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Abstract. A stable filter has the property that it asymptotically ‘forgets’ initial perturbations.
As a result of this property, it is possible to construct approximations of such filters whose errors
remain small in time, in other words approximations that are uniformly convergent in the time
variable. As uniform approximations are ideal from a practical perspective, finding criteria for filter
stability has been the subject of many papers. In this paper we seek to construct approximate filters
that stay close to a given (possibly) unstable filter. Such filters are obtained through a general
truncation scheme and, under certain constraints, are stable. The construction enables us to give a
characterization of the topological properties of the set of optimal filters. In particular, we introduce
a natural topology on this set, under which the subset of stable filters is dense.
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1. Introduction.

1.1. State space models and optimal filters. In this manuscript we are
concerned with partially observed stochastic dynamical systems that evolve in discrete
time t = 0, 1, 2, ... . Such systems consist of two stochastic processes: a state
or signal process X = {Xt, t ≥ 0} and an observation or measurement process
Y = {Yt, t > 0}. The states Xt cannot be observed directly and the so-called optimal
filtering problem [1] consists in computing, at every time instant t, the probability
distribution of the state Xt conditional on the observations Y1, Y2, . . . , Yt.

The signal process X is assumed to be Markovian and the observations Yt, t =
1, 2, ... are assumed conditionally independent given the signal. Such systems can be
fully characterised by the probability distribution of the state at time t = 0, denoted
by π0, the Markov transition kernel that determines the probabilistic dynamics of
the state Xt, denoted by κt, and a bounded potential function gt that relates the
observation Yt with the state Xt. The potential function gt coincides (up to a
proportionality constant) with the probability density function (pdf) of Yt conditional
on Xt. If κ = {κt}t≥1 is the sequence of Markov kernels and g = {gt}t≥1 for the
sequence of bounded potentials then we can succinctly denote the system of interest
as S = {π0, κ, g} and we refer to S as a state space model.

For a fixed sequence of observations, Y1 = y1, . . . , Yt = yt, . . ., the model S
yields a deterministic sequence of probability measures {πt}t≥1, where πt denotes
the probability distribution of Xt conditional on the (fixed) observations {Yi =
yi; i = 1, . . . , t} (and the state space model S itself). Some features of the sequence
{πt}t≥1 are explicitly described in Section 1.2 below. If the sequence of observations
Y1, . . . , Yt, . . . is not fixed, but random, then the sequence {πt}t≥1 generated by S is
random as well. In both cases, {πt}t≥1 is the solution to the filtering problem is the
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probability measure πt, often referred to as the optimal filter at time t, see e.g. [1].
Optimal filtering algorithms are procedures for the recursive computation, either

exact or approximate, of the sequence {πt}t≥1. Well known examples include the
Kalman filter [18] and its many variants [1, 11, 17], or particle filters [2, 5, 10, 13].
Such algorithms have found practical applications in a multitude of scientific and
engineering problems, including navigation and tracking [14, 24], geophysics [20],
biomedical engineering [23] and many others.

1.2. Stability of the optimal filter. The sequence of optimal filters {πt}t≥1

is constructed recursively by using the Markov kernels κt and the bounded potential
functions gt starting with the a priori distribution π0. For a given model S = {π0, κ, g}
and a given sequence of observations, we associate a filtering operator that maps the
prior π0 to the optimal filter [5, 6]. Let us denote this operator as Φt|0, so that
πt = Φt|0(π0) is the optimal filter at time t when the initial distribution is π0. Assume
next that we apply this operator not to the original prior distribution π0 but to another
distribution denoted by π̃0 and let π̃t = Φt|0(π̃0) be the image of π̃0. Heuristically,
we interpret π̃t as being the optimal filter with the “wrong” initialisation1 π̃0 6= π0.
The optimal filter is stable when, for some properly defined metric function2 D(·, ·),
we have

lim
t→∞

D(πt, π̃t) = lim
t→∞

D
(

Φt|0(π0),Φt|0(π̃0)
)

= 0.

Let us note that stability is actually a property of the map Φt|0, i.e., a property of
the combination of the kernels κt with the potential functions gt and the observations
y1, . . . , yt. Therefore, it would be more accurate to refer to the stability of the filtering
operator Φt|0 rather than the stability of the filter itself.

Stability is important both as a fundamental property of the system dynamics
and for practical reasons: stable filters can, in principle, be approximated numerically
with error rates that hold uniformly over time for a fixed computational effort [6, 16],
while unstable filters demand that the computational complexity of the numerical
approximation be increased over time in order to prevent the approximation error
from growing. Heuristically, stable filters forget their initial conditions and their
numerical implementations inherit this property and also progressively forget past
errors, preventing their accumulation.

The analysis of the stability of a filtering operator is not an easy task. Quoting [3]
“stability of the nonlinear filter stems from a delicate interplay of the signal ergodic
properties and the observations ‘quality’. If one of these ingredients is removed, the
other should be strengthened in order to keep the filter stable”. The authors of [3] use
martingale convergence results to prove almost sure stability for sequences of integrals
∫

fdπt, where f is a test function of a particular class whose definition involves both
the bounded potentials gt and the kernels κt in the model [3]. Other authors resort
to the analysis of the total variation distance between optimal filters obtained from
different initial distributions [19, 9, 15] and relate stability to other properties of the
dynamical system, often connected to the ergodicity of the state process [19, 9] or
its observability and controllability (see [15] for the analysis of the continuous-time
optimal filter). A recent analysis that builds upon [9, 19] but employs a different
metric (which enables the inspection of integrals

∫

fdπt for f unbounded) can be
found in [12].

1Of course, one can also ask the question of what would happen if also the other two components
κ and g that complete the triple S = {π0, κ, g} were “wrong”. We do not discuss this question here
as this is the subject of separate work.

2Most often the total variation distance, see, e.g., [6, 3].
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The main issue with the methods in [3, 19, 9, 15, 12] is that stability is related
to sets of conditions which are often hard to verify from the standard construction
of the filtering operator in terms of the kernels κt and the potentials gt. In contrast,
the authors of [16] provide a set of relatively simple-to-verify sufficient conditions for
the stability of Φt|0. However, their analysis reduces to a relatively narrow class of
state space models (with additive noise and exponential-family pdf’s). A more general
study can be found in [6, 5], where Dobrushin contraction coefficients [7, 8] are used
as the key tool to obtain conditions on κt and gt which are sufficient for stability.

To the best of our knowledge, there has been no attempt to obtain a topological
characterisation of stable filters. Rather natural questions, such as whether stable
filters are “many” or “few” for a given class of state space models have not been
investigated to-date.

1.3. Contributions. Let S be a state space model with an associated sequence
of filtering operators Φt|0. For a given prior π0, the latter operators yield the sequence
of optimal filters πt = Φt|0(π0). In this paper we investigate truncation methods
to construct approximate state space models and operators, denoted Sn and Φn

t|0,

respectively, such that the resulting approximate filters πn
t = Φn

t|0(π0)

(a) can be guaranteed to be stable and
(b) converge to the optimal filters, i.e., πn

t → πt as n → ∞.
We tackle this two-fold problem in several steps. First, we impose a topology D

on the space of state space Markov models. Convergence of a sequence of models in
this topology, i.e., limn→∞ Sn = S, implies convergence of the associated filters, i.e.,
limn→∞ πn

t = πt. While other approaches may be feasible, we focus on sequences of
truncated models. For a given integer n, choose a sequence of subsets of the state
space {Cn

t }t≥1. The truncated version of a model S = {π0, κ, g} is obtained by
truncating the (bounded) potentials (i.e., by constructing new functions gnt such that
gnt (x) = gt(x) if x ∈ Cn

t and gnt (x) = 0 otherwise). The truncated model denoted by
Sn = {π0, κ, g

n}, where gn = {gnt }t≥1 but the Markov kernels κ are left unaltered. For
this construction it is straightforward to verify that Sn converges to S in a topology
D described below and, therefore, πn

t → πt when n → ∞ as well.
One of the main contributions of this paper is to identify a broad class of state

space models, denoted R, and a procedure for the construction of the sets {Cn
t }t≥1,

which guarantees that, for every S ∈ R and every integer n, the truncated model Sn

yields a stable sequence of filters πn
t = Φn

t|0(π0). We also show, by way of an example,
that the class of models R contains unstable filters and illustrate in detail how the
proposed technique can be put to work in order to obtain stable approximations of
these unstable filters.

In the last part of the paper we investigate more elaborate approximation schemes
that involve not only the truncation of the potentials gt but also the modification
of the Markov kernels κt according to the sequence of sets {Cn

t }t≥1. Let the new

approximation of S be denoted S̃n. We prove that
(i) S̃n converges to S in the topology D and, therefore, the resulting filters π̃n

t

converge to πt as well;
(ii) if the sets {Cn

t } contain a sufficiently large probability mass, then
limn→∞ supt Dtv(π̃

n
t , πt) = 0, in other words πn

t converges to πt uniformly
over time. Here Dtv denotes the total variation distance.

Finally, we provide explicit conditions on the potentials g and the Markov kernels κ
to guarantee that the posterior probability measure of the sets {Cn

t }t≥1 can be made
large enough to ensure the uniform convergence over time of the approximate filters.



