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I. INTRODUCTION

The algorithm presented in this paper solves the problem of numerically determining

the decomposition of a finite-dimensional irreducible unitary linear representation (‘irrep’ in

what follows) of a compact group G with respect to the unitary irreducible representations

(irreps) of a given subgroup H ⊂ G.

More precisely, let G be a compact Lie group and (H, U) a finite-dimensional irreducible

unitary representation of it, i.e., U ∶G → U(H) is a group homomorphism that satisfies the

following three conditions:

(C.1) U(g1g2) = U(g1)U(g2), for all g1, g2 ∈ G.

(C.2) U(e) = 1 .

(C.3) U(g−1) = U(g)−1 = U(g)†, for all g ∈ G.

Here, H is a complex Hilbert space with inner product ⟨⋅, ⋅⟩, U(H) is the group of unitary

operators on H and † stands for the adjoint.

Conditions (C.1) – (C.3) above define a unitary representation (H, U) of the group G.

The representation is said to be irreducible if there are no proper invariant subspaces of

H, i.e., if any linear subspace W ⊂ H is such that U(g)W ⊂ W for all g ∈ G, then W is

either {0} or H. Since the group G is compact, any irreducible representation of G will be

finite-dimensional with dimension say n (n = dimH).

Consider a closed subgroup H ⊂ G. The restriction of U to H will define a unitary

representation of H which is reducible in general, that is, it will possess invariant subspaces

Lα such that U(h)Lα ⊂ Lα for all h ∈H. If we denote by Ĥ the family of equivalence classes of

irreps of H (recall that two unitary representations of H, V ∶H → U(E) and V ′∶H → U(E′),
are equivalent if there exists a unitary map T ∶E → E′ such that V ′(h) ○T = T ○V (h) for all

h ∈H), then:

H = ⊕
α∈Ĥ
Lα , Lα = cαHα =

cα

⊕
a=1
Hα , (1)

where cα are non-negative integers, {α} denotes a subset in the class of irreps of the group

H (each α denotes a finite-dimensional irrep of H formed by the pair (Hα, Uα)) and cαHα

denotes the direct sum of the linear space Hα with itself cα times. Thus, the family of

non-negative integer numbers cα denotes the multiplicity of the irreps (Hα, Uα) in (H, U).
The numbers cα satisfy n = ∑α cαnα where nα = dimHα and the invariant subspaces Lα have

2



dimension cαnα. Notice that the unitary operator U(h) will have the corresponding block

structure:

U(h) = ⊕
α∈Ĥ

cαU
α(h) , ∀h ∈H , (2)

where Uα(h) = U(h) ∣Hα .

The problem of determining an orthonormal basis of H adapted to the decomposition (1)

will be called the Clebsch–Gordan problem of (H, U) with respect to the subgroup H. To be

more precise, the Clebsch–Gordan problem of the representation U of G in H with respect

to the subgroup H consists in finding an orthonormal basis {uαa,k ∣ α ∈ Ĥ, a = 1, . . . , cα, k =
1, . . . , nα} of H such that each family {uαa,k}

nα
k=1, for a given α, defines an orthonormal basis

of Hα. Thus, given an arbitrary orthonormal basis {ul}nl=1 ⊂ H, we can compute the n × n
unitary matrix C with entries Cα

a,kl such that

ul = ∑
α,a,k

Cα
a,klu

α
a,k , α ∈ Ĥ, a = 1, . . . , cα, k = 1, . . . , nα, l = 1, . . . , n . (3)

The coefficients Cα
a,kl of the matrix C are usually expressed as the symbol (l ∣ α, a, k) and

are called the Clebsch–Gordan coefficients of the decomposition.

The original Clebsch–Gordan problem has its origin in the composition of two quantum

systems possessing the same symmetry group: let HA and HB denote Hilbert spaces corre-

sponding respectively to two quantum systems A and B, which support respective irreps UA

and UB of a Lie group G. Then, the composite system, whose Hilbert space is H = HA⊗̂HB,

supports an irrep of the product group G ×G. The interaction between both systems gives

rise to a only remaining subgroup H ⊂ G×G as a symmetry group of the composite system

(in many instances, it is just H = G with G considered as the diagonal subgroup G ⊂ G ×G
of the product group). The tensor product representation UA ⊗ UB will no longer be irre-

ducible with respect to the subgroup H ⊂ G ×G and we will be compelled to consider its

decomposition into irrep components.

A considerable effort has been put in computing the Clebsch–Gordan matrix for various

situations of physical interest. For instance, the groups SU(N) have been widely discussed

(see [1], [5] and references therein) since when considering the groups SU(3) and SU(2),
the Clebsch–Gordan matrix provides the multiplet structure and the spin components of a

composite system of particles (see [13], [17]). However, all these results depend critically on

the algebraic structure of the underlying group G (and the subgroup H) and no algorithm
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was known so far to efficiently compute the Clebsch–Gordan matrix for a general subgroup

H ⊂ G of an arbitrary compact group G.

On the other hand, the problem of determining the decomposition of an irreducible

representation with respect to a given subgroup has not been addressed from a numerical

point of view. The multiplicity of a given irreducible representation (Hα, Uα) of the compact

group G in the finite-dimensional representation (H, U) is given by the inner product

cα =
1

∣G∣ ⟨χ
α, χ⟩ ,

where χα(g) = Tr(Uα(g)) and χ(g) = Tr(U(g)), g ∈ G, denote the characters of the corre-

sponding representations, ∣G∣ is the order of the group G and ⟨⋅, ⋅⟩ stands for the standard

inner product of central functions with respect to the (left-invariant) Haar measure on G.

Hence, if the characters χα of the irreducible representations of G are known, the computa-

tion of the multiplicities becomes, in principle, a simple task. Moreover, given the characters

χα of the irreducible representations, the projector method would allow us to explicitly con-

struct the Clebsch–Gordan matrix [15, Ch. 4]. However, if the irreducible representations of

H are not known in advance (or are not explicitly described), there is no an easy way of

determining the multiplicities cα.

Again, at least in principle, the computation of the irreducible representations of a finite

group could be achieved by constructing its character table, i.e., a c×c unitary matrix where

c is the number of conjugacy classes of the group, but again, there is no a general-purpose

numerical algorithm for doing that.

Recent developments in quantum group tomography require dealing with a broad family

of representations of a large class of groups, compact or not, and their subgroups (see [8]

and references therein for a recent overview on the subject). Quantum tomography allows to

extend ideas from standard classical tomography to analyze states of quantum systems. One

implementation of quantum tomography is quantum group tomography. Quantum group

tomography is based on quantum systems supporting representations of groups. Such rep-

resentations make it possible to construct the corresponding tomograms for given quantum

states [2, 9, 11]. Hence it is becoming increasingly relevant to have new tools to efficiently

handle group representations and their decompositions.

It turns out that it is precisely the ideas and methods from quantum tomography which

provide the clue for the numerical algorithm presented in this work. More explicitly, mixed
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quantum states, i.e., density matrices adapted to a given representation, will be used to

compute the Clebsch–Gordan matrix. Section II will be devoted to introduce the problem

we want to solve. Section III presents several results which will help us to show the

correctness of the algorithm. The details of the numerical algorithm are contained in Section

IV, while Section V covers various examples and applications of the algorithm, among

them, the decomposition of regular representations of any finite group and the decomposition

of multipartite systems of spin particles.

