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POLYNOMIAL PROPAGATION OF MOMENTS IN STOCHASTIC
DIFFERENTIAL EQUATIONS*

ALBERTO LOPEZ YELAT AND JOAQUIN MIGUEZ}

Abstract. We address the problem of approximating the moments of the solution, X(t),
of an Itdé stochastic differential equation (SDE) with drift and diffusion terms over a time-grid
to,t1,-..,tn. In particular, we assume an explicit numerical scheme for the generation of sample paths
X (to), X (t1),...,X (tn),... and then obtain recursive equations that yield any desired non-central
moment of X (t,) as a function of the initial condition X (t9) = X¢. The core of the methodology
is the decomposition of the numerical solution X (¢,) into a “central part” and an“effective noise”
term. The central term is computed deterministically from the ordinary differential equation (ODE)
that results from eliminating the diffusion term in the SDE, while the effective noise accounts for the
stochastic deviation from the numerical solution of the ODE. For simplicity, we describe the proposed
methodology based on an Euler-Maruyama integrator, but other explicit numerical schemes can be
exploited in the same way. We also apply the moment approximations to construct estimates of the
1-dimensional marginal probability density functions of X(tn) based on a Gram-Charlier expansion.
Both for the approximation of moments and 1-dimensional densities, we describe how to handle the
cases in which the initial condition is fixed (i.e., Xo = @o for some deterministic and known xg)
or random. In the latter case, we resort to polynomial chaos expansion (PCE) schemes in order to
approximate the target moments. The methodology has been inspired by the PCE and differential
algebra (DA) methods used for uncertainty propagation in astrodynamics problems. Hence, we
illustrate its application for the quantification of uncertainty in a 2-dimensional Keplerian orbit
perturbed by a Wiener noise process.

Key words. Uncertainty propagation; moment approximation; density estimation; FEuler-
Maruyama; polynomial chaos expansion; Gram-Charlier expansion

AMS subject classifications. 65C30, 41A58, 41A10

1. Introduction. Let us consider the stochastic differential equation (SDE) in
Itd form [18]

dX(t)
- foxe

w(X,t)dt + G(X, £)dW (t)
XO)

where ¢ > 0 denotes continuous time, X (¢) is a real v-dimensional random process
representing the solution of the SDE, X is a real v-dimensional random variable
that describes the initial condition of the process, functions u : R" x [0,00) — R" and
G : RY x [0,00) — R**¢ are the the drift coefficient and the diffusion coefficient,
respectively, and W(t) is a d-dimensional stochastic process with independent
increments.

When W (t) is a Wiener process and the drift and diffusion coefficients satisfy
some standard differentiability assumptions, it can be shown that the solution X (t)
to Eq. (1.1) can be characterised by a time-varying probability density function (pdf)
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2 A. LOPEZ YELA AND J. MIGUEZ

that we denote as fx(-,¢) and satisfies the Fokker—Planck equation [24]

(12) GXED LSO (a0

= ;c(k)

M\»—A

32 X P 0 x(@0] =0

with initial condition fx (z,0) = fx,(x), where u® k& =1,...,v, are the components
of the drift coefficient u(X,t) in Eq. (1.1) and D) (x,t) is the entry in the k-th
row and j-th column of the diffusion tensor D(z,t) = G(=,t)G(z,t)". In principle,
we may completely characterise the solution of Eq. (1.1) by solving the partial
differential equation (PDE) (1.2). However, this cannot be done exactly except for
special (simple) cases [24]. On the other hand, the computational cost of numerical
schemes for PDEs, based on finite differences [26] or finite elements [5, 15], quickly
becomes prohibitive as the dimensions v and d increase.

