/occt-7.3.0/overview/html/occt_user_guides__modeling_algos.html#occt_modalg_11_2
https://www.openscad.org/gallery.html
https://web.archive.org/web/20190830054956/http://www.openscad.org/gallery.html
https://web.archive.org/web/20190830054956/http://www.openscad.org/gallery.html
http://kicad-pcb.org/
https://web.archive.org/web/20190925114848/http://kicad-pcb.org/
https://web.archive.org/web/20190925114848/http://kicad-pcb.org/
https://github.com/easyw/kicadStepUpMod
https://web.archive.org/web/20191023153353/https://github.com/easyw/kicadStepUpMod
https://web.archive.org/web/20191023153353/https://github.com/easyw/kicadStepUpMod
https://www.openhub.net/p/freecad
https://www.openhub.net/p/freecad
https://web.archive.org/web/20190925131726/https://www.openhub.net/p/freecad
https://web.archive.org/web/20190925131726/https://www.openhub.net/p/freecad
https://www.openhub.net/p/openscad
https://www.openhub.net/p/openscad
https://web.archive.org/web/20190925133909/https://www.openhub.net/p/openscad
https://web.archive.org/web/20190925133909/https://www.openhub.net/p/openscad
http://www.somsubhra.com/github-release-stats/?username=FreeCAD&repository=FreeCAD
http://www.somsubhra.com/github-release-stats/?username=FreeCAD&repository=FreeCAD
https://perma.cc/LJ99-ZQEV
https://doi.org/10.1371/journal.pone.0225795