It is remarkable that the algorithm proposed here does not require an a priori knowledge

of the irreducible representations of the groups and the irreducible representations themselves

are returned as outcomes of the algorithm. This makes the proposed algorithm an effective

tool for computing the irreducible representations, in principle, for any finite or compact

group. For the sake of clarity, most of the analysis will be done in the case of finite groups,

however it should be noted that all statements and proofs can be easily lifted to compact

groups by replacing finite sums over group elements by the corresponding integrals over

the group with respect to the normalized Haar measure on it. Some additional remarks and

outcomes will be discussed at the end in Section VI. A final Appendix contains numerical

results for the examples addressed in Section V.

II. THE SETTING OF THE PROBLEM

Let G be a finite group of order ∣G∣ = s and let H ⊂ G be a subgroup of G, not necessarily

normal, of order ∣H ∣ = r. We label the elements of G as G = {e = h0, g1 = h1, . . . , gr−1 =
hr−1, gr, . . . , gs−1}, where the first r elements correspond to the elements of the subgroup H,

i.e., H = {e = h0, h1, . . . , hr−1}. In what follows, a generic element in the group G will be

simply denoted by g ∈ G unless some specific indexing is required.

Let U be a unitary irreducible representation of G on the finite-dimensional Hilbert space

H, n = dimH, and let ei, i = 1, . . . , n, be any given orthonormal basis of H. We denote by

D(g) = [Dij(g)]ni,j=1 (4)

the unitary matrix associated with U(g), g ∈ G, in the chosen basis, i.e.,

Dij(g) = ⟨ei, U(g)ej⟩ (5)
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for every i, j = 1, . . . , n. The restriction of the representation U to the subgroup H, sometimes

denoted by U ↓H and called the subduced representation of U to H, will be, in general,

reducible even if U is irreducible. Notice that the unitary matrix associated with U ↓H(h),
h ∈H, is just a submatrix of Dij(h) obtained by restricting ourselves to the elements of the

subgroup H.

A mixed state on H, also called a density matrix, is a n×n normalized Hermitian positive

semidefinite matrix ρ, i.e.,

ρ = ρ† , ρ ≥ 0 , Tr(ρ) = 1 . (6)

If the unitary representation U of G is irreducible, then any state ρ can be written as:

ρ = n

∣G∣ ∑g∈G
Tr (ρD(g)†) D(g) . (7)

To prove this formula one may use Schur’s orthogonality relations:

∑
g∈G

Dα
mn(g)∗Dβ

pq(g) =
∣G∣
nα
δαβδmpδnq , (8)

where ∗ stands for the complex conjugate and elements Dα
mn(g) and Dβ

mn(g) denote, respec-

tively, the entries of the unitary matrices Dα(g) and Dβ(g) associated with the irreducible

representations (Hα, Uα) and (Hβ, Uβ) of the group G with respect to given arbitrary or-

thonormal bases in Hα and Hβ.

Let us now consider a state ρ satisfying the orthogonality relations

Tr(ρD(gk)) = 0 , k = r, . . . , s − 1 . (9)

Clearly, because of eq. (7), such a state verifies

ρ = n

∣G∣ ∑h∈H
Tr (ρD(h)†) D(h) . (10)

Definition II.1. A state ρ in the Hilbert space H supporting an irrep U of the group G is

said to be adapted to a closed subgroup H if Tr(ρD(g)) = 0 for g ∉H.

In other words, a state ρ adapted to the subgroup H of the finite group G must be of the

form:

ρ = n

∣G∣
r−1
∑
i=0

Tr (ρD(hi)†) D(hi) ,

even if the subduced representation U ↓H is reducible.
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In view of the prominent role they will play in the algorithm, let us now discuss briefly the

role of the inner products Tr(ρA) in the realm of quantum theory: given a linear operator

A on H and a state ρ, the number Tr(ρA) is called the expected value of the operator A

in the state ρ and it is denoted consequently as ⟨A⟩ρ. If the operator A is self-adjoint, the

expected value ⟨A⟩ρ is a real number and it truly represents the expected value of measuring

the observable described by the operator A on a quantum system in the state ρ.

In the language of quantum tomography, the group function χρ ∶G → C defined by the

coefficients in the expansion written in eq. (7),

χρ(g) = Tr(ρD(g)) , g ∈ G, (11)

is called the characteristic function of the state ρ associated with the representation (H, U)
or, depending on the emphasis, the smeared character of the representation U with respect

to the state ρ (see [11]). One can easily check that the characteristic function χρ is always

positive semidefinite, i.e.,
N

∑
j,k=1

ξ∗j ξk χρ(g−1j gk) ≥ 0 , (12)

for all N ∈ N, ξj, ξk ∈ C and gj, gk ∈ G.

Notice that if the state is ρ = 1
n1, the characteristic function χρ is the standard character

χ(g) of the representation D(g) divided by n. Moreover, if the representation D(g) is the

trivial one, then χρ(g) = 1 for all g ∈ G.

Definition II.2. Let G be a group, (H, U) an irreducible unitary representation of G and H

a closed subgroup of G. The Clebsch–Gordan matrix associated with G, H and (H, U)
is the n × n matrix C such that

C†D(h)C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1c1 ⊗D1(h)
1c2 ⊗D2(h)

⋅ ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅

0 ⋅ ⋅ ⋅ ⋅

1cN ⊗DN(h)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

for every h ∈ H, where the D(h) are the matrices defined in (4), the Dα(h), α = 1, . . . ,N ,

are the matrices associated with the irreps of the subgroup H and ⊗ stands for the matrix
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Kronecker product defined as:

A⊗B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a11B a12B ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ a1nB

a21B a22B ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ a2nB

⋅⋅
⋅

⋅⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅
⋅

⋅⋅
⋅

⋅⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅
⋅

⋅⋅ ⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅⋅

am1B am2B ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ amnB

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

for arbitrary matrices A = (aij)m,ni,j=1 and B.

Since the unitary representation is unique (modulo unitary transformations within each

proper invariant subspace Hα or permutations among the Hα), the Clebsch–Gordan matrix

is also unique (except for such transformations), (see [15] for more detailed information

about this).

Finally, let us specify the kind of adapted states we will be using in the algorithm. As

we shall see, such states will have to satisfy certain nondegeneracy conditions.

Given any adapted state ρ, we know that, according to (10), ρ is a linear combination of

the representations D(h), h ∈ H, therefore the Clebsch–Gordan matrix C in Def. II.2 will

block-diagonalize ρ in the form:

C†ρC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1c1 ⊗ σ1

1c2 ⊗ σ2

⋅ ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅

0 ⋅ ⋅ ⋅ ⋅

1cN ⊗ σN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (13)

where each block σα, α = 1, . . . ,N , is a Hermitian positive semidefinite matrix of the same

dimension as the corresponding Dα(h). Now, consider the spectral decomposition of the

matrices σα, i.e.,

σαrαj = λαj rαj , ⟨rαj , rαk ⟩ = δjk , j, k = 1, . . . , nα, (14)

where the rαj are orthonormal eigenvectors of σα within each proper subspace Hα, α =
1, . . . ,N.
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Definition II.3. An adapted state ρ is said to be generic if its eigenvalues have the min-

imum possible degeneracy, that is, λαj ≠ λ
β
k for all α,β = 1, . . . ,N , and for all j = 1, . . . , nα,

k = 1, . . . , nβ.