4 D. CRISAN, A. LÓPEZ-YELA, J. MIGUEZ

1.4. Organisation of the paper. We complete the introduction with a brief
summary of the notation used through the manuscript, incorporated in Section 1.5.
Section 2 covers the description of the optimal filtering problem for state space Markov
models and a formal definition of the notion of stability for sequences of optimal filters.
In Section 3 we introduce the proposed truncation method and in Section 4 we provide
regularity constraints sufficient to guarantee the stability of the resulting approximate
filters. Section 5 contains an example of an unstable filter that can be obtained as the
limit of a sequence of stable filters. In Section 6 we introduced the enhanced truncation
scheme and show that it can yield approximate filters that converge uniformly over
time. Finally, in Section 7 we make some brief concluding remarks.

1.5. Notation. We summarise the notation used throughout the manuscript,
roughly organised by topics.

• Sets, measures and integrals:
– B(S) is the σ-algebra of Borel subsets of S ⊆ R

d.
– P(S) := {µ : B(S) 7→ [0, 1] and µ(S) = 1} is the set of probability

measures over B(S).
– (f, µ) ,

∫

fdµ is the integral of a Borel measurable function f : S 7→ R

with respect to the measure µ ∈ P(S).
– The indicator function on a set S is denoted 1S(x). Given a measure µ

and a set S we equivalently denote µ(S) := (1S , µ).
– Let A be a subset of a reference space X ⊂ R

d. The complement of A
with respect to X is denoted Ā := X\A.

• Functions and sequences:
– B(S) is the set of bounded Borel measurable real functions over S. Given

a sequence {ft ∈ B(S)}t≥1, we denote

‖ft‖∞ := sup
s∈S

|f(s)| and ‖f‖∞ := sup
t≥1

‖ft‖∞.

– We use a subscript notation for finite subsequences, namely xt1:t2 ,

{xt1 , . . . , xt2}.
• Random variables:

– E[·] denotes expectation with respect to the underlying probability
measure P when working on the probability space {Ω,F ,P}.

– Random variables are denoted by capital letters (e.g., Z : Ω 7→ R
d) and

their realisations by lower case letters (e.g., Z(ω) = z or, simply, Z = z).
– If Z is a r.v. taking values in S ⊆ R

d, with probability distribution

µ ∈ P(S), then the Lp norm of Z is given by ‖Z‖p := E [|Z|p]
1

p =
(∫

|z|pµ(dz)
)

1

p , p ≥ 1.

2. State space models and optimal filters.

2.1. Markov state-space models in discrete time. Let {Ω,F ,P} be a
probability space, where Ω is the sample space, F is a σ-algebra and P is a probability
measure on which we consider two stochastic processes:

• the signal or state process X = {Xt}t≥0, with values in the space X ⊆ R
dx ,

• the observation process Y = {Yt}t≥1, with values in the space Y ⊆ R
dy .

We assume that the state process evolves over time according to the family of
Markov kernels

κt(A|xt−1) = P (Xt ∈ A|Xt−1 = xt−1) ,
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where A ∈ B(X ) and xt−1 ∈ X . The observation process is described by the
conditional distribution of the observation Yt given the state Xt. Specifically, we
assume that Yt has a conditional pdf gt(yt|xt) w.r.t. a reference measure λ (usually,
but not necessarily, the Lebesgue measure), given the state Xt = xt. The observations
are assumed to be conditionally independent given the states.

If the sequence {Yt = yt}t≥1 is fixed, then we write gt(xt) := gt(yt|xt) for
conciseness and to emphasise that gt is a function of the state xt, i.e., we use gt(x)
as the potential of x ∈ X given the observation yt. When the observation sequence is
random, we write gYt

t (x) = gt(Yt|x) for the potential of x ∈ X . Note that, for fixed
x ∈ X , gYt

t (x) is a r.v. itself.
The state process Xt (with prior probability law π0(dx0) and Markov transition

kernels κt(dxt|xt−1)) and the observation process Yt (related to Xt by means of the
pdf’s gt(yt|xt)) yield the typical formulation of a state space Markov model. In this
paper, we use the term state space model to refer to the triple S = {π0, κ, g}, where
κ = {κt}t≥1 is the family of Markov kernels for the process Xt and g = {gt(yt|·)}t≥1

is the family of potentials generated by the observations {Yt = yt}t≥1. This is a
slight abuse of the usual terminology. However, as will be shown in Section 2.2 below,
the triple S contains all the necessary ingredients needed to specify the conditional
probability law of the state Xt given the observations Y1:t = y1:t, for every t ≥ 1.
These conditional probability distributions are the main object of this paper, and
hence we assimilate S to the state space model itself.

2.2. The optimal filter. The filtering problem consists in the computation of
the posterior probability measure of the state Xt given a sequence of observations up
to time t. Specifically, we aim at the sequence of probability measures

πt(A) := P (Xt ∈ A|Y1:t = y1:t) , t ≥ 1,

where A ∈ B(X ). The measure πt is commonly called the optimal filter at time t.
πt is computed from πt−1 in two steps. First, we obtain the predictive probability
measure

ξt(A) := P (Xt ∈ A|Y1:t−1 = y1:t−1)

and then we compute πt from ξt. To be precise, we write ξt = κtπt−1, meaning that3

(f, ξt) = (f, κtπt−1) = ((f, κt), πt−1),

and πt = gt · ξt, which is defined as

(2.1) (f, gt · ξt) :=
(fgt, ξt)

(gt, ξt)
.

The definitions above are given for a fixed (but arbitrary, unless otherwise
stated) sequence of observations Y1:∞ = y1:∞. In this case, the state space model
S = {π0, κ, g} yields deterministic sequences {πt}t≥1 and {ξt}t≥1. If the observations

are random, then the model S = {π0, κ, g
Y }, where gY := {gYt

t }t≥1, yields sequences

of random measures πY1:t

t and ξ
Y1:t−1

t , t ≥ 1.

3Here and in all subsequent formulae f : X → R is a bounded measurable function.
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2.3. The prediction-update operator. The transformation of the filter πt−1

into πt can be represented by the composition of two operators Ψt,Υt : P(X ) 7→ P(X )
which can be defined as follows:

• the prediction (P) operator Ψt(µ) := κtµ, where µ ∈ P(X ), yields

(f,Ψt(µ)) := (f, κtµ) = ((f, κt), µ),

• and the update (U) operator yields Υt(µ) := gt · µ, i.e.,

(f,Υt(µ)) :=
(fgt, µ)

(gt, µ)
.

By composing the maps Ψt and Υt we obtain the prediction-update (PU) operator
Φt(µ) := (Υt ◦Ψt)(µ) such that

(2.2) (f,Φt(µ)) = (f,Υt (Ψt(µ)) =
(fgt, κtµ)

(gt, κtµ)
= (f, gt · κtµ),

which obviously implies πt = Φt(πt−1). If we additionally denote the composition of
PU operators as

Φt|k := Φt ◦ Φt−1 ◦ · · · ◦Φk+1

then we can compactly represent the evolution of the filter over t − k consecutive
steps, namely πt = Φt|k(πk). Note that the map Φt depends on the Markov kernel κt

and the likelihood gt alone (and not on the prior measure π0).

2.4. A topological structure on the set of state space Markov models.

Let M be the set of state space Markov models of the form S = {π0, κ, g} for which
the sequence of filters {πt}t≥1 is well defined. In particular, we assume that the
normalisation constant (gt, ξt) in Eq. (2.1) is strictly positive4 for all t ≥ 1, in order
to guarantee that πt ∈ P(X ) and, therefore, |(f, πt)| < ∞ whenever f ∈ B(X ).

It would be tempting to impose a topological structure based on the convergence
of the fixed-dimensional marginal distributions πt = Φt:0(π0), t ≥ 1. This structure,
however, would be misleading because there is no one-to-one correspondence between
elements of M and their corresponding probability distributions {Φt:0(π0)}t≥1. In
particular, for every state space model S ∈ M one can construct a related model
S ′ ∈ M, with PU operators Φ′

t, such that Φ′
t|0(π0) = Φt|0(π0) and Φ′

t|0 is stable, while

Φt|0 is not5. For this reason, we impose a topology D directly on the components of
the state space models. To be specific:

• We endow P(X ) with the metrisable topology given by the total variation
distance

Dtv(α, β) := sup
A

|α(A) − β(A)|, α, β ∈ P(X ),

where the supremum is taken over all measurable sets.

4 This is ensured, for example, if the two conditions below are satisfied:
(i) There exists S ⊆ X such that gt(x) > 0 (strictly positive) for every x ∈ S and Leb(S) > 0,

i.e., the subset S has positive Lebesgue measure.
(ii) The transition kernel κt puts positive probability mass on all subsets with positive Lebesgue

measure, i.e., for every x ∈ X and every S′ ⊆ X such that Leb(S′) > 0, we have
κt(S′|x) > 0.

5For example, consider the models S = {π0, κ, g} and S′ = {π0, κ
′, g}, where κ′

t
(dxt|xt−1) =∫

X
κt(dxt|x̄t−1)πt−1(dx̄t−1) = ξt(dxt). It is apparent that π′

t
= gt · κ′

t
π′
t−1

= gt · ξt = πt.



STABLE APPROXIMATION SCHEMES... 7

• The sequence of Markov kernels κn = {κn
t }t≥1 converges to κ = {κt}t≥1 when

(2.3) lim
n→∞

Dtv(κ
n
t (·, x), κt(·, x)) = 0, for every t ≥ 1 and any x ∈ X ,

and we denote limn→∞ κn = κ.
• We impose the topology of bounded convergence on the set of (non-negative)
bounded potential functions. More precisely, we say that the sequence
gn = {gnt }t≥1 is uniformly bounded when there exists G < ∞ such that
supn,t≥1 ‖g

n
t ‖∞ < G. Then, a uniformly bounded sequence gn converges to

g = {gt}t≥1 when

(2.4) lim
n→∞

gnt (x) = gt(x), for every t ≥ 0 and any x ∈ X ,

and we write limn→∞ gn = g.
• Finally, a sequence of state space models Sn = {πn

0 , κ
n, gn} converges to

the model S = {π0, κ, g} in the topology D when limn→∞ Dtv(π
n
0 , π0) = 0,

limn→∞ κn = κ and limn→∞ gn = g. We denote limn→∞ Sn = S.