Because of the difficulties in solving the Fokker-Planck equation (1.2), most
authors have focused on the study of time-discretised numerical schemes to simulate
realisations of the random process X (¢). Such schemes are extensions of classical
algorithms for the numerical solution of ordinary differential equations (ODEs)
and they include the classical Euler-Maruyama, Milstein or stochastic Runge-Kutta
methods [8, 13], as well as their implicit and semi-implicit variants [27, 17, 32]. When
the noise process W (t) is Wiener, the convergence and stability of these numerical
algorithms can be studied using a variety of techniques [8, 12, 10], although Taylor
approximations have become the standard approach in the past years [13]. Let
us remark, however, the fundamental difference between simulating a realisation
X(t) = x(t) for a discrete-time grid, ¢ € {tg,t1,...,tn}, and the probabilistic
characterisation that would be obtained by computing the pdf’s fx(x,t;), even if
just approximately. While one can certainly generate many trajectories X (t) = x;(t),
i =1,...,N, in order to construct a standard Monte Carlo estimator over the grid
t € {tg,t1,...,tn}, the computational cost of such an approach becomes intractable,
again, as the dimension v of the process increases. More sophisticated Monte Carlo
methods, specifically designed for high-dimensional systems, exist. For example, [4]
applies multi-level Monte Carlo to approximate the probability distribution associated
to the solution of a PDE, while the authors of [3] prove the stability of a sequential
Monte Carlo sampler as the dimension of a target probability distribution goes to
infinity. Efficient methods for Monte Carlo filtering in high-dimensional settings have
also been proposed [21, 25]. These techniques are often used to tackle Bayesian
inference problems (where data are available for a posteriori estimation), and they
involve elaborate sampling schemes.

In this paper we introduce a new approach to the probabilistic characterisation
of the solution X (¢) to the SDE (1.1). Choose a time grid {to,...,tn,...}, an initial
condition Xy = @ and let X, be the random sequence generated by the Euler-
Maruyama scheme applied to the SDE (1.1). The proposed method builds upon:

(a) The classical Euler scheme applied to the ordinary differential equation
(ODE) = wu(ax,t) with initial condition g, that yields a deterministic
sequence :i'g ~ x(ty), n = 0,1,.... We refer to this sequence as the central
part of X,

(b) The construction of an effective noise sequence, denoted AWn, that relates
the central component and the Euler-Maruyama realisation as X, = :i:,CL +
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POLYNOMIAL PROPAGATION OF MOMENTS IN STOCHASTIC DIFFERENTIAL... 3

AW ,.

Specifically, we show how the moments of the effective noise process AW, can be
approximated recursively using a polynomial (Taylor) expansion. The moments of
the random vectors X, are then obtained in a straightforward way via the binomial
theorem. When the initial condition X is random, the method can be combined
in a straightforward way with a polynomial chaos expansion (PCE) scheme [31, 16]
to account for the initial uncertainty. Finally, we also show how to approximate
the marginal pdf of each component )A(fik) in the vector X, = ()A(él), . .,)A(ff)) by
combining its moment estimates with a Gram—Charlier expansion of type A. The
practical performance of the proposed scheme is illustrated with two examples related
to astrodynamics, namely the propagation of uncertainty for a Keplerian orbit in two
dimensions perturbed by a Wiener process.

While in this manuscript we have restricted the analysis to the Euler and Euler-
Maruyama schemes for the sake of clarity, our arguments can be extended to other
numerical algorithms.

The rest of the paper is organised as follows. In Section 2, we introduce
the methodology and outline the recursive algorithms for the approximation of
the moments of X, with both fixed (2) and random (X,) initial condition, as
well as the scheme to estimate the marginal pdf’s of )A(T(Lk), k=1,...,v, from the
approximate moments. In Sections 3 and 4 we present the analysis that supports
the proposed algorithms. In particular, in Section 3 we establish the convergence of
the estimates of the moments of the effective noise terms (when the order of their
polynomial approximations increases), while in Section 4 we provide conditions for
the convergence of the Gram-Charlier expansion of the marginal pdf’s. In Section 5
we apply the proposed numerical schemes to the characterisation of the uncertainty
in a 2-dimensional Keplerian orbit perturbed by a Wiener process. Finally, a brief
discussion of the theoretical and numerical results is presented in Section 6.