Notice that the eigenvalues cannot in general be simple since each λαj has by construction

multiplicity cα (recall eq. (13)). In the contruction of the algorithm, a further concept of

pair-wise genericity will be needed:

Definition II.4. A pair (ρ1, ρ2) of adapted states is said to be mutually generic if they

are both generic (in the sense of Definition II.3) and no eigenvector rαj of the block σα1 of

ρ1 is an eigenvector of the corresponding σα2 of ρ2 whenever nα > 1, where matrices σαa come

from the block-diagonalization of the adapted states ρa:

C†ρaC = diag(1c1 ⊗ σ1
a,1c2 ⊗ σ2

a, . . . ,1cN ⊗ σNa ), a = 1,2.

Of course, we exclude the case nα = 1 in which the proper invariant subspace has dimen-

sion one and therefore, the eigenvectors must coincide.

III. GENERAL OUTLINE

Before we provide a detailed description of the decomposition algorithm we propose, let

us first give a rough outline of how the algorithm is organized and, especially, why it works.

The final goal of the algorithm is to find the Clebsch–Gordan matrix C, which, as shown

in Def. II.2, block-diagonalizes all the elements of the representation D(h), h ∈H. In other

words, the columns of C provide orthonormal bases for all proper invariant subspaces Hα,

which are common to all D(h), h ∈H (and consequently, common to all adapted states).

Now, consider any fixed adapted state ρ and any unitary matrix V diagonalizing ρ point-

wise, i.e., such that V †ρV is diagonal. The idea underlying our algorithm is that since the

columns of both V and C span the same proper invariant subspaces, they must be some-

how related. This connection, which is crucial to our argument, will be made explicitly in

Theorem III.1 below, and implies that, after appropriate reordering of the columns of V ,

any other adapted state (more generally, any matrix which is a linear combination of the

D(h), h ∈H) will be block-diagonalized by V (see Corollary III.2 below). Furthermore, the

diagonal blocks one obtains have a very particular structure which, once identified in Corol-
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lary III.2, will be the key to extract the Clebsch–Gordan matrix C out of V via appropriate

similarity transformations described both in Corollary III.3 and Lemma III.4.

The following result is the foundation of the algorithm we describe in Section IV below:

Theorem III.1. Let ρ be any generic adapted state and let V be any unitary matrix such

that V †ρV is diagonal. Then,

V = CXP,

where C is the Clebsch–Gordan matrix defined as in Definition II.2, P is any permutation

matrix and X = diag(X1,X2, . . . ,XN) with Xα given by

Xα = ( Qα
1 ⊗ rα1 Qα

2 ⊗ rα2 ⋯ Qα
nα ⊗ rαnα ) , (15)

for any set of cα × cα unitary matrices {Qα
j }

nα

j=1 , where {rαj }
nα

j=1 is a set of eigenvectors of the

matrices σα, α = 1, . . . ,N , given in eq. (14).

Proof : It follows from (14) that

(1cα ⊗ σα)(zpj ⊗ rαj ) = λαj z
p
j ⊗ rαj

for any choice of nα orthonormal bases {zpj }
cα

p=1 , j = 1, . . . , nα. Recall that nα is the dimen-

sion of the invariant subspace Hα or, equivalently, the number of rows and columns of the

Hermitian positive semidefinite matrices σα. On the other hand, cα is the multiplicity of

that subspace, i.e., the global multiplicity of the eigenvalues λαj in the total matrix ρ (see

eq. (13)).

If we now construct unitary matrices:

Qα
j =

⎛
⎜⎜⎜⎜
⎝

∣ ∣ ∣
z1j z2j ⋯ zcαj

∣ ∣ ∣

⎞
⎟⎟⎟⎟
⎠
,

such that their columns are the orthonormal vectors of the basis {zpj }
cα

p=1, then the matrix

Xα = (Qα
1 ⊗ rα1 Qα

2 ⊗ rα2 ⋯ Qα
nα ⊗ rαnα) (16)
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will diagonalize the matrix 1cα ⊗ σα with its eigenvalues sorted as follows:

Xα†(1cα ⊗ σα)Xα =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λα11cα

λα21cα

⋅ ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅

0 ⋅ ⋅ ⋅ ⋅
λαnα1cα

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= Λα . (17)

Therefore, in view of (13), the matrix X = diag(X1,X2, . . . ,XN) diagonalizes the matrix

C†ρC:

(CX)†ρCX = diag (Λ1,Λ2, . . . ,ΛN) ,

and any permutation P of the columns of the matrix CX will still diagonalize ρ, which

shows that any unitary matrix V diagonalizing ρ can be written as a product V = CXP .

◻

Corollary III.2. Let ρ be any adapted state, let X be the associated block-diagonal ma-

trix with blocks (15), let P = diag(P 1, P 2, . . . , PN) with Pα = diag(Pα
1 , P

α
2 , . . . , P

α
nα), α ∈

{1, . . . ,N}, where each Pα is a cαnα × cαnα permutation matrix and let V = CXP . Then,

for any linear combination τ = ∑
h∈H

αhD(h), it is verified that

V †τV =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎫⎪⎪⎪⎬⎪⎪⎪⎭
c1n1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

c2n2

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

cNnN

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

Σ1

Σ2

ΣN
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where

Σα =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Rα
11 Rα

12 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Rα
1nα

Rα
21 Rα

22 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Rα
2nα

⋅⋅
⋅

⋅⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅
⋅

⋅⋅
⋅

⋅⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅
⋅

⋅⋅ ⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅⋅

Rα
nα1

Rα
nα2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Rα
nαnα

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

with Rα
ij square matrices of size cα defined as:

Rα
ij = sαij(Qα

i P
α
i )

†
Qα
j P

α
j for sαij = rαi †ταrαj ,

where τα, α = 1, . . . ,N , are the matrices on the block diagonal of τ after being transformed

by C, i.e., those matrices such that C†τC = diag(1c1 ⊗ τ 1,1c2 ⊗ τ 2, . . . ,1cN ⊗ τN) .

Proof : We just transform τ with V :

V †τV =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(X1P 1)†(1c1 ⊗ τ 1)X1P 1

(X2P 2)†(1c2 ⊗ τ 2)X2P 2

⋅ ⋅ ⋅ ⋅ 0
⋅ ⋅ ⋅ ⋅

0 ⋅ ⋅ ⋅ ⋅
(XNPN)†(1cN ⊗ τN)XNPN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Hence, the matrices Σα in the statement are Σα = (XαPα)†(1c1 ⊗ τα)XαPα. Finally, if we

substitute in Σα the definition of Xα in eq. (16) and use the property (A ⊗ B)(C ⊗D) =
AC ⊗BD of the Kronecker product for matrices A,B,C,D such that the products AC and

BD are feasible , we get:

Rα
ij = sαijPα

i
†Qα

i
†Qα

j P
α
j with sαij = rαi †ταrαj .