Remark 2.1. A complete description of the topology D described above can be
outlined as follows. A generator of open sets for the first component of the topology
is given by the open balls

B(π0, r) = {π ∈ P(X ) : Dtv(π, π0) < r} , for π0 ∈ P (X ) and r > 0.

The topology on the second component is defined to be the smallest topology such
that all functions fx,t : M 7→ P(X ), x ∈ X , defined as fx,t({π0, κ, g}) = κt(·|x) are
continuous. The topology on the third component is the smallest topology such that
all functions hx,t : M 7→ R, x ∈ X , defined as hx,t({π0, κ, g}) = gt(x) are continuous
when restricted to MG :=

{

{π0, κ, g} ∈ M : supt≥1 ‖gt‖∞ < G
}

for any 0 < G < ∞.
This topology is not metrisable: while convergence for sequences πn

0 ∈ P(X ) can be
expressed in terms of the total variation distance, neither the convergence of κn nor
the convergence of gn can be recast in terms of proper metrics. Recall that κ is a
family of kernels and g is a family of potentials, both indexed by (x, t) ∈ X × Z

+.

Remark 2.2. If we restrict M to the set of state space models for which the initial
probability measure and corresponding kernels are absolutely continuous with respect
to a fixed reference measure λ, then then we can relax the limits in (2.3) and (2.4) to
hold λ-almost surely.

Remark 2.3. By imposing uniform convergence (over the time and the state
variables) on the set of kernels and the space of potential functions we can introduce
a slightly stronger topology D′ on M that has the advantage of being metrisable. To
be specific, we define the distance between two state space models S = {π0, κ, g} and
S ′ = {π′

0, κ
′, g′} as

(2.5)
DM(S,S ′) := Dtv(π0, π

′
0) + sup

t≥1
sup
x∈X

Dtv(κt(·|x), κ
′
t(·|x)) + sup

t≥1
sup
x∈X

|gt(x) − g′t(x)|.

The topology D has the property that convergence of the sequence of models Sn,
n ≥ 0, to S implies convergence of the marginal probability measures πn

t (generated
by the models Sn) towards the optimal filter πt generated by model S. This result is
made rigorous by the following lemma.
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Lemma 2.4. Let Sn = {πn
0 , κ

n, gn}, n ≥ 0, and S = {π0, κ, g} be elements of M
with corresponding PU operators Φn

t and Φt, respectively. If limn→∞ Sn = S, then
limn→∞ Φn

t|0(π
n
0 ) = Φt|0(π0).

Proof. We proceed with a standard induction argument. The case t = 0 holds
trivially, since limn→∞ Sn = S implies that limn→∞ Dtv(π

n
0 , π0) = 0. For the

induction step, assume that limn→∞ Dtv (βn, β) = 0 for any t ≥ 1, where βn =
Φn

t−1|0(π
n
0 ) and β = Φt−1|0(π0). As we apply the prediction operator Ψn

t (α) = κn
t α, a

straightforward triangle inequality yields

|(f,Ψn
t (β

n))− (f,Ψt (β))| = |(f,Ψn
t (β

n))− (f,Ψn
t (β)) + (f,Ψn

t (β))− (f,Ψt (β))|

≤ |((f, κn), βn − β)|+ |((f, (κn − κ)), β)|

≤ ‖f‖∞Dtv (β
n, β) + |((f, (κn − κ)), β)| ,

(2.6)

where the last inequality follows from the definition of total variation distance. The
first term on the right hand side of (2.6) converges to zero by the induction hypothesis,
while the second term converges to zero by the bounded convergence theorem [25].

Next, we write the PU operator Φn
t in terms of the P operator Ψn

t to obtain

|(f,Φn
t (β

n))− (f,Φt (β))| =

∣

∣

∣

∣

(fgnt ,Ψ
n
t (β

n))

(gnt ,Ψ
n
t (β

n))
−

(fgt,Ψt (β))

(gt,Ψt (β))

∣

∣

∣

∣

≤

∣

∣

∣

∣

(fgnt ,Ψ
n
t (β

n))

(gnt ,Ψ
n
t (β

n))
−

(fgnt ,Ψ
n
t (β

n)))

(gt,Ψt (β))

∣

∣

∣

∣

+

∣

∣

∣

∣

(fgnt ,Ψ
n
t (β

n))

(gt,Ψt (β))
−

(fgt,Ψt (β))

(gt,Ψt (β))

∣

∣

∣

∣

≤
‖f‖∞ |(gnt ,Ψ

n
t (β

n))− (gt,Ψt (β))|

(gt,Ψt (β))

+
|(fgnt ,Ψ

n
t (β

n))− (fgt,Ψt (β))|

(gt,Ψt (β))
.(2.7)

However, inequality (2.6) implies that both terms on the right hand side of (2.7)
converge to 0, hence the proof is complete.

Remark 2.5. Although the topology D′ is stronger than the topology D, it does
not imply the uniform convergence (over time) of the corresponding PU-operators. In
particular, Lemma 2.4 ensures that for any ǫ > 0 and any t < ∞ there exists nǫ,t ≥ 0
such that Dtv(Φ

n
t|0(π0),Φt|0(π0)) < ǫ whenever n ≥ nǫ,t. However, the lemma does

not guarantee that supt≥1 Dtv(Φ
n
t|0(π0),Φt|0(π0)) < ǫ for any finite value of n.

2.5. Stability of the optimal filter. The sequence of optimal filters {πt}t≥1

generated by a state space Markov model S = {π0, κ, g} is stable when the dependence
of πt on the prior measure π0 vanishes over time. Formal definitions are provided next.

Definition 2.6. Let {Φt}t≥1 be a sequence of PU operators defined on P(X ).
The sequence of optimal filters {πt}t≥1 generated by {Φt}t≥1 is stable when

lim
t→∞

Dtv

(

Φt|0(π0),Φt|0(π̃0)
)

= 0

for any pair of prior probability measures π0, π̃0 ∈ P(X ).

Very often stability is defined in a weaker form, by considering only prior measures
π0 and π̃0 which are absolutely continuous w.r.t. each other. In this paper we refer
to this property as weak stability.
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The usual expression “stability of the optimal filter” may be misleading: As it
is apparent from Definition 2.6, stability is a property of the operators Φt|0, i.e., a
property of the pair {κ, g}. As such, within this paper we often refer to the stability
of the operators {Φt}t≥1 rather than the stability of the filters {πt}t≥1.

3. Truncated filters.

3.1. Truncation of state space models. For an arbitrary but fixed sequence
of observations Y1:∞(ω) = y1:∞, let S = {π0, κ, g} be a state space Markov model
yielding the sequence of filters πt = Φt−1(πt−1) = gt·κtπt−1. We construct a truncated
version of the model (and a sequence of filters for the truncated model) by

(i) choosing a sequence of subsets of the state space X , denoted c := {Ct}t≥1,
where Ct ⊆ X for t ≥ 1

(ii) and defining the truncated potentials

(3.1) gct(x) := 1Ct
(x)gt(x),

where 1Ct
(x) is the indicator function, i.e., gct(x) = gt(x) for x ∈ Ct and

gct(x) = 0 otherwise.
The truncated model is Sc = {π0, κ, g

c}, where gc := {gct}t≥1, and it yields the
sequence of filters

πc

t = Φc

t(πt−1) := gct · κtπ
c

t−1

and the sequence of predictive measures

ξct = Ψc

t(πt−1) := κtπ
c

t−1,

with πc
0 = π0 and composition operators denoted Φc

t|0 = Φc
t ◦ · · · ◦ Φc

1 and Ψc

t|0 =
Ψc

t ◦ · · · ◦Ψ
c
1, respectively.

The truncated state space models constructed in this way have a simple but key
feature: if one chooses a family of sets c

n = {Cn
t }t≥1 such that Cn

t ⊆ Cn+1
t and

limn→∞ Cn
t = X for every t (meaning that limn→∞ 1Cn

t
(x) = 1 when x ∈ X , and

0 otherwise), then the sequence of truncated models Sc,n converges to the original
model S in the topology D as n → ∞. This is made formal below.

Lemma 3.1. Let S = {π0, κ, g} be a state space model, let c
n = {Cn

t }t≥1

be a family of subsets of X such that limn→∞ Cn
t = X for every t, and denote

g
c,n
t := 1Cn

t
gt. The sequence of truncated state space models Sc,n = {π0, κ, g

c,n},
where gc,n = {gc,nt }t≥1, converges to S in the topology D. Moreover, if

(3.2) lim
n→∞

sup
t≥1

sup
x∈C̄n

t

gt(x) = 0,

then limn→∞ DM(Sc,n,S) = 0.

Proof. Convergence in D is trivial, since the prior π0 and the kernel κt is the same
for all n ≥ 0 and, clearly, limn→∞ g

c,n
t = limn→∞ gt1Cn

t
= gt under the assumption

limn→∞ Cn
t = X . The definition of the metric DM in (2.5) together with assumption

(3.2) readily yields limn→∞ DM(Sc,n,S) = 0.