2. The algorithm. In this Section we introduce the proposed algorithms for the
approximation of the moments and the 1-dimensional marginal pdf’s of the solution of
Eq. (1.1) over a time grid. These schemes are the main contribution of the paper. We
provide the general argument for their derivation and a summary aimed at facilitating
their implementation, but postpone the proof of the key theoretical results to Sections
3 and 4 for clarity. We start with a brief summary of the key notation used in this
section (and the rest of the paper).

2.1. Notation. Consider a probability space (Q, F,P), where Q is the sample
space, F denotes a o-algebra of subsets of {2 and PP is a reference probability measure.
We denote real random variables (r.v.’s) and random processes (r.p.’s) on (2, F,P)
with capital letters, e.g., X and X(¢), respectively, and use lower-case letters to
indicate specific realisations. For example, x is a realisation of the r.v. X and x(¢)
denotes a sample path of X (t), t € [0, ).

Vectors are denoted with bold-face letters while we use regular-face for scalars,
e.g., ¢ and z, respectively. For a vector @, a superscript *) indicates the k-th
component of the vector, i.e., if  is a v-dimensional vector then x = (m(l), e x(”)).
A multi-index 7 = (r®,...,7(")) is a vector of non-negative integers, i.e., z(") € NU{0}
for every . We define the following shorthands for typical operations on multi-indices:

This manuscript is for review purposes only.
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4 A. LOPEZ YELA AND J. MIGUEZ

k=1
rl = H rF,
k=1
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k=1
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() =11 (w)
k=1

We adopt the convention 0! =1 (hence, (0,...,0)! =1 as well).

Q
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-
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2.2. Euler—-Maruyama discretisation and the effective noise process.
The discretisation of the SDE (1.1) using the explicit Euler—Maruyama scheme yields

21) Xo=X, 1 +hu(Xn-1,tn1) +G(Xp1,t,1)AW,,, n=12,...,

where X, ~ X (t,) is the approximation of the solution at time t,,, with ¢,, = to +nh,
the subscript n denotes discrete time, h is the step-size and AW ,, = W (t,,) —W (t,,—1)
is the increment of the r.p. W (¢) in the interval (¢,-1,t,). The key of the proposed
method is to decompose the random sequence X ,, into two parts: a central part, that
results from the integration of an ODE, and an effective noise sequence that accounts
for the randomness in X ,,. These two notions are explicitly introduced below.

DEFINITION 2.1. The random sequence in Eq. (2.1) can be written as
X, =20 + AR
n=2=a, +AW,,

where the deterministic sequence :i:g ~ x(t,) is the central part that results from the
explicit Euler integration of the ODE & = u(x,t) with a prescribed initial condition
x% (ty) = xo; specifically

(2.2) &5 =2 +hu(E | tar), neN,

n =

and AW, = X,, — ﬁ:g is the effective noise r.p.

The central part is easily computed as in Eq. (2.2). However, the characterisation
of the effective noise is not straightforward. The gist of our approach is to perform
a Taylor expansion of AW,, around :Ac,c;l at each time step. Such expansion is
convenient because it naturally provides a probabilistic description of the effective
noise (and, as a consequence, of the numerical solution X n) and it can be carried out
recursively over time.
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2.3. Polynomial expansion of the effective noise. For the analysis of the
effective noise process it is convenient to handle separately the uncertainty in Eq.
(2.1) due to the random initial condition Xy and the uncertainty due to the sequence
of independent noise increments AW, (this separation is already implicit in the
definition of the effective noise). Consequently, let us first assume that the initial
condition is deterministic and fixed, i.e., X g = @g. The probability distributions and
statistical moments of the r.p.’s X, and AW,, can then be computed conditionally
on Xg = xg. In particular, in Section 3, we prove that the polynomial expansion
of order N for the effective noise at time n with initial condition Xg = xg can be
recursively written as

AWE (0) = AW, (o)

n—1,N
o1l k) (4C LT
+h ) = u® (&5 (@0),tn1) AW ,,_1 y(20)
ot rlox] ’
N—-1 d 1 am ki) o )
2.3 — G\ AW AW
(2.3 * 2 2 i O a0 ) v (@),

for k=1,...,v and, hence, we denote AW ,, x(x¢) = (AW ~ (o), 7AI/T/T(;’J)\,(:BO))
Note that we exphc1tly indicate the dependance on the 1n1t1al condition of the central
component &5 () and the effective noise increments AW ,, x (o). Besides, since we
have assumed that the initial condition is fixed, then, AWO,N (zo) = 0. Let us also
notice that the multi-index r in the summations is v-dimensional. The subscript N
in AWn, ~ (o) indicates that we construct a polynomial approximation of order N
with no remainder term.