◻
This corollary is key to the algorithm described in Section IV below because it means

that any matrix diagonalizing one generic adapted state ρ, with the eigenvectors appro-

priately reordered, will transform any linear combination of the representation D(h) (in

particular, any other adapted state) into the specific form given by Corollary III.2, which

has a very special structure. Our next step amounts to exploiting this structure in order to

reveal a finer block structure within each Σα for any linear combination of the representation.
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Corollary III.3. Let ρ, τ, V and Σα, α ∈ {1, . . . ,N}, be as in Corollary III.2. Let

R̃α
ij =

Rα
ij

∥Rα
ij∥

for any matrix Rα
ij /= 0 and set

R̃α
kα

= diag (R̃α
1kα
, R̃α

2kα
, . . . , R̃α

nαkα
)

for any fixed kα ∈ {1, . . . , nα}. If Ξα, α ∈ {1, . . . ,N}, are the diagonal blocks of V †κV for

some other κ = ∑
h∈H

βhD(h), then:

R̃α
kα

† ΞαR̃α
kα

= S̃αkα ⊗ 1cα =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

s̃αkα111cα s̃αkα121cα ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ s̃αkα1nα1cα

s̃αkα211cα s̃αkα221cα ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ s̃αkα2nα1cα

⋅⋅
⋅

⋅⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅
⋅

⋅⋅
⋅

⋅⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅
⋅

⋅⋅
⋅

⋅⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅
⋅

s̃αkαnα11cα s̃
α
kαnα2

1cα ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ s̃αkαnαnα1cα

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Proof : If we write

Ξα =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Tα11 T
α
12 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Tα1nα

Tα21 Tα22 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Tα2nα

⋅⋅
⋅

⋅⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅
⋅

⋅⋅
⋅

⋅⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅
⋅

⋅⋅ ⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅⋅

Tαnα1T
α
nα2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Tαnαnα

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where Tαij = tαij(Qα
i P

α
i )

†
Qα
j P

α
j , then one can easily check that

R̃α†
ikα
TαijR̃

α
jkα

=
sαikα
∣sαikα ∣

tαij
sαjkα
∣sαjkα ∣

1cα = s̃αkαij1cα and S̃αkα = (s̃αkαij)
nα
i,j=1.

◻

Notice that this transformation leads to a matrix with almost the structure of (13), with

the difference that the entries in the blocks σα are scattered everywhere instead of being

concentrated in the diagonal blocks. In other words, if we set

R̃ = diag (R̃1
k1
, R̃2

k2
, . . . , R̃N

kN
) (18)

13



for kα ∈ {1, . . . , nα} such that R̃α
jkα

/= 0 for all j ∈ {1, . . . , nα}, then

(V R̃)†
κV R̃ = diag (S̃1

k1
⊗ 1c1 , S̃2

k2
⊗ 1c2 , . . . , S̃NkN ⊗ 1cN ) , (19)

while we would like to have the Kronecker products in reverse order. It is well-known that

for any pair of matrices A and B of arbitrary dimensions, the two Kronecker products

A⊗B and B ⊗A are permutationally equivalent (i.e., B ⊗A = P (A⊗B)F for appropriate

permutation matrices P and F ). Moreover, when both A and B are square, they are actually

permutationally similar (i.e., one can take P = F † above: see, for instance, Corollary 4.3.10

in [7] or [6]).

Lemma III.4. Given two matrices A and B of arbitrary sizes, there exist two permutation

matrices P and F , which only depend on the dimensions of the matrices A and B, such that

B ⊗A = P (A⊗B)F .

In the case in which A and B are square matrices of sizes n and c respectively, the permu-

tation matrices are related by P = F † where

F = ( f hf h2f ⋯ hc−1f ) ,

and h and f are the following matrices of dimensions cn × cn and cn × n respectively:

h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1

0

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

0 ⋅ ⋅ ⋅ ⋅ 1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 01×(n−1)

0(cn−1)×1
1(n−1) ⊗

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0

⋮
0

1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠
c×1

0(c−1)×(n−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

As a consequence of Lemma III.4, if we compute the matrix F̃ = diag (F 1, F 2, . . . , FN)
such that

Fα† (S̃αkα ⊗ 1cα)F
α = (1cα ⊗ S̃αkα) , (20)
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if V is the unitary matrix in Corollary III.2 and R̃ is given by (18), we conclude that

C = V R̃F̃ (21)

is the Clebsch–Gordan matrix in Definition II.2.

IV. THE ALGORITHM

We are now in the position to give a detailed description, step by step, of the decompo-

sition algorithm. We first specify the input and the output of the algorithm:

• Input: A unitary representation of any finite group or compact Lie group H.

• Output: The Clebsch–Gordan matrix Ĉ, in a basis of eigenvectors of an initial

adapted state ρ1.

We may organize the algorithm into eight steps:

1. Generate two adapted states: We start by creating two mutually generic states

ρ1 and ρ2 (see Definition II.4). To create them, we generate two random vectors

ϕ1 and ϕ2 of size r = ∣H ∣ with no zero components and use their respective entries as

coefficients to construct two linear combination of the matrices D(h), h ∈H:

τa =
r−1
∑
j=0
ϕa(j)D(hj) , a = 1,2 .

Next, we symmetrize:

ρ̃a = τa + τ †
a ,

shift them by the spectral radius and divide by the trace:

ρ̃′a = ρ̃a + sradius(ρ̃a)1, ρa =
ρ̃′a

Tr(ρ̃′a)
, a = 1,2,

to obtain two Hermitian normalized positive semidefinite matrices ρ1 and ρ2. Having

been randomly generated, it is safe to assume that they are mutually generic.
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2. Diagonalize pointwise the first state: Compute a unitary matrix V1 which di-

agonalizes pointwise the state ρ1, i.e., such that V †
1 ρ1 V1 is a diagonal matrix. Such

matrix exists since ρ1 is Hermitian.

3. First sorting: Reorder the columns of V1 by grouping together the eigenvectors

corresponding to the same proper subspace Lα. Recall that, according to Corollary

III.2, there is a reordering of the columns of V1 which block-diagonalizes ρ2 and the

dimensions of the diagonal blocks are the dimensions of the Lα. Notice that, if two

columns vj and vk of V1 correspond to the same proper subspace Lα, then v†
jρ2vk ≠ 0.

This will be our test for rearranging the columns of V1. More precisely, we use the

following routine, based on a divide-and-conquer approach:

3.1. Choose one column of V1, rename it as vsort1 and move it into a list of vectors we

will call Lsort.

STEP 3.1. Choosing the starting vector.

3.2. Compute ε1k = vsort1
†
ρ2vk for another column vk of V1 and if ε1k ≠ 0, move vk into

the list Lsort and rename it as vsort2 . Repeat on all remaining columns of V1, move

those vk with vsort1
†
ρ2vk /= 0 into the list Lsort and label them as vsortj , with the

index j reflecting the order in which they have been included into the list.

STEP 3.2. Finding vectors in the same subspace as vsort1 .
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3.3. Compute εjk = vsortj
†
ρ2vk for vsortj ∈ Lsort, j ≥ 2, for those columns vk of V1 not yet

moved into Lsort in STEP 3.2. This is a re-check since there might be some vector

left not included in the list in STEP 3.2 because it happened to be orthogonal to

vsort1 in the scalar product defined by ρ2. The mutual genericity condition ensures

that no vector in Lsort can be orthogonal to all remaining vectors in the list.

STEP 3.3. Finding the remaining vectors in the same subspace as vsort1 .

3.4. Once we have finished verifying all eigenvectors in Lsort, we take a block whose

columns are the eigenvectors in Lsort and denote it as L1, since it is a set of c1n1

vectors constituting an orthonormal basis of L1. After that, we come back to

STEP 3.1 and repeat the process with the rest of vectors until all of them have

been sorted.

At the end of this step, we obtain a matrix we may call V sort1
1 whose columns form

bases Lα of the proper subspaces Lα for α = 1, . . . ,N , i.e.,

V sort1
1 = ( L1 L2 ⋯ LN ) .

c̄1n1 c̄2n2

°
cNnN

This step also gives the dimensions cαnα by counting the number of vectors in each

subspace.

4. Second sorting: Reorder the columns within each Lα grouping together the eigen-

vectors corresponding to the same eigenvalue of ρ1. To do this, we just reorder the

eigenvectors in each Lα in decreasing order corresponding to their eigenvalues. Thus,

we obtain:

V sort
1 = ( L1sort L2sort ⋯ LN

sort ) ,

17



where

Lαsort
†
ρ1L

αsort = diag (λα11cα , λα21cα , . . . , λαnα1cα) .