3.2. Stability of truncated PU operators. Lemmas 2.4 and 3.1 together
provide the means for the approximation of an arbitrary sequence of optimal filters
πt, generated by PU operators Φt, by another sequence, πc

t , generated by truncated
PU operators Φc

t . Unfortunately, truncation by itself does not guarantee that the new
sequence of filters is stable. Below, we provide a stability theorem for sequences of
truncated filters.



10 D. CRISAN, A. LÓPEZ-YELA, J. MIGUEZ

Theorem 3.2. Let c = {Ct ⊆ X}t>0 be a sequence of subsets of the state space X
and let Φc

t(π) := gct · κtπ be the truncated PU operator, where κt is a Markov kernel,
gct = gt1Ct

is a truncated potential and gt is positive and bounded. If the Markov
kernels κt have positive pdf’s kt w.r.t. a reference probability measure λ,

kt(·|xt−1) =
dκt(·|xt−1)

dλ
,

such that
∞
∑

t=1

inf(xt−1,xt)∈Ct−1×Ct
kt(xt|xt−1)

sup(xt−1,xt)∈Ct−1×Ct
kt(xt|xt−1)

= ∞,

then the operator Φc

t|0 is stable, i.e.,

lim
t→∞

Dtv

(

Φc

t|0(π0),Φ
c

t|0(π
′
0)
)

= 0

for every π0, π
′
0 ∈ P(X ) .

Proof. See Lemma 3.1 in [4]. The result is an extension of an original result in
[6] with methods introduced in [22].

We are interested in truncated state space models Sc = {π0, κ, g
c} that induce PU

operators Φc
t which can be proved to be stable. This is possible if the kernel κt(dx|x′)

has a density kt(x|x
′) ≥ 0 that satisfies the sufficient condition in Theorem 3.2, i.e.,

∑∞
t=1 εt = ∞, where

εt :=
inf(xt−1,xt)∈Ct−1×Ct

kt(xt|xt−1)

sup(xt−1,xt)∈Ct−1×Ct
kt(xt|xt−1)

.

In the next section we investigate a class of state space models and conditions on the
choice of the subsets {Ct}t≥1 for which the stability condition of Theorem 3.2 can be
guaranteed to hold.

Remark 3.3. An alternative to truncation for the construction of stable
approximate filters is the iteration, at each time step, of a Markov kernel Mπ0,t that
leaves the filter πt−1 = Φt−1|0(π0) invariant. To be specific, we can approximate

the model S = {π0, κ, g} by another model Ŝ = {π0, κ̂, g}, where κ̂ = {κ̂t}t≥1 and

κ̂t = κtM
r
π0,t

for some integer r ≥ 1. The PU operators for this model are denoted Φ̂t.
If the Dobrushin coefficient [6] of the kernel Mπ0,t is some βt < 1, then, by choosing r

large enough, one can ensure that the contraction due to the Markov kernel M r
π0,t

is

sufficient to make the operator Φ̂t|0 stable. Unfortunately, the kernel Mπ0,t depends
on κ, g and the prior π0 in a non-trivial manner and it is hard to compute it for most
systems of interest.

4. Stable approximate filters.

4.1. A regular class of state space models. In the sequel we study the class
of state space models of the form S = {π0, κ, g} that satisfy the following regularity
assumptions (recall that the potentials gt are positive and bounded real functions,
i.e., 0 < gt < ‖gt‖∞ < ∞ for every t ≥ 1).

Assumption 4.1. The conditional mean functions

at(x) :=

∫

x′κt(dx
′|x), t ≥ 1,
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are uniformly Lipschitz over time. To be specific, there exists La < ∞ such that

sup
t≥1

|at(x)− at(x
′)| < La‖x− x′‖ for any x, x′ ∈ X .

Assumption 4.2. The conditional probability measures κt(dx|x′) are absolutely
continuous w.r.t. some probability measure λ(dx) with full support on X , hence
κt(dx|x′) = kt(x|x′)λ(dx), where kt(x|x′) is a conditional pdf. Moreover, there are
strictly decreasing functions st : [0,∞) 7→ (0,∞), t ≥ 1, such that

kt(x|x
′) ≥ st(‖x− at(x

′)‖) > 0 and lim
r→∞

st(r) = 0.

Assumption 4.3. The conditional pdf’s kt(x|x′) are uniformly upper bounded over
time. Specifically, there exists C0 < ∞ such that

sup
t≥1

sup
x,x′∈X

kt(x|x
′) < C0.

4.2. Stable approximation via compact balls. In this section we show how
it is possible to construct stable truncated approximations for state space models
that satisfy Assumptions 4.1–4.3. The specification of a truncated model relies on the
choice of a sequence of subsets of the state space. Let us choose cn = {Cn

t }t≥1, where
n is a positive integer and

Cn
t := B(ℓt, nrt) = {x ∈ X : ‖x− ℓt‖ ≤ nrt} , t ≥ 1,

is the closed ball with centre ℓt ∈ X and radius nrt > 0. The sequence {rt}t≥1 is
selected to be positive and strictly increasing and satisfy the identity

(4.1) lim
t→∞

s
−1
t (υt)

rt
= ∞,

for the functions st in Assumption 4.2 and some strictly decreasing positive sequence
{υt}t≥1 such that

(4.2)
∑

i≥1

υti = ∞

for any sequence {ti}i≥1 such that lim infT→∞
|{i∈N:ti<T}|

T
> 0.

Remark 4.4. As we shall see below, condition (4.2) is the natural condition to
impose in order to make the arguments work. In particular, if there exists a constant
c such that vn ≥ c

n
for all n ≥ 1 the condition (4.2) is satisfied. See [21] for a proof

of this result.

Intuitively, the time-dependent part of the radii, rt, increases at a sufficiently slow
rate compared to the sequence s

−1
t (υ(t)).

The sequence of centres {ℓt}t≥1 is selected to satisfy the inequality

(4.3) ‖ℓti − ati(ℓti−1)‖ ≤ nLrti

for some constant L < ∞ and some sequence {ti}i≥1 such that

(4.4) lim inf
T→∞

|{i ∈ N : ti < T }|

T
> 0.
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Given the family of sets c
n = {Cn

t }t≥1 described above, we construct the
truncated state space models Sc,n = {π0, κ, g

c,n}. The truncated PU operator is
Φc,n

t (π) = g
c,n
t ·κtπ and our aim is to prove that Φc,n

t|0 is stable for any integer n. Note

that Lemma 3.1 ensures that limn→∞ Sc,n = S in the topology D and, therefore,
limn→∞ Φc,n

t|0 (π0) = Φt|0(π0) = πt (via Lemma 2.4).

The key result is stated and proved below. It yields a lower bound on the
transition pdf between consecutive balls Cn

ti−1 and Cn
ti
, where {ti}i≥1 is infinite

sequence of time instants in the definition of the centres ℓt above (see Eqs. (4.3)
and (4.4)).

Lemma 4.5. Choose any positive integer n < ∞ and let {ti}i≥1 be the infinite
sequence in Eqs. (4.3) and (4.4). If Assumptions 4.1 and 4.2 hold, then there exists
in < ∞ such that

inf
(x,x′)∈Cn

ti
×Cn

ti−1

kti(x|x
′) > υti for every i > in.

Proof. From Assumption 4.2 we have,

(4.5) kt(x|x
′) ≥ st(‖x− at(x

′)‖), ∀x, x′ ∈ X .

In particular, for any x′ ∈ Cn
t−1 = B(ℓt−1, nrt−1) and any x ∈ Cn

t = B(ℓt, nrt),
expression (4.5) together with a simple triangular inequality yields

(4.6) kt(x|x
′) ≥ st(‖x− ℓt‖+ ‖ℓt − at(ℓt−1)‖ + ‖at(ℓt−1)− at(x

′)‖),

where ‖x− ℓt‖ ≤ nrt (since x ∈ Cn
t ), and

‖at(ℓt−1)− at(x
′)‖ ≤ La‖ℓt−1 − x′‖ ≤ Lanrt−1,

with La < ∞ independent of t, as a result of the Lipschitz Assumption 4.1 and the
fact that x′ ∈ Cn

t−1. Moreover, the choice of centres {ℓt}t≥1 in (4.3) ensures that
‖ℓti − ati(ℓti−1)‖ ≤ nLrti for the infinite sequence {ti}i≥1 in (4.4).

Therefore, (4.6) implies

inf
(x,x′)∈Cn

ti
×Cn

ti−1

kti(x|x
′) ≥ sti (nrti + nLrti + Lanrti−1)

> sti (n(1 + L+ La)rti )(4.7)

where the inequality (4.7) holds because, by construction, rti > rti−1 and sti is strictly
decreasing.

However, the sequence {rt}t≥0 is chosen to increase “slowly enough” relative to
the sequence s

−1
t (υt). Specifically, from the identity (4.1) we deduce that there exists

in < ∞ such that

(4.8) s
−1
ti

(υti) > n(1 + L+ La)rti , for every i > in,

no matter the constants L,La < ∞. The inequalities (4.7) and (4.8) together imply
that

inf
(x,x′)∈Cn

ti
×Cn

ti−1

kti(x|x
′) > υti , ∀i > in,

which is obtained by applying the decreasing function sti on both sides of (4.8).
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The stability of the truncated PU operators Φc,n
t is a straightforward consequence

of Lemma 4.5.

Theorem 4.6. If Assumptions 4.1–4.3 hold then the PU operators Φc,n
t are stable,

i.e.,

lim
t→∞

Dtv

(

Φc,n

t|0 (π0),Φ
c,n

t|0 (π
′
0)
)

= 0

for any n < ∞ and any pair of probability measures π0, π
′
0 ∈ P(X ).