From Eq. (2.3), it is straightforward to obtain the expansion of AW;N(mO) (using
combinatorics) for any v-dimensional multi-index = such that |r| > 1. In particular,
the conditional moments of the effective noise truncated to order N can be written as

(2.4) E[AW y@o)] = 027 (@5 (@), b1 JE[AW S JE[AW ., y (o)),

|s|+|r'|=1

where ar n N(ézc 1 (o), t,—1) are the coefficients of the expansion obtained from the
polynomlal coefficients of Eq. (2.3). Note that the multi-index 7’ is v-dimensional
and the multi-index s is d-dimensional.

To obtain the identity (2.4), we have assumed that the noise increments AW,
form an independent random sequence, which implies that the effective noise AW,
is itself independent of AW, for every m < n.

Finally, using the binomial theorem, we arrive at a the formula of the conditional
moments of X n given the initial condition Xy = x( in terms of the conditional
moments of the effective noise in Eq. (2.4) and the central part,

s ’ ’
(25) B v = X (1)) EIAW] y(e)]
' =0
for any multi-index r. Because of the truncation of order N, the approximation
is accurate for moments of order £ < N. For example, if we choose N = 1, the
approximation is truncated to order 1 and the polynomial is linear in the noise and
hence, not dependent on the second or higher moments of the r.p. W,,.

This manuscript is for review purposes only.
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6 A. LOPEZ YELA AND J. MIGUEZ

The convergence of the polynomial expansions presented above is rigorously
established in Section 3.

2.4. Initial uncertainty. In general, the initial condition for the SDE (1.1) is
unknown and X g is modelled as a random vector with a given probability distribution.
It is tempting to handle this uncertainty as an initial effective noise, i.e., to assume
that AW y(xg) = X and @ = 0 in Egs. (2.3) and (2.4). However, this approach
turns out naive. Since Egs. (2.3) and (2.4) are obtained from a Taylor expansion of
AWO, ~(zo), when the higher order moments of the effective noise are significant we
need to increase the order N of the approximation in order to maintain a prescribed
(sufficiently good) accuracy. A larger N implies the computation of higher-order
derivatives of functions w and G and, as a consequence, an increased computational
effort. In general, the uncertainty of the initial conditions can be expected to be
independent of the dynamical perturbation W (t) and, possibly, to have a larger
power and more significant higher-order moments compared to the process W (t).
For these reasons, it is more convenient to handle the initial uncertainty using a
specific expansion of order possibly higher than N.

The polynomial chaos expansion (PCE) method [31, 16] is a technique that
provides a polynomial expansion of a r.v. propagated through a deterministic
dynamical system. The standard PCE scheme cannot be used in a SDE like Eq.
(1.1). However, the argument in Section 2.3 enables us to circumvent this problem,
as we have already obtained a deterministic recursion for the moments of the effective
noise in Eq. (2.4).

In order to compute a PCE of the conditional moments of X, we take a set of
N, polynomials {®; : R" — IR}ZN:”l, selected to be orthogonal with respect to the pdf
fx, of the initial condition X. Then, we construct the approximation

(2.6) E[X, v|%] ~ ZcmN Xo),

where X} is the o-algebra generated by Xy and the c( ™) N ’s are the PCE coefficients

(note thet the superscript (") simply indicates dependence on the multi-index 7 on
the left-hand side). A simple way to compute these coeflicients is the so-called non-
intrusive method [16], for which