Counting the multiplicity of one eigenvalue in each α will give the multiplicity cα.

Hence, since we already got the products cαnα in STEP 3, we can also get the di-

mensions of the irreps nα by dividing those numbers by cα. At this point, it is also

possible, if needed, to obtain the characters of the irreps in the decomposition of D(h)
by computing

χα(h) = 1

cα
Tr(Lαsort†D(h)Lαsort) .

5. Coarse block-diagonalization of ρ2: Compute the matrix V sort†

1 ρ2 V sort
1 to ob-

tain the coarse block-diagonalization of ρ2 in terms of the matrices Σα, as shown in

Corollary III.2, and identify the square matrices Rij, i, j = 1, . . . , nα, of size cα.

6. Compute a matrix R̃: According to Corollary III.3, for each Σα choose a column

of matrices R̃α
jkα

such that R̃α
jkα

≠ 0 for all j = 1, . . . , nα, compute the unitary matrices

R̃α
kα

= diag (R̃α
1kα
, R̃α

2kα
, . . . , R̃α

nαkα
)

and finally compute the unitary matrix

R̃ = diag (R̃1
k1
, R̃2

k2
, . . . , R̃N

kN
) .

7. Compute the permutation matrix F : Matrices Fα will be the matrix F in

Lemma III.4 with c = cα and n = nα, then compute those matrices for each α

and collect them in the block diagonal matrix:

F̃ = diag (F 1, F 2, . . . , FN) .

8. Final rearrangement: Compute the Clebsch–Gordan matrix Ĉ = V sort
1 R̃F̃ .

V. SOME EXAMPLES

A. Decomposition of the regular representation of a finite group

The algorithm we have presented decomposes any finite-dimensional unitary representa-

tion of any compact Lie group. In the case of finite groups, it is natural to apply it to the
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regular representation because it contains every irreducible representation with multiplicity

equal to the dimension of its irreps, cα = nα [14, Ch. 2], thus:

∣G∣ =
N

∑
α=1

n2
α.

The regular representation of a group G is the unitary representation obtained from the

action of the group G on the Hilbert space of square integrable functions on the group, H =
L2(G,µ), where µ denotes the left(right)-invariant Haar measure by left(right) translations.

As before, we will restrict the discussion to finite groups G as in Sect. II. The space

of square integrable functions on G can be identified canonically with the ∣G∣-dimensional

complex space formally generated by the elements of the group, i.e., we will denote by C[G]
the linear space whose elements are given by a = ∑g∈G agg, ag ∈ C, g ∈ G, with the natural

addition law a + b = ∑g∈G(ag + bg)g. Notice that C[G] carries also a natural associative

algebra:

a ⋅ b = ∑
g,g′∈G

agbg′gg
′ = ∑

g∈G
(∑
g′∈G

agg′−1bg′)g ,

although we will not make use of such structure here.

The left regular representation is defined as:

U reg(g)a = ∑
g′∈G

ag′gg
′ = ∑

g′∈G
ag−1g′g

′ .

Thus, the matrix elements of the regular representation are obtained by computing the

action of the group on the orthonormal basis gi, i = 0, . . . , n−1, of the Hilbert spaceH = C[G]:

Dreg
ij (gk) = ⟨gi, U reg(gk)gj⟩ = ⟨gi, gkgj⟩.

Then, the matrix representation of the left regular representation of the element gk can be

easily computed from the table of the group written below (notice the inverse of the elements

along the rows). The matrix Dreg(gk) is obtained by constructing a matrix with ones in the

positions where gk appears in the table and zeros in the rest.

In the case of the regular representation, the input of our program can be the matrix T

constructed out of the table T (see TABLE I) relabeled by identifying e with 1 and gi with

i + 1 and whose entries are defined as:

Tij = k , if gi−1g
−1
j−1 = gk−1 , i, j, k = 1, . . . , n . (22)
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T e g−11 ⋯ g−1i ⋯ g−1n−1

e e g−11 ⋯ g−1i ⋯ g−1n−1

g1 g1 e ⋯ g1g
−1
i ⋯ g1g

−1
n−1

⋮ ⋮ ⋮ ⋅ ⋅ ⋅ ⋮ ⋮
gi gi gig

−1
1 e gig

−1
n−1

⋮ ⋮ ⋮ ⋮ ⋅ ⋅ ⋅ ⋮
gn−1 gn−1 gn−1g

−1
1 ⋯ gn−1g

−1
i ⋯ e .

TABLE I: Group table.

Once we have the group multiplication table in this form, we do not need to compute

explicitly the regular representation for each element Dreg(g) to create the adapted states

ρ1 and ρ2 in STEP 1, since we can simply evaluate the random vectors ϕa on the elements

of the table, that is,

[τa]ij = ϕa(Tij) , a = 1,2 . (23)

In the final Appendix, we will show the results obtained using our algorithm for the

decomposition of the regular representation in two simple cases: the permutation group S3

and the alternating group A4.

To verify the accuracy of the results, we will compare characters, since they are inde-

pendent of the choice of basis. We shall compute the characters χ̂α of the irreps obtained

after applying the unitary transformation Ĉ provided by our algorithm and we will compare

them with the exact characters χαexact by defining the error as:

χ̂error =
1

∣H ∣ max
α∈Ĥ
∑
h∈H

∣χαexact(h) − χ̂α(h)∣ , (24)

where Ĥ is the family of equivalence classes of irreps of H.

20



B. Clebsch–Gordan coefficients of SU(2)

Let G be a compact Lie group and H a closed subgroup (hence, compact too). States

adapted to H will have the form:

ρ = 1

Z ∫H χρ(h)D(h)dh , (25)

where Z is the normalization factor

Z = ∫
H
χρ(h)χ(h)dh ,

and dh denotes the invariant Haar measure on H.

Because our algorithm is numerical, we need to approximate the integral (25) with a finite

sum. Choosing a quadrature rule to approximate the integral (25) for a given ρ is equivalent

to use another ρ̂ such that χρ̂ ≠ 0 only at a finite number of elements of the group. Then,

the integral (25) for ρ̂ reduces to a finite sum and the approximation of ρ̂ is exact. It

could happen that the generic adapted states thus obtained do not have enough degrees of

freedom, i.e., it might happen that the block diagonal matrices of the representation were

not irreducible. However, we will see that this is not a problem because in the case of Lie

groups, the Clebsch–Gordan matrix decomposing all the elements of its Lie algebra g will

be the Clebsch–Gordan matrix decomposing all the elements of the representation.

For compact Lie groups, the elements of a unitary representation are related via the

exponential map with the corresponding representation via Hermitean matrices of elements

of its Lie algebra g: U(g) = eisξ, s ∈ R and ξ ∈ g.

One can immediately see that the Clebsch–Gordan matrix C that decomposes the ma-

trices representing all the elements of the Lie algebra ξ ∈ g will decompose all the elements

of the unitary representation and vice versa:

C†ξiC = 1c1 ⊗ ξ1i ⊕⋯⊕ 1cN ⊗ ξNi ⇐⇒ C†U(g)C = 1c1 ⊗U1(g) ⊕⋯⊕ 1cN ⊗UN(g) ,

where {ξαi }
ng

i=1, α = 1, . . . ,N , are the matrices representing a set of generators of the Lie

algebra g (ng is the dimension of the set) and Uα(g), α = 1, . . . ,N , their corresponding

unitary representations.