Proof. Lemma 4.5 guarantees that there is some in < ∞ such that, for every
i > in, we obtain

inf
(x,x′)∈Cn

ti
×Cn

ti−1

kti(x|x
′) > υti .

Moreover, the latter inequality and Assumption 4.3 imply that, for all i > in,

εti >
υti
C0

, where εt :=
inf(xt−1,xt)∈Ct−1×Ct

kt(xt|xt−1)

sup(xt−1,xt)∈Ct−1×Ct
kt(xt|xt−1)

.

However, Eq. (4.4) implies that
∑

i>in
υti = ∞ which, together with Eq. (4.2), yields

∑

t≥1

εt ≥
∑

i>in

εti ≥
∑

i>in

υti = ∞

The inequality above ensures, via Theorem 3.2, that the operator Φc,n

t|0 is stable for
any n.

Remark 4.7. Let R ⊂ M be the family of state space models that satisfy the
regularity Assumptions 4.1–4.3. Theorem 4.6 implies that for any model S ∈ R

it is possible to construct a sequence of truncated approximations Sc,n, where the
subsets in c = {Cn

t } are closed balls of increasing radius, such that the associated PU
operators Φc,n

t are stable for every integer n.
Moreover, Lemma 3.1 ensures that limn→∞ Sc,n = S in the topology D. In

particular, convergence in D implies (via Lemma 2.4) that limn→∞ Φc,n
t (π0) = Φt(π0)

for every t. Since π
c,n
t = Φc,n

t (π0) is the filter at time t generated by the truncated
model Sc,n, it follows that, for any finite time horizon T < ∞,

lim
n→∞

max
t∈[0,T ]

Dtv(π
c,n
t , πt) = 0,

while guaranteeing that the sequence π
c,n
t = Φc,n

t|0 (π0) remains stable.

5. Example: stable approximation of an unstable filter.

5.1. State space model. Let us consider the 1-dimensional, nonlinear state
space model described by a prior π0 ∈ P(R) and the pair of equations

Xt = s(Xt−1)Ut,(5.1)

Yt = |Xt|+ Vt,(5.2)

where s(x) is the sign function6, {Ut}t≥1 is a sequence of truncated normal r.v.’s,
namely Ut ∼ T N

(

|Xt−1|, σ
2
u, [0,+∞)

)

, and {Vt}t≥1 is an i.i.d. sequence of normal
r.v.’s, namely Vt ∼ N (0, σ2

v).

6We define s(x) := 1 for x ≥ 0 and s(x) = −1 otherwise.
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Let FN (x) and fN (x) denote the cumulative distribution function (cdf) and the
pdf, respectively, of the standard normal distribution, N (0, 1). The Markov kernel
κt(dx|x′) for this model has a pdf w.r.t. Lebesgue measure that can be explicitly
written as

(5.3) kt(x|x
′) =

exp
{

1
−2σ2

u
(x− x′)

2
}

(

1(−∞,0)2(x, x
′)) + 1(0,∞)2(x, x

′)
)

FN

(

|x′|
σu

)

√

2πσ2
u

and the mean function can be shown to yield

(5.4) at(x
′) =

∫

xkt(x|x
′)dx′ = x′ + s(x′)

fN

(

|x′|
σu

)

FN

(

|x′|
σu

)σu.

As the observation noise Vt is Gaussian, the potential function has the form

gt(xt) =
1

√

2πσ2
v

exp

{

−
1

2σ2
v

(yt − |xt|)
2

}

.

A key feature of model (5.1)-(5.2) is that XtXt−1 > 0 for every t, i.e., the sequence
of states X1:∞ = x1:∞ is either all-positive or all-negative. Given this property, it is
natural to decompose the prior measure π0 into positive and negative parts, namely

(5.5) π0 = π0 ((0,∞))π+
0 + π0 ((−∞, 0))π−

0 ,

where we define the probability measures π+
0 and π−

0 as

π+
0 (A) :=

π0 (A ∩ (0,∞))

π0 ((0,∞))
and π−

0 (A) :=
π0 (A ∩ (−∞, 0))

π0 ((−∞, 0))
,

respectively, for any Borel subset A ⊂ R. This decomposition can be “propagated”
to time t > 0 as stated in Proposition 5.1 below. In order to state this result, let us
denote

(5.6) ℓ+0,π0
= π0 ((0,∞)) and ℓ−0,π0

= π0 ((−∞, 0))

and let Φt(α) = gt · κtα be the PU operator generated by model (5.1)–(5.2).

Proposition 5.1. If π+
0 and π−

0 are both non-null, then the optimal filter at time
t can be decomposed as

(5.7) πt = ℓ+t,π0
π+
t + ℓ−t,π0

π−
t ,

where π+
t = Φt|0(π

+
0 ) and π−

t = Φt|0(π
−
0 ) are probability measures, and the linear

combination coefficients ℓ+t,π0
and ℓ−t,π0

are constructed recursively as

ℓ+t,π0
= ℓ+t−1,π0

(

gt, κtΦt−1|0(π
+
0 )

)

(

gt, κtΦt−1|0(π0)
) ,(5.8)

ℓ−t,π0
= ℓ−t−1,π0

(

gt, κtΦt−1|0(π
−
0 )

)

(

gt, κtΦt−1|0(π0)
) ,(5.9)

for t ≥ 1.
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Proof. See Appendix A.

The PU operator Φt for model (5.1)–(5.2) can be unstable. To see, this, let
ΦYt

t (α) = gYt

t · κtα be the random PU operator induced by the r.v. Yt. We can now
introduce the set

Au :=
{

ω ∈ Ω : {Φ
Yt(ω)
t }t≥1 is unstable

}

,

which describes all possible realisations of the observations process Y that yield an
unstable sequence of filters. Proposition 5.2 below states that the probability of this
set is positive.

Proposition 5.2. The set Au corresponding to the state space model described
by the equations (5.1)–(5.2) is non-negligible, i.e., P(Au) > 0.

Proof. See Appendix B.

5.2. Stable truncated approximation. The model (5.1)–(5.2) can yield
unstable PU operators Φt. However, we can still construct a stable approximation by
truncation of the positive and negative parts of πt. In particular, from Eq. (5.3) we
readily obtain the conditional pdf’s

k
+
t (x|x

′) =
1

FN

(

|x′|
σu

)

√

2πσ2
u

exp

{

−
(x− x′)2

2σ2
u

}

1(0,∞)2(x, x
′)

k
−
t (x|x

′) =
1

FN

(

|x′|
σu

)

√

2πσ2
u

exp

{

−
(x− x′)

2

2σ2
u

}

1(−∞,0)2(x, x
′)

and the potentials

g+t (x) =
1

√

2πσ2
v

exp

{

−
(yt − x)2

2σ2
v

}

, g−t (x) =
1

√

2πσ2
v

exp

{

−
(yt + x)2

2σ2
v

}

in such a way that

π+
t = Φ+

t|0(π
+
0 ) = Φt|0(π

+
0 ) and π−

t = Φ−
t|0(π

−
0 ) = Φt|0(π

−
0 ),

where Φ+
t (α) = g+t · κ+

t α and Φ−
t|0(α) = g−t · κ−

t α. It is apparent that

• both g+t and g−t are positive and bounded, hence they satisfy Assumption
4.1;

• both k
+
t (x|x

′) and k
−
t (x|x

′) are uniformly upper bounded and so satisfy
Assumption 4.3.

The mean functions for the kernels k
+
t and k

−
t both have the form in (5.4), i.e.,

a+t (x) = at(x)1(0,∞)(x) and a−t (x) = at(x)1(−∞,0)(x). Both functions are Lipschitz

and, therefore, satisfy Assumption 4.1. To see this, let us consider the case of a+t (x).
Since x > 0, the derivative w.r.t. x can be calculated exactly and it yields

da+t
dx

(x) = 1 +
f ′
N

(

x
σu

)

FN

(

x
σu

)

− fN

(

x
σu

)

F ′
N

(

x
σu

)

(

FN

(

x
σu

))2 , for x > 0,

where f ′
N = dfN

dx
and F ′

N = dFN

dx
. However,



16 D. CRISAN, A. LÓPEZ-YELA, J. MIGUEZ

• both fN and FN are Lipschitz, hence there exist Cf < ∞ and CF < ∞ such
that |f ′

N | < Cf and |F ′
N | < CF , respectively, and

• FN (x) ≥ 1
2 for x > 0.

Therefore, recalling that fN ≤ (2π)
− 1

2 and FN ≤ 1,

∣

∣

∣

∣

da+t
dx

(x)

∣

∣

∣

∣

< 1 + 4
(

Cf + (2π)
− 1

2 CF

)

< ∞,

i.e., a+t (x) is Lipschitz. The calculations for a−t are similar.
As for Assumption 4.2, since

|x′ − a+t (x
′)| <

2
√

2πσ2
u

,

we can always choose a sufficiently small constant c4 > 0 such that

k
+
t (x|x

′) > st

(

|x− a+t (x
′)|
)

:= c4 exp

{

−
1

2σ2
u

(

x− a+t (x
′)
)4
}

, for x, x′ > 0,

and, similarly, k−t (x|x
′) > st

(

|x− a−t (x
′)|
)

for x, x′ < 0. Therefore, Assumption 4.2

holds both for Φ+
t and Φ−

t .
Finally, since the PU operators Φ+

t and Φ−
t correspond to state space models inR,

we can construct truncated stable approximations πc,n,+
t and π

c,n,−
t using the method

in Section 4.2 (see Theorem 4.6). In particular, we construct the balls Cn
t = B(ℓt, nrt),

where ℓnt = yt and rt is any increasing sequence that satisfies limt→∞ r−1
t s

−1
t (υt) = ∞.