Np
(2.7 { Ern)N} = argnllvinJ (E[ won(®o)] Z P (o ) fx,(xo)dag .
B {Ck}k£1

While the optimisation problem (2.7) above cannot be solved exactly in general, for
most practical applications it is possible to approximate the integral using Monte
Carlo. If we draw N, samples from the pdf fx,, denoted by Xg;, j=1,...,N,, it is
straightforward to compute an approximation of the PCE coefficients by solving the
linear least-squares problem

2

Np Ny
(2.8) {0521\/} = argmm Z < n,N Xo,y - Z Ck(I’k(XO,j>> )

{ck},C =1 k=1

which, in turn, yields the approximate conditional moments

This manuscript is for review purposes only.
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Some remarks are in order regarding the validity of Eq. (2.9):

e When the dimension of the state space is v, the PCE approximation is of
order Npcg where the number of orthogonal polynomials is [2, Chapter 2]
(2.10) N, = (NPCS * “) .

e The least-squares problem in (2.8) can be solved when the correlation matrix
&' & has full rank, where

®1(Xo1) - Py, (Xo01)
(2.11) P = ; :

®1(Xon,) - PN, (XonN,)
This implies that Ny > N,, (in practice, Ny > N, and sufficiently large). The
numerical computation of (2.8) is typically more stable when the polynomials
{@i}gvz"l are orthonormal [7], i.e., when |®;|| = 1.

e The polynomial expansions (2.6) and (2.9) converge in mean square error
(MSE) when the L?-norm of the conditional moments with respect to the
measure fx,(xg)dxg are finite [6], i.e.,

~ T 2
(2.12) JIE[X,L,N(Q:O)] fx,(xo)dxo < 0.
for the selected multi-index r.
Finally, we recall the rule of iterated expectations [30, Theorem 3.4]), which yields
NP
(2.13) B[X), ] = B[B[X] 4 |%]] ~ 3 &) (Blei(Xo)].
i=1
When the polynomials ®; are orthonormal with respect to fx, it follows that

1, ifi=jy,
(214) J‘ @i(ﬁ())@j((ﬂo)fxo ((B())diﬂo = 6ij = { O, otherv{/ise,
and in particular,
(2.15) E[®:(X0)] = di-
Therefore, Eq. (2.13) readily yields
(2.16) E[XZN] ~ E[X:L,N]Np = égr’r)LN

when the expansion is based on an orthonormal set of polynomials and E[-]y, is
constructed as in (2.9).

2.5. 1-Dimensional marginal densities. The approximate moments in
Eq. (2.16) yield a partial description of the probability distribution of X ,,. However,
in many problems, the uncertainty associated to the random sequence X, is easier to
interpret in terms of the probability density function (pdf) of the r.v.’s of interest. In

This manuscript is for review purposes only.
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8 A. LOPEZ YELA AND J. MIGUEZ

this section, we describe a procedure to approximate the marginal pdf of each variable
X% using a Gram—Charlier expansion [14].

We introduce some notation first. Let X be a real r.v. The pdf of X is denoted
by fx, while Ux(t) = E[e**!] is the characteristic function of X (where i is the
imaginary unit and ¢t € R). The cumulant generating function of X is [14]

[o0]
(2.17) log (¥x (1)) = > ror (X

r=1

where , denotes the r-th order cumulant. The cumulants «,(X) can be computed
in terms of the moments of X using lookup tables [14].
The general Gram—Charlier expansion of the marginal pdf of szkj)v conditional

on a fixed initialization Xy = &g can be written as

N
d’l"
(218)  fem (o) ~ [ X (0), 2,] ]tp(x)
for any € R (such that the expansion converges), where

2.19) O [X¥)(w0), Z,] = B, (m()i'ff}v(mo)) —k1(Zy), ...

i (X (@0)) = 1e(Z,)))

and B, is the r-th Bell polynomial [1], ¢ is an auxiliary pdf and Z, is a r.v. with
density .