The original Clebsch–Gordan problem consists in reducing a tensor product representa-

tion UA(g) ⊗ UB(g), ∀g ∈ G, of two representations of the same group G restricted to the

21



diagonal subgroup of the product group. By associativity, this problem can be generalized

to any number of tensor product factors U1(g) ⊗ U2(g) ⊗ ⋯ ⊗ Un(g). The associated Lie

algebra generators will be given by:

ξi = ξ1i ⊗ 12 ⊗⋯⊗ 1n + 11 ⊗ ξ2i ⊗⋯⊗ 1n +⋯ + 11 ⊗ 12 ⊗⋯⊗ ξni ,

with commutation relations given by:

[ξi, ξj] = ckijξk, [ξαi , ξαi ] = ckijξαi , α = 1, . . . , n, i, j, k = 1, . . . , ng, ckij ∈ C.

Let us now study the SU(2) group: the generators of the representation of its associated

Lie algebra su(2) are given by the Hermitian traceless angular momentum operators Jk

satisfying the commutation relations

[Ji, Jj] = iεkijJk , i, j, k = x, y, z , ng = 3 . (26)

Its associated representation of SU(2) can be written as:

D(s) = eis⋅J , s = (sx, sy, sz) ∈ R3. (27)

The matrix representation of momentum j of the angular momentum operators Ji is usually

written in a basis of eigenvectors of Jz,

Jz ∣j,m⟩ =m∣j,m⟩ , m = j, j − 1, . . . ,−j ,

and the representation of the operators Jx and Jy is usually obtained from the representation

of the ladder operators J± = Jx ± iJy,

⟨j,m∣J±∣j,m′⟩ =
√

(j ∓m′)(j ±m′ + 1) δmm′±1 . (28)

For instance, if j = 3/2:

Jx =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0
√
3
2 0 0

√
3
2 0 1 0

0 1 0
√
3
2

0 0
√
3
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

, Jy =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 −i
√
3
2 0 0

i
√
3
2 0 −i 0

0 i 0 −i
√
3
2

0 0 i
√
3
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

,

Jz =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

3
2 0 0 0

0 1
2 0 0

0 0 −1
2 0

0 0 0 −3
2

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

,
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in the standard basis

∣3/2,3/2⟩ =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

, ∣3/2,1/2⟩ =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0

1

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

, ∣3/2,−1/2⟩ =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0

0

1

0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

, ∣3/2,−3/2⟩ =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0

0

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

The standard Clebsch–Gordan matrix is constructed with eigenvectors of the total angular

momentum operator JT with respect to the z component,

JT z = J1
z ⊗ 12 ⊗⋯⊗ 1n + 11 ⊗ J2

z ⊗⋯⊗ 1n +⋯ + 11 ⊗ 12 ⊗⋯⊗ Jnz ,

where n is the number of parts of the system. The eigenvectors of this operator are usually

denoted by ∣J,M⟩, where J represent the total angular momentum and M = J, J − 1, . . . ,−J
the corresponding eigenvalues:

JT z ∣J,M⟩ =M ∣J,M⟩ .

The standard procedure to obtain this Clebsch–Gordan matrix consists in applying suc-

cessively the ladder operator J− starting from the state of maximum momentum ∣Jmax,Mmax⟩ =
∣j1+j2, j1+j2⟩. Notice that since the action of the matrix elements of the ladder operators (28)

is real, the Clebsh-Gordan coefficients are real too.

Recall that the Clebsch–Gordan matrix provided by our algorithm is written in terms of

the eigenvectors of the first adapted state ρ1. Thus, if we want to compare the Clebsch–

Gordan coefficients obtained from our algorithm with the standard ones, we have to find a

Clebsch–Gordan matrix Cz which is conformed by eigenvectors of the operator JT z. To do

that, we first create two real adapted states using the fact that the operators Jk verify:

J∗x = Jx , J∗y = −Jy , J∗z = Jz ,

where ∗ denotes the complex conjugate. Therefore, for any adapted state ρ, its complex

conjugate ρ∗ is an adapted state too. Hence, to create real adapted states, we first add to

each matrix τa, a = 1,2, in STEP 1 in Section IV, its complex conjugate to obtain real

symmetric matrices, and then we multiply the result by its transpose to make it positive

definite. Finally, we normalize them, dividing by their trace, i.e.,

ρ̃a = τa + τ∗a , ρreala =
1

Tr(ρ̃aρ̃ta)
ρ̃aρ̃

t
a. (29)
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Once we have two real adapted states ρreal1 and ρreal2, we apply our algorithm to get

the real Clebsch–Gordan matrix Ĉ. After that, we transform the operator JT z with Ĉ to

decompose it into irreducible representations,

Ĉ†JT zĈ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗ ∗
∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⋱
⋱

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (30)

and we diagonalize each block of this matrix transforming it with a block-diagonal matrix

Vz which reorders the eigenvalues as follows:

V †
z Ĉ

†JT zĈVz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

j1

j1 − 1

⋅ ⋅ ⋅

−j1
j2

j2 − 1

⋅ ⋅ ⋅

−j2

⋅ ⋅ ⋅
⋅ ⋅ ⋅

jN

jN − 1

⋅ ⋅ ⋅

−jN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (31)
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Therefore, the Clebsch–Gordan matrix whose columns are the eigenvectors of JT z, reordered

in this way, is given by

Cz = ĈVz . (32)

In the Appendix, we will show the computation of the Clebsch–Gordan coefficients for

the bipartite spin system 3/2 × 1 and for the tripartite spin system 1/2 × 1/2 × 3/2. Again,

we will verify the accuracy by comparing the exact characters with the ones computed

after transforming with the Clebsch–Gordan matrix obtained with our algorithm. For any

irreducible representation of the SU(2) group, it can be shown that the characters have the

following expression:

χnexact(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2
n/2

∑
k=1

cos(
√
s2x + s2y + s2z (

n − 1

2
− k + 1)) , n even,

2
(n−1)/2

∑
k=1

cos(
√
s2x + s2y + s2z (

n − 1

2
− k + 1)) + 1 , n odd,

(33)

where n = 2j + 1 is the dimension of the irrep. Therefore, we measure the accuracy through

χ̂error = max
α∈Ĥ
∫
H
∣χαexact(h) − χ̂α(h)∣dh ≈

1

NH

NH

∑
i=1

∣χαexact(h) − χ̂α(h)∣ , (34)

with NH the number of elements in the quadrature approximation.

VI. CONCLUSIONS AND DISCUSSION

A numerical algorithm to compute the decomposition of a finite-dimensional unitary

representation of a compact Lie group has been presented. Such algorithm uses the notion

of generic adapted quantum mixed states to obtain the block structure and, eventually, the

coefficients of the Clebsch–Gordan matrix solving the decomposition problem.

The numerical algorithm is stable and accurate, since it combines nothing but stable rou-

tines involving diagonalization of Hermitian matrices, sorting and recombination of matrix

blocks and matrix products. The numerical examples presented confirm this.

The algorithm has been used successfully to decompose the regular representation of two

finite groups and the direct product of two and three representations of SU(2). In the first

case, the main computational task was to prepare the group table, a preliminary task before

the algorithm is used. In the second case, this preliminary part was much easier, since

explicit expressions of the representations of the Lie algebra su(2), for any value of spin, are

well-known.
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The algorithm can be easily extended to finite-dimensional representations of non-

compact groups. However, because the representations will cease to be unitary, the numerical

stability of the algorithm could be compromised. Further insights on these questions will

be considered elsewhere.