The choice of ℓt = yt guarantees that the inequalities (4.3) and (4.4) hold, as stated
by Proposition 5.3 below.

Proposition 5.3. Consider the state space models S+ = {π+
0 , κ

+, gY,+}, where
gY,+ = {1(0,∞)g

Yt

t }t≥1. If we let ℓt = Yt, t ≥ 1, then there exists a.s. an infinite
sequence {ti}i≥1 such that

(5.10)
∣

∣Yti − a+ti(Yti−1)
∣

∣ < Lrt and lim
T→∞

|{i : ti < T }|

T
> 0,

for some constant L < ∞.

Proof. A simple triangle inequality yields

∣

∣Yt − a+t (Yt−1)
∣

∣ ≤
∣

∣Yt − a+t (Xt−1)
∣

∣+
∣

∣a+t (Xt−1)− a+t (Yt−1)
∣

∣

≤ |Vt|+ La|Vt−1|+ |Xt − a+t (Xt−1)|,

where the second inequality is obtained by recalling that Yt = Xt + Vt and La is the
Lipschitz constant of function a+t . Moreover, since

a+t (x) = x+ σu

fN

(

x
σu

)

FN

(

x
σu

) ≤ x+

√

2σ2
u

π
,

we readily arrive at

(5.11)
∣

∣Yt − a+t (Yt−1)
∣

∣ ≤ |Vt|+ La|Vt−1|+ |Zt|+ c,
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where Zt := Xt − Xt−1 ∼ T N
(

0, σ2
u, (−Xt−1,∞)

)

and c =
√

2σ2
u

π
. From (5.11) we

deduce that

P
(∣

∣Yt − a+t (Yt−1)
∣

∣ > rt
)

≤ P (|Vt|+ La|Vt−1|+ |Zt|+ c > rt)

≤ P (|Vt|+ La|Vt−1|+ |Z| > rt) ,(5.12)

where Z ∼ N (c, σ2
u), and, since Vt is an i.i.d. sequence and Z is independent of t, the

fact that limt→∞ rt = ∞ implies that

(5.13) lim
t→∞

P
(∣

∣Yt − a+t (Yt−1)
∣

∣ > rt
)

≤ lim
t→∞

P (|Vt|+ La|Vt−1|+ |Z| > rt) = 0.

The limit in (5.13) implies that for any ǫ > 0 we can find Lǫ < ∞ such that

P
(
∣

∣Yt − a+t (Yt−1)
∣

∣ > Lǫrt
)

< ǫ

for every t. Then, Lévy’s extension of the Borel-Cantelli lemmas [25] implies (5.10).
To be precise, there is an infinite sequence {ti}i≥1 such that

∣

∣Yti − a+ti(Yti−1)
∣

∣ < Lǫrti
and limT→∞ T−1|{ti}i≥1| > 1− ǫ.

We can prove the same result for S− = {π−
0 , κ

−, gY,−} with the same argument.
Finally, since S+ and S− are in the class R, the truncated filters πc,n,+

t and π
c,n,−
t

are stable for every n, and it readily follows that πc,n
t = ℓ+t,π0

π
c,n,+
t + ℓ−t,π0

π
c,n,−
t is also

stable. Moreover, since limn→∞ π
c,n,+
t = π+

t and limn→∞ π
c,n,−
t = π−

t , we arrive at

lim
n→∞

π
c,n
t = ℓ+t,π0

lim
n→∞

π
c,n,+
t + ℓ−t,π0

lim
n→∞

π
c,n,−
t = ℓ+t,π0

π+
t + ℓ−t,π0

π−
t = πt.

5.3. Extension to higher dimensional spaces. It is straightforward to
extend model (5.1)–(5.2) to a general class of state space models on a dx-dimensional
space X ⊆ R

dx . In particular, let us choose a partition

X =

n
⋃

i=1

Ai, where Ai ∩ Aj = ∅ whenever i 6= j.

Assume that, for any subset B ∈ B(X ), κt(B|x ∈ Ai) = 0, if ∩Ai = ∅ i.e., once
the state is contained in Ai, it remains in that subset. Then, it is straightforward to
construct measures π1

0 , . . . , π
n
0 such that πi

0(Ai) = 1 and π0 =
∑n

i=1 ℓ
i
0π

i
0. Moreover,

the optimal filter at time t can be expressed as

πt =
n
∑

i=1

ℓit,π0
πi
t,

where πi
t = Φt|0(π

i
0) and ℓit,π0

= ℓit−1,π0

(gt,κtΦt|0(π
i
0
))

(gt,κtΦt|0(π0))
.

6. Uniform approximation over time. In this section we explore alternative
approximations of the state space model S = {π0, κ, g} where, besides truncating
the likelihoods gt, we reshape the Markov kernels κt in accordance with the sequence
of sets c = {Ct}t≥1. These modified kernels can be obtained from any given κt as
described below.
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Definition 6.1. Let S = {π0, κ, g} be a state space model and let c = {Ct}t≥1 be
a sequence of subsets of X . We define the “reshaped” Markov kernel κ̃c

t as

(6.1) κ̃c

1 := κ1 and κ̃c

t(dx|x
′) := κt(dx|x

′)πt−1(Ct−1) + ρt(dx)

for t ≥ 2, where

(6.2) ρt(dx) :=

∫

1C̄t−1
(x′)κt(dx|x

′)πt−1(dx
′) =

(

κt1C̄t−1
, πt−1

)

(dx).

We now investigate the use of reshaped kernels to build approximate state space
models and sequences of optimal filters. First we identify a class of truncated
filters that employ the reshaped Markov kernels introduced in Definition 6.1 and
establish its key properties. Then, we prove that, provided each set in the sequence
c = {Ct}t≥0 contains a sufficiently large probability mass, the truncated filters can
be kept arbitrarily close to the optimal filters uniformly over time.

Lemma 6.2. Let S = {π0, κ, g} be a state space model and let c = {Ct}t≥1 be a

sequence of subsets of X . The truncated state space model S̃c = {π0, κ̃
c, gc}, where

κ̃c
t = {κ̃c

t}t≥1 and gc = {gct}t≥1, yields sequences of predictive and filtering probability

measures (ξ̃ct and π̃c
t , respectively) such that, for any integrable f : X 7→ R and every

t ≥ 1,

(1Ct
f, ξt) = (1Ct

f, ξ̃ct ), and(6.3)

(1Ct
f, πt) = (f, π̃c

t )πt(Ct).(6.4)

Proof. See Appendix C.

Remark 6.3. The identity (6.4) shows that the truncated filter π̃c
t can be seen as

the restriction of the original filter πt to the set Ct, with the normalisation constant
πt(Ct) needed to ensure that π̃c

t is a probability measure.

From Lemma 6.2 it is relatively easy to show that the approximation error
Dtv(πt, π̃

c
t ) can be uniformly controlled over time.

Theorem 6.4. Let S = {π0, κt, gt} be a state space model and let c = {Ct}t≥1 be
a sequence of subsets of X . Assume every Ct is large enough to ensure that

(6.5) πt(C̄t) = (1C̄t
, πt) <

1

2
ǫ

for some prescribed 0 < ǫ < 1. Then, the truncated state space model S̃c = {π0, κ̃
c, gc}

yields a sequence of filters π̃c
t = Φ̃c

t|0(π0) such that supt≥0 Dtv(πt, π̃
c
t ) < ǫ.

Proof. Let ξ̃ct = κ̃c
tπ̃

c
t−1 be the sequence of predictive probability measures

generated by the truncated model S̃c. Using the relationship (2.2) and the definition
gct = 1Ct

gt, the approximation error can be written as

|(f, πt)− (f, π̃c

t )| =

∣

∣

∣

∣

∣

(fgt, ξt)

(gt, ξt)
±

(f1Ct
gt, ξ̃

c
t )

(gt, ξt)
−

(f1Ct
gt, ξ̃

c
t )

(1Ct
gt, ξ̃

c
t )

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

(fgt, ξt)

(gt, ξt)
−

(f1Ct
gt, ξ̃

c
t )

(gt, ξt)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

(f1Ct
gt, ξ̃

c
t )

(gt, ξt)
−

(f1Ct
gt, ξ̃

c
t )

(1Ct
gt, ξ̃

c
t )

∣

∣

∣

∣

∣

.(6.6)
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Let us consider the first term on the right-hand side of (6.6). From Lemma 6.2, we
have (f1Ct

gt, ξ̃
c
t ) = (f1Ct

gt, ξt) and, therefore,
∣

∣

∣

∣

∣

(fgt, ξt)

(gt, ξt)
−

(f1Ct
gt, ξ̃

c
t )

(gt, ξt)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

(fgt, ξt)

(gt, ξt)
−

(f1Ct
gt, ξt)

(gt, ξt)

∣

∣

∣

∣

= |(f, πt)− (1Ct
f, πt)|

= |(1C̄t
f, πt)| ≤

1

2
‖f‖∞ǫ,(6.7)

where the inequality follows from (6.5).
We can rewrite the second term on the right-hand side of (6.6) as

∣

∣

∣

∣

∣

(f1Ct
gt, ξ̃

c
t )

(gt, ξt)
−

(f1Ct
gt, ξ̃

c
t )

(1Ct
gt, ξ̃

c
t )

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(f1Ct
gt, ξ̃

c
t )

(1Ct
gt, ξ̃

c
t )

×
(1Ct

gt, ξ̃
c
t )− (gt, ξt)

(gt, ξt)

∣

∣

∣

∣

∣

= |(f, π̃c

t )| ×

∣

∣

∣

∣

(1C̄t
gt, ξt)

(gt, ξt)

∣

∣

∣

∣

≤
1

2
‖f‖∞ǫ,(6.8)

where the second equality follows from the relationship π̃c
t = gct · ξ̃

c
t and Lemma 6.2

and the final inequality is a consequence of (6.5).
Substituting (6.7) and (6.8) into (6.6) yields |(f, πt) − (f, π̃c

t )| ≤ ‖f‖∞ǫ and,
therefore, Dtv (πt, π̃

c
t) = sup{f∈B(X ),0≤f≤1} |(f, πt)− (f, π̃c

t )| ≤ ǫ.