APPENDIX

In this appendix, we present the results obtained for the decomposition of the S3 and A4

group, and the Clebsch–Gordan coefficients of the spin systems 3/2 × 1 and 1/2 × 1/2 × 3/2.

All experiments were conducted using Matlab R2012a (version 7.14.0.739).

A.1. The decomposition of the left regular representation of the permutation

group S3.

The S3 group is the group of permutations of three elements and it has order six. The

elements of this group can be generated with the set of transpositions ak = (k, k+1), k = 1,2:

a21 = a22 = (a1a2)3 = e .

Our algorithm decomposes the regular representation into two representations D̂1 and D̂2 of

dimension one and multiplicity one, and another one D̂3 of dimension two and multiplicity

two, exactly as expected. The representation D̂1 corresponds to the trivial one, D̂1(g) = 1,

∀g ∈ S3, and the rest of representations obtained after applying the transformation Ĉ are

the following:

S3 D̂2 D̂3

e 1.0000

⎛
⎜⎜
⎝

1.0000 0.0000 + 0.0000i

0.0000 − 0.0000i 1.0000

⎞
⎟⎟
⎠

a1 −1.0000

⎛
⎜⎜
⎝

−0.7501 0.6399 − 0.1671i

0.6399 + 0.1671i 0.7501

⎞
⎟⎟
⎠
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S3 D̂2 D̂3

a2 −1.0000

⎛
⎜⎜
⎝

0.3542 −0.5615 − 0.7479i

−0.5615 + 0.7479i −0.3542

⎞
⎟⎟
⎠

a1a2 1.0000

⎛
⎜⎜
⎝
−0.5000 + 0.5723i 0.1945 + 0.6202i

−0.1945 + 0.6202i −0.5000 − 0.5723i

⎞
⎟⎟
⎠

a2a1 1.0000

⎛
⎜⎜
⎝
−0.5000 − 0.5723i −0.1945 − 0.6202i

0.1945 − 0.6202i −0.5000 + 0.5723i

⎞
⎟⎟
⎠

a2a1a2 −1.0000

⎛
⎜⎜
⎝

0.3959 −0.0784 + 0.9149i

−0.0784 − 0.9149i −0.3959

⎞
⎟⎟
⎠

TABLE II: Irreducible representations obtained for S3 group.

If we use the formula (24) to compute the accuracy of the characters of the irreps, we

obtain:

χ̂error = 3.5785 ⋅ 10−15 .

A.2. The decomposition of the left regular representation of the alternating

group A4.

The alternating group A4 is the group of even permutations of four elements. This group

has twelve elements and it can be generated with three generators satisfying the relations

a2 = b2 = c3 = (ab)2 = ac2abc = bc2ac = e.

The left regular representation of this group has four irreducible representations: three

of dimension one and one of dimension three. Hence, our algorithm will decompose the

27



regular representation of this group into the three representations of dimension one with

multiplicity one and the representation of dimension three with multiplicity three. Again,

D̂1 is the trivial representation D̂1(g) = 1, ∀g ∈ A4, and the rest are given by:

A4 D̂2 D̂3 D̂4

e 1.0000 1.0000

⎛
⎜⎜⎜⎜⎜
⎝

1.0000 −0.0000 + 0.0000i −0.0000 − 0.0000i

−0.0000 − 0.0000i 1.0000 0.0000 + 0.0000i

−0.0000 + 0.0000i 0.0000 − 0.0000i 1.0000

⎞
⎟⎟⎟⎟⎟
⎠

a 1.0000 1.0000

⎛
⎜⎜⎜⎜⎜
⎝

−0.9852 −0.0240 + 0.0941i 0.1176 + 0.0789i

−0.0240 − 0.0941i −0.3653 0.3099 − 0.8724i

0.1176 − 0.0789i 0.3099 + 0.8724i 0.3504

⎞
⎟⎟⎟⎟⎟
⎠

b 1.0000 1.0000

⎛
⎜⎜⎜⎜⎜
⎝

0.6482 −0.2501 + 0.4766i −0.3940 − 0.3672i

−0.2501 − 0.4766i −0.8242 −0.0464 + 0.1697i

−0.3940 + 0.3672i −0.0464 − 0.1697i −0.8240 − 0.0000i

⎞
⎟⎟⎟⎟⎟
⎠

c
−0.5000

+0.866i

−0.5000

−0.8660i

⎛
⎜⎜⎜⎜⎜
⎝

−0.1137 − 0.4209i −0.4113 − 0.2302i 0.4649 − 0.6096i

−0.0136 + 0.5419i 0.0028 + 0.5742i 0.5988 − 0.1335i

−0.6284 + 0.3482i 0.4483 − 0.4971i 0.1110 − 0.1533i

⎞
⎟⎟⎟⎟⎟
⎠

c2
−0.5000

−0.8660i

−0.5000

+0.8660i

⎛
⎜⎜⎜⎜⎜
⎝

−0.1137 + 0.4209i −0.0136 − 0.5419i −0.6284 − 0.3482i

−0.4113 + 0.2302i 0.0028 − 0.5742i 0.4483 + 0.4971i

0.4649 + 0.6096i 0.5988 + 0.1335i 0.1110 + 0.1533i

⎞
⎟⎟⎟⎟⎟
⎠

ab 1.0000 1.0000

⎛
⎜⎜⎜⎜⎜
⎝

−0.6631 0.2741 − 0.5707i 0.2765 + 0.2883i

0.2741 + 0.5707i 0.1895 −0.2635 + 0.7028i

0.2765 − 0.2883i −0.2635 − 0.7028i −0.5264

⎞
⎟⎟⎟⎟⎟
⎠

cb
−0.5000

+0.8660i

−0.5000

−0.8660i

⎛
⎜⎜⎜⎜⎜
⎝

−0.0400 + 0.3917i 0.4431 + 0.1902i −0.4347 + 0.6508i

0.0772 + 0.4789i −0.3076 − 0.7107i −0.3866 − 0.1247i

−0.7438 + 0.2375i −0.4095 + 0.0115i 0.3475 + 0.3190i

⎞
⎟⎟⎟⎟⎟
⎠
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ca
−0.5000

+0.8660i

−0.5000

−0.8660i

⎛
⎜⎜⎜⎜⎜
⎝

0.1069 + 0.3505i 0.8684 + 0.3002i −0.1455 + 0.0155i

0.1273 − 0.6109i 0.2504 + 0.2570i 0.6673 + 0.1914i

0.5625 − 0.4001i −0.0133 + 0.1634i −0.3573 − 0.6075i

⎞
⎟⎟⎟⎟⎟
⎠

bc
−0.5000

+0.866i

−0.5000

−0.8660i

⎛
⎜⎜⎜⎜⎜
⎝

0.0468 − 0.3213i −0.9002 − 0.2602i 0.1153 − 0.0567i

−0.1908 − 0.4100i 0.0544 − 0.1205i −0.8795 + 0.0669i

0.8097 − 0.1857i −0.0255 + 0.3222i −0.1013 + 0.4419i

⎞
⎟⎟⎟⎟⎟
⎠

bc2
−0.5000

−0.8660i

−0.5000

+0.8660i

⎛
⎜⎜⎜⎜⎜
⎝

−0.0400 − 0.3917i 0.0772 − 0.4789i −0.7438 − 0.2375i

0.4431 − 0.1902i −0.3076 + 0.7107i −0.4095 − 0.0115i

−0.4347 − 0.6508i −0.3866 + 0.1247i 0.3475 − 0.3190i

⎞
⎟⎟⎟⎟⎟
⎠

cbc
−0.5000

−0.8660i

−0.5000

+0.8660i

⎛
⎜⎜⎜⎜⎜
⎝

0.1069 − 0.3505i 0.1273 + 0.6109i 0.5625 + 0.4001i

0.8684 − 0.3002i 0.2504 − 0.2570i −0.0133 − 0.1634i

−0.1455 − 0.0155i 0.6673 − 0.1914i −0.3573 + 0.6075i

⎞
⎟⎟⎟⎟⎟
⎠

c2b
−0.5000

−0.8660i

−0.5000

+0.8660i

⎛
⎜⎜⎜⎜⎜
⎝

0.0468 + 0.3213i −0.1908 + 0.4100i 0.8097 + 0.1857i

−0.9002 + 0.2602i 0.0544 + 0.1205i −0.0255 − 0.3222i

0.1153 + 0.0567i −0.8795 − 0.0669i −0.1013 − 0.4419i

⎞
⎟⎟⎟⎟⎟
⎠

TABLE III: Irreducible representations obtained for A4 group.

In this case, the accuracy of the characters of the irreps computed with (24) is given by

χ̂error = 4.4888 ⋅ 10−15.

B.1. Clebsch–Gordan coefficients for the spin system 3/2 × 1.

Suppose we have a system of two particles in which the first particle has momentum 3/2
and the second, momentum 1. It is well known [4, Ch. 5] that this system is decomposed in

the direct sum of systems of momentum 5/2, 3/2 and 1/2, each one with multiplicity one:

3/2 × 1 = 5/2⊕ 3/2⊕ 1/2,
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or, in other words, that the representation of SU(2) corresponding to the tensor product

3/2 × 1 has irreducible representations with momentum 5/2, 3/2 and 1/2 with multiplicity

one each other.

To create the adapted states for STEP 1 of the algorithm, we have chosen three random

vectors si = (sxi, syi, szi), si ≠ 0, i = 1,2,3, for each adapted state, to obtain the three

linearly independent elements of the representation. Obviously, we have also created two

random vectors ϕa of length 3 to construct the matrices τa, a = 1,2 in STEP 1:

τa = 1 +
3

∑
i=1
ϕaiD

3/2(sai) ⊗D1(sai) ,

where Djα(s) is the exponential representation given by (27) and jα denotes the momentum

of the representation α.

To represent the computed Clebsch–Gordan coefficients, we will use the following stan-

dard arrangement:

The coefficients obtained for the system 3/2 × 1 applying the algorithm are shown in the

following table:
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TABLE IV: CG coefficients for 3/2 × 1.

To assess the accuracy, we have approximated the integral in (34) with NH = 503. The

result we obtained is:

χ̂error = 2.2340 ⋅ 10−16 .

B.2. Clebsch–Gordan coefficients for the spin system 1/2 × 1/2 × 3/2.

To test the capabilities of our algorithm, we will compute the Clebsch–Gordan coefficients

of a system of three spin particles. These coefficients can be obtained from suitable choices

of coefficients of products of two spins, for that reason, there are no exhaustive tables for

systems with more than two particles.

The standard procedure consists in first reducing the representation of the first two

particles, then reducing the result with the next particle, and so on, until there are no

particles left. In our case, the product of three particles with spin 1/2, 1/2 and 3/2 yields:

1/2⊗ 1/2⊗ 3/2 = (0⊕ 1) ⊗ 3/2 = 3/2⊕ 5/2⊕ 3/2⊕ 1/2,

this is, two irreps of momentum 1/2 and 5/2 with multiplicity one and other of momentum

3/2 with multiplicity two.

In the first step, we block-diagonalize the first two spins:

(C1/2⊗1/2 ⊗ 14)†(D1/2 ⊗D1/2 ⊗D3/2)(C1/2⊗1/2 ⊗ 14) = (D0 ⊕D1) ⊗D3/2

and then, we diagonalize the result:

⎛
⎜
⎝
14 0

0 C†
1⊗3/2

⎞
⎟
⎠
((D0 ⊕D1) ⊗D3/2)

⎛
⎜
⎝
14 0

0 C1⊗3/2

⎞
⎟
⎠
=D3/2 ⊕D5/2 ⊕D3/2 ⊕D1/2.
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Therefore, the Clebsch–Gordan matrix of this system is

C1/2⊗1/2⊗3/2 = (C1/2⊗1/2 ⊗ 14)(14 ⊕C1⊗3/2).

In this example, we see that for a multipartite system of spins, the multiplicities of the

representations can be bigger than one. Thus, several eigenvectors may exist with the same

values of J and M . Therefore, it is necessary to add another ‘quantum number’, which we

will denote by c, to tell them apart. This ‘quantum number’ will be a label indicating to

which copy of the representation of multiplicity larger than one each of the eigenvectors with

the same J and M belongs (for that reason, the choice of c to denote it, since this is the

letter we used to denote multiplicities in (2) above).

Using our algorithm, we do not need to group the system into groups of bipartite systems

as before and the computation can be done in one step. Again, in this case, we have chosen

three random vectors si, i = 1,2,3, to obtain three linearly independent elements of the

representation of the group, and two random vector ϕa of length 3 to compute the linear

combinations τa, a = 1,2. The coefficients will be represented in arrangements similar to the

case of two spins but now including the label c:

Notice that the TABLE V below, corresponding to the Clebsch–Gordan coefficients of

the tripartite system 1/2 × 1/2 × 3/2, is not unique because there exists more than one

linear combination providing a valid Clebsch–Gordan matrix that diagonalizes JT z with the

eigenvalues reordered in the way given in (31).
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TABLE V: CG coefficients for 1/2 × 1/2 × 3/2.

Again, to assess the accuracy, we have approximated the integral in (34) with NH = 503,

and the result obtained was

χ̂error = 5.2888 ⋅ 10−15 .
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11A. López-Yela. On the tomographic description of quantum systems: theory and applica-

tions. PhD thesis. Universidad Carlos III de Madrid (2015).

12Z.Y. Ou and H.J. Kimble. Probability distribution of photoelectric currents in photodetec-

tion processes and its connection to the measurement of a quantum state. Phys. Rev. A.

52, 3126–3146 (1995).

13D.J. Rowe and J. Repka, An algebraic algorithm for calculating Clebsch–Gordan coeffi-

cients, application to SU(2) and SU(3). J. Math. Phys. 38, 4363 (1997).

14J.P. Serre. Linear Representations of Finite Groups. Graduate Texts in Mathematics. 42,

Springer–Verlag. New York (1977).

34



15W.K. Tung. Group Theory in Physics: An Introduction to Symmetry Principles, Group

Representations, and Special Functions in Classical and Quantum Physics. World Scientific

(1985).

16D.F. Walls and G.J. Milburn. Quantum Optics. Springer–Verlag. Berlin (1994).

17H.T. Williams and C.J. Wynne. A new algorithm for computation of SU(3) Clebsch–

Gordan coefficients. Comput. Phys. 8, 355 (1994).

35


	A new algorithm for computing branching rules and Clebsch–Gordan coefficients of unitary representations of compact groups
	Abstract
	Introduction
	The setting of the problem
	General outline
	The algorithm
	Some examples
	Decomposition of the regular representation of a finite group
	Clebsch–Gordan coefficients of SU(2)

	Conclusions and discussion
	Appendix
	The decomposition of the left regular representation of the permutation group S3
	The decomposition of the left regular representation of the alternating group A4
	Clebsch–Gordan coefficients for the spin system 3/2x1
	Clebsch–Gordan coefficients for the spin system 1/2x1/2x3/2

	References