For the family of sets c
n = {Cn

t }, let κ̃
c,n
t be the reshaped kernel constructed

as in Definition 6.1(ii) for the set Cn
t and let g

c,n
t = 1Cn

t
gt. The approximate

models S̃c,n = {π0, κ̃
c,n, gc,n}, where κ̃c,n = {κc,n

t }t≥1 and gc,n = {gc,nt }t≥1, preserve
convergence in the topology D, in a way similar to the original truncated models Sc,n.
In particular, we have the following result.

Theorem 6.5. Let S = {π0, κ, g} be a state space model and let c
n = {Cn

t }t≥1

be a sequence of subsets of X such that limn→∞ Cn
t = X . The sequence of truncated

models S̃c,n = {π0, κ̃
c,n, gc,n} converges to S in the topology D. Moreover, if

(6.9) lim
n→∞

sup
t≥1

πt(C̄
n
t ) = lim

n→∞
sup
t≥1

sup
x∈C̄n

t

gt(x) = 0,

then limn→∞ DM(S̃c,n,S) = 0.

Proof. As the initial condition π0 is the same for all n ≥ 0 and, trivially,
limn→∞ g

c,n
t = limn→∞ gt1Cn

t
= gt under the assumption limn→∞ Cn

t = X , it suffices
to show that

(6.10) lim
n→∞

Dtv(κ̃
c,n
t (·, x), κt(·, x)) = 0

for any x ∈ X . However, from Definition 6.1 we readily obtain that

|(f, κ̃c,n
t (·, x))− (f, κt(·, x))| ≤ (f, κt(·, x)) πt−1(C̄

n
t−1) +

(

(f, κt)1C̄n
t−1

, πt−1

)

≤ 2‖f‖∞πt−1(C̄
n
t−1),

where limn→∞ πt−1(C̄
n
t−1) = 0 (since limn→∞ Cn

t−1 = X ), hence (6.10) is satisfied.
For the second claim, we deduce from the above that

(6.11) DM(S̃c,n,S) = 2 sup
t≥1

πt−1(C̄
n
t−1) + sup

t≥1
sup
x∈C̄n

t

gt(x),

which implies limn→∞ DM(S̃c,n,S) = 0 as a consequence of the assumption (6.9).



20 D. CRISAN, A. LÓPEZ-YELA, J. MIGUEZ

Let S be a state space model of the class R introduced in Remark 4.7 and
construct the sets in the family c

n = {Cn
t }t≥1 in the same way as in Section 4.2,

i.e., Cn
t = B(ℓt, nrt). The operators Φ̃c,n

t|0 associated to the truncated model S̃c,n can

be proved to be stable for every integer n provided that inft≥1 πt(C
n
t ) > ǫ > 0.

Theorem 6.6. Let S = {π0, κ, g} be a state space model of the class R and
assume that there exists ǫ > 0 such that

(6.12) inf
t≥1

πt(C
n
t ) ≥ ǫ.

Then the PU operators Φ̃c,n
t , t ≥ 1, are stable, i.e.,

lim
t→∞

Dtv

(

Φ̃c,n

t|0 (π),Φ
c,n

t|0 (π
′)
)

= 0

for any n < ∞ and any pair of probability measures π, π′ ∈ P(X ).

Proof. Lemma 4.5 guarantees that there is some in < ∞ such that, for every
i > in,

(6.13) inf
(x,x′)∈Cn

ti
×Cn

ti−1

kti(x|x
′) > υti ,

where υt is a decreasing sequence such that
∑

t≥1 υt = ∞ and {ti}i≥1 is an infinite
set of integers with positive natural density.

Moreover, since κt(dx|x
′) = kt(x|x

′)λ(dx), Definition 6.1(ii) yields

(6.14) k̃
c,n
t (x|x′) = πt−1(C

n
t )kt(x|x

′) + r
n
t (x),

where rnt =
dρn

t

dλ
and k̃

c,n
t are the pdf’s associated to the measure ρnt and the reshaped

kernel κ̃c,n
t (dx|x′), respectively. Taking (6.13) and (6.14) together yields

(6.15) inf
(x,x′)∈Cn

ti
×Cn

ti−1

k̃
c,n
t (x|x′) > υtiπti−1(C

n
ti−1) > ǫυti

for every i > in, with the last inequality following from the assumption (6.12).
If we recall that

∑

i≥in
υti = ∞ and the fact that Assumption 4.3 implies

sup
t≥1;x,x′∈X

k̃
c,n(x|x′) < C0 < ∞,

then it is straightforward to combine the inequality (6.15) with expression (6.12) in
order to to apply Theorem 3.2 and show that the PU operators Φ̃c,n

t are stable.

If we put together Theorem 6.6 and Theorem 6.4, it turns out the if we guarantee
supt≥1 πt(C̄t) < ǫ, then the operator Φ̃c,n

t|0 resulting from S̃c,n = {π0, κ̃
c,n, gc,n} is

stable and attains uniform approximation errors over time. The lemma below provides
a sufficient condition of the potentials g and the transition pdf’s k = {kt}t≥1 that
entails supt≥1 πt(C̄t) < ǫ.

Lemma 6.7. Assume that, for every t ≥ 1, the potential gt is positive and
bounded and there are uniformly bounded conditional pdf’s kt(·|·) such that κt(dx|x′) =
kt(x|x′)dx for any x, x′ ∈ X . If

(6.16) lim
n→∞

sup
t≥1

∫

C̄n
t
g (xt) dxt

inf(xt,xt−1)∈Cn
t ×Cn

t−1
kt(xt|xt−1)

= 0

then we have limn→∞ supt≥1 πt(C̄
n
t ) = 0.
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Proof. The posterior probability of the set C̄n
t can be explicitly written in terms

of gt and kt as

πt(C̄
n
t ) =

∫

C̄n
t

∫

gt(xt)kt(xt, xt−1)πt−1(dxt−1)dxt
∫ ∫

gt(xt)kt(xt, xt−1)πt−1(dxt−1)dxt

and hence we can compute the upper bound

(6.17) πt(C̄
n
t ) ≤

‖k‖∞
∫

C̄n
t
gt(xt)dxt

inf(xt,xt−1)∈Cn
t ×Cn

t−1
kt(xt|xt−1)

∫

Cn
t
gt(xt)dxt

(

1− πt−1(C̄n
t−1)

) .

From (6.16) we deduce that

lim
n→∞

sup
t≥1

∫

C̄n
t

gt(xt)dxt = 0,

which, in turn, ensures the existence of N > 0 such that for any n ≥ N we have
∫

Cn
t
gt(xt)dxt ≥ 1

2 for any t ≥ 0. Therefore, using (6.16) again, for any ε > 0 there

exists Nε such that, for every n ≥ N ∨Nε and any t ≥ 1,

‖k‖∞
∫

C̄n
t
gt(xt)dxt

inf(xt,xt−1)∈Cn
t ×Cn

t−1

∫

Cn
t
gt(xt)dxt

≤ 2‖k‖∞

∫

C̄n
t
gt(xt)dxt

inf(xt,xt−1)∈Cn
t ×Cn

t−1
kt(xt|xt−1)

≤
ε

(1 + ε)2
.(6.18)

Then, by an induction argument, if π0(C̄
n
0 ) ≤

ε
1+ε

then πt(C̄
n
t ) ≤

ε
1+ε

. To see this,
simply combine (6.17) and (6.18) to obtain

πt(C̄
n
t ) ≤

ε

(1 + ε)2
×

1

1− πt−1(C̄n
t−1)

≤
ε

(1 + ε)2
×

1

1− ε
1+ε

≤
ε

1 + ε
,

which completes the proof.

The following statement brings together the results of this Section.

Theorem 6.8. Let S be a model in R, let cn = {Cn
t } be constructed as in Section

4.2 and let S̃c,n be the sequence of approximate models, with operators Φ̃c,n

t|0 . If (6.16)

holds, then for any constant ǫ > 0 (independent of t) there is some nǫ < ∞ such that,
for every n > nǫ,

(i) supt≥1 Dtv(Φ̃
c,n

t|0 (π0),Φt|0(π0)) ≤ ǫ and

(ii) the operator Φ̃c,n

t|0 is stable.

Proof. Lemma 6.7 ensures that inft≥1 πt(C
n
t ) > 1−ǫ for sufficiently large n. Then,

Theorem 6.6 entails stability and Theorem 6.4 guarantees that the approximation
errors are uniformly bounded over time.

7. Conclusions. We have investigated a general scheme for the stable
approximation of optimal filters generated by state space Markov models. The
approximate filters are obtained by truncating the original potential functions. The
construction enables us to investigate topological properties of families of optimal
filters. In particular, we introduce a natural topology on the set of state space models
within which the class of stable state space models form a dense set. We also show,
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by way of an example, that the class of models contains unstable filters and illustrate
in detail how the proposed technique can be put to work in order to obtain stable
approximations of these unstable filters. This is, to the best of our knowledge, the
first result regarding the topology of optimal filters. In the last part of the paper
we investigate further approximate filters that involve not only the truncation of the
original potentials, but also the modification of the corresponding Markov kernels.
For such filters we investigate their stability as well as their uniform convergence over
time to the original filter.

Appendix A. Proof of Proposition 5.1.

We apply a straightforward induction argument. At time t = 0 it is
straightforward to verify that

π0 = ℓ+0,π0
π+
0 + ℓ−0,π0

π−
0 ,

by simple inspection of Eqs. (5.5) and (5.6). Let us now assume that, at time t−1 ≥ 0,
the optimal filter can be decomposed as

(A.1) πt−1 = ℓ+t−1,π0
π+
t−1 + ℓ−t−1,π0

π−
t−1,

where π+
t−1 = Φt−1|0(π

+
0 ) and π−

t−1 = Φt−1|0(π
−
0 ). Then,

(f, πt) =
(fgt, κtπt−1)

(gt, κtπt−1)

= ℓ+t−1,π0

(fgt, κtπ
+
t−1)

(gt, κtπt−1)
+ ℓ−t−1,π0

(fgt, κtπ
−
t−1)

(gt, κtπt−1)
(A.2)

= ℓ+t−1,π0

(gt, κtπ
+
t−1)

(gt, κtπt−1)

(fgt, κtπ
+
t−1)

(gt, κtπ
+
t−1)

+ ℓ−t−1,π0

(gt, κtπ
−
t−1)

(gt, κtπt−1)

(fgt, κtπ
−
t−1)

(gt, κtπ
−
t−1)

,(A.3)

where (A.2) is a consequence of (A.1). Eqs. (5.7), (5.8) and (5.9) follow readily from
(A.3) if we simply note that

π+
t−1 = Φt−1|0(π

+
0 ), π−

t−1 = Φt−1|0(π
−
0 ), πt−1 = Φt−1|0(π0)

and Φt(α) =
(fgt,κtα)
(gt,κtα)

. ✷

Appendix B. Proof of Proposition 5.2.

Choose π0 with no atoms at the origin and with support only on the positive
half-line [0,∞), then choose π̄0 with no atoms at the origin and support only on the
negative half-line (−∞, 0). Since the sequence of states Xt never changes sign, it is
apparent that π+

t = Φt|0(π
+
0 ) = Φt|0(π0) = πt and π−

t = Φt|0(π̄
−
0 ) = Φt|0(π̄0) = π̄t,

hence πt has support only on the positive half-line [0,∞) and π̄t has support only on
the negative half-line (−∞, 0) (and no atoms at the origin). Hence, the two measures
are singular, i.e., limt→∞ Dtv(π̄t, πt) = 1 and, therefore, P(Au) = 1.

The operator Φt is still unstable even if we adopt the definition of weak stability
(see Section 2.5). To see that also in this case P(Au) > 0, choose π0 absolutely
continuous with respect to the Lebesgue measure (with full support) such that
π0((0,∞) > 1

2 > π0((−∞, 0)). For example, choose π0 = N (1, 1), i.e., a normal
distribution with mean 1 and variance 1.

Next, choose π̄0 to be the measure symmetric to π0 with respect to the origin,
i.e., π̄0(S) = π0(−S) for any Borel set S, where −S := {x ∈ R : −x ∈ S}. For
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example, if π0 = N (1, 1) then π̄0 = N (−1, 1). Since both the state equation and the
observation equation are symmetric w.r.t. the origin, it follows that π̄t(S) = πt(−S)
for any Borel set S. Let us denote by pt and p̄t the pdf of πt and π̄t, respectively,
w.r.t. the Lebesgue measure. Then p̄t(x) = pt(−x) for all x ∈ R.

If Φt is weakly stable then we have limt→∞ Dtv(π̄t, πt) = 0. This implies, in
particular, that

0 = lim
t→∞

π̄t ((0,∞))− πt ((0,∞)) = lim
t→∞

πt ((−∞, 0))− πt ((0,∞)) ,

hence 1− 2 limt→∞ πt ((0,∞)) = 0 and, as a consequence, limt→∞ πt ((0,∞)) = 1
2 .

Instead of choosing an arbitrary but fixed sequence of observations {Yt = yt}t≥1,

let us now assume that the observations are r.v.’s and P(Au) = 0, i.e., ΦYt

t

is weakly stable a.s. Then, limt→∞ Dtv(π̄
Y1:t

t , πY1:t

t ) = 0 a.s. and, therefore,
limt→∞ πY1:t

t ((0,∞)) = 1
2 a.s. By the bounded convergence theorem, we deduce that

1

2
= lim

t→∞
E

[

πY1:t

t ((0,∞))
]

= lim
t→∞

E [P (Xt ∈ (0,∞)|Gt)] = lim
t→∞

P (Xt ∈ (0,∞)) ,

where Gt is the σ-algebra generated by Y1:t. However, the Markov kernel of the
process Xt does not transfer mass from the positive half-line to the negative half-line
and viceversa. More precisely, if X0(ω) > 0 then Xt(ω) > 0 and, similarly, X0(ω) < 0
implies Xt(ω) < 0. If follows that P(Xt ≥ 0) = P(X0 ≥ 0) and, if P(X0 > 0) > 1

2
(e.g., for π0 = N (1, 1)) then P(Xt > 0) > 1

2 for every t > 0 (and it cannot converge
to 1

2 ). This is a contradiction, hence necessarily P(Au) > 0. ✷

Appendix C. Proof of Lemma 6.2.

We proceed with an induction argument. At time t = 1 we have ξ̃c1 := κ̃c
1π0 =

κ1π0 = ξ1 and Eq. (6.3) holds. Moreover, for any integrable f : X 7→ R we have

(1C1
f, π1) =

(1C1
g1, ξ1)

(g1, ξ1)
×

(1C1
fg1, ξ1)

(1C1
g1, ξ1)

= π1(C1)×
(fgc1, ξ̃

c
1)

(gc1, ξ̃
c
1)

= π1(C1)(f, π̃
c

1),(C.1)

where the first identity in (C.1) follows from the definition gct = gt1Ct
and the fact

that ξ̃c1 = ξ1. The last equality is straightforward and completes the proof for t = 1.
For the induction step, let us assume that

(C.2) (1Ct−1
f, πt−1) = (f, π̃c

t−1)πt−1(Ct−1)

for any integrable f : X 7→ R. We evaluate the difference (1Ct
f, ξt)− (1Ct

f, ξ̃ct ) first.
We recall that ξt = κtπt−1 and ξ̃ct = κ̃c

tπ̃
c
t−1, hence,

(1Ct
f, ξt)− (1Ct

f, ξ̃ct ) = ((1Ct
f, κt), πt−1)−

(

(1Ct
f, κ̃c

t), π̃
c

t−1

)

=
(

(1Ct
f, κt)1Ct−1

, πt−1

)

+
(

(1Ct
f, κt)1C̄t−1

, πt−1

)

−πt−1(Ct−1)
(

(1Ct
f, κt), π̃

c

t−1

)

−
(

(1Ct
f, ρt), π̃

c

t−1

)

,(C.3)

where the last equality is obtained by substituting κ̃c
t = πt−1(Ct−1)κt + ρt. However,

(

(1Ct
f, ρt), π̃

c
t−1

)

= (1Ct
f, ρt), hence (C.3) becomes

(1Ct
f, ξt)− (1Ct

f, ξ̃ct ) =
(

(1Ct
f, κt)1Ct−1

, πt−1

)

+
(

(1Ct
f, κt)1C̄t−1

, πt−1

)

−πt−1(Ct−1)
(

(1Ct
f, κt), π̃

c

t−1

)

− (1Ct
f, ρt).(C.4)
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Let us now compare the first and third terms in Eq. (C.4). If we define the
function ft(x) :=

∫

1Ct
(x′)f(x′)κt(dx

′|x) then it is straightforward to see that the
first term on the r.h.s. of (C.4) can be rewritten as

(C.5)
(

(1Ct
f, κt)1Ct−1

, πt−1

)

= (1Ct−1
ft, πt−1),

and we obtain the same expression for the third term, namely,

(C.6) πt−1(Ct−1)
(

(1Ct
f, κt), π̃

c

t−1

)

= πt−1(Ct−1)(ft, π̃
c

t−1) = (1Ct−1
ft, πt−1),

where the second equality follows from the induction hypothesis (C.2).
We are now left with the comparison of the second and fourth terms in (C.3). For

the second term, it is straightforward to see that

(C.7)
(

(1Ct
f, κt)1C̄t−1

, πt−1

)

= (1C̄t−1
ft, πt−1),

while from the definition of ρt(dx) in Eq. (6.2) and ft above we obtain an identical
expression for the fourth term, i.e.,

(C.8) (1Ct
f, ρt) = (1C̄t−1

ft, πt−1).

If we substitute (C.5), (C.6), (C.7) and (C.8) into Eq. (C.4) we arrive at the equality
(1Ct

f, ξt) = (1Ct
f, ξ̃ct ) in Eq. (6.3).

To conclude the proof, we repeat the argument of time t = 1 for the filter πt,
namely,

(1Ct
f, πt) =

(1Ct
fgt, ξt)

(gt, ξt)
=

(1Ct
gt, ξt)

(gt, ξt)
×

(1Ct
fgt, ξt)

(1Ct
gt, ξt)

= πt(Ct)×
(fgct , ξ̃

c
t )

(gct , ξ̃
c
t )

= πt(Ct)(f, π̃
c

t )(C.9)

where (C.9) follows from (6.3) and the fact that gct = 1Ct
gt. ✷
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