In the case at hand, We note that for a fixed Xy = x¢ the distribution of
the solution X, (@) = &5 (z0) + AW, (x0) depends essentially on the distribution
of the effective noise AW, (), as &5 (@) is the numerical approximation of the
deterministic solution to the ODE & (t) = w(aC,t) with initial condition & (ty) =
xp. Using Eq. (2.3), we can expand the effective noise in terms of the noise increments
AW ,,. Specifically, if we apply a truncation of order N = 1, the k-th effective noise
coordinate becomes

n,l nmj

d n
(2.20) AW (z4) = Z Z b (@) AW,

where the bfﬂ)n j(@o)’s are deterministic coefficients. Hence, AW(k)( o) is a linear
k)

combination of independent r.v.’s. If W(t) is a Wiener process, then AW 1 (o) is
Gaussian and, even for more general processes, recent results on Berrnyssen bounds
[9, 11] suggest that a Gaussian approximation for AW( )(:co) is a plausible choice.
Therefore, we let the auxiliary pdf ¢(x) in Eq. (2.18) be a normal pdf depending on
(k)

(

xg, denoted by ©¢ c® (x|330) with mean g, * () and standard deviation ng)( 0). We

write Zg(k)(sco) to denote a r.v. with pdf precisely @f(k) (- |xo).
The Gram—Charlier expansion with a Gaussian auxiliary density is well studied
and known as Gram—Charlier expansion of type A. In particular, Eq. (2.18) can be

This manuscript is for review purposes only.
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rewritten as [14]

(221) F309 |, (7l0) > [ 1+ Z

r= 1T|0_

where H, () is the r-th Hermite polynomial that satisfies the Rodrigues formula [20]

dT‘
(2.22) H, (z) = (=1)"e" /2 —— e "/2,
da”
For simplicity, we propose to compute the mean ug@)(mo) and standard deviation

ok (o) of the auxiliary Gaussian density wgm(ﬂwo) using the truncations of order
N =1 of the effective noise AWékl) (zo). This yields

(2.23) i (o) = &5 (o) + B[AWR) (o) .
and
(2.24) o®) (x0) \/IE AW (20))*] - E[AWH) (z0)]7,

for k = 1,...,v where [AW(kl)( 0)] and E[(AWskl)(a:O)f] can be computed
recursively from Eq. (2.3).

The convergence of the expansion in Eq.(2.21), i.e., the analysis of the
approximation error when the series is truncated to some finite order is addressed
in Section 4.

When the initial condition X is random, it is possible to construct PCE
approximations of /M(lk), aflk) and C) in a similar way as we computed the
approximations of conditional moments of X 2 N in Section 2.4. In particular,

NP

(2.25) 1 (X o), = D&M (X,), D (Xo)n,= Z &We;(x
i=1

and

(2.26) c, [Xff}v(xo),zg“’“ X, ] Z g, (X

where, the same as in Section 2.4, the coefficients of the expansion are obtained by
solving the least-squares problem

N, 2

NP
(2.27) {é[ ](k)} = = argmin Z <u£f](k) (Xo,5) — Z ckq)k(Xo,j)) , s=1,2,3,
= k=1

N .
{ck}k£1 Jj=1

— k)

,n i,mn

and w0 = 8.
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S0

[2106) _ (),

. él.[fg(k) = éf,; and u?](k) =C, [X(k) ZG(M].

. and u

n,N°*“¢
Finally, if we draw N. i.i.d. samples from the random initial condition Xy,
denoted XGJ, j=1,...,N., then we can use Eq. (2.21) to approximate the pdf of

0 a

1N
(2.28) ff(ff’fv () = J f)gg%xo ([ao) fxo (®0)do ~ N 2 fgikgv‘xo(ﬂxé,j)-
’ B sj=1 "

2.6. Outline of the algorithms. In this section we provide a summary of the
proposed algorithms for the approximate computation of the moments E[X :L N] and
the 1-dimensional marginal densities foLk:EV (), k=1,...,0.

Table 2.1 provides a list, with briefydescriptions, of the inputs and outputs of
the two proposed approximation schemes. Algorithm 2.1 displays a pseudocode, with
cross-references to Sections 2.3 and 2.4, of the numerical scheme for the computation
of moments assuming a random initial condition Xy. If Xy = xy the algorithm is
simply run with Ny = 1. Algorithm 2.2 shows a pseudocode for the approximation of
marginal densities, with cross-references to Section 2.5.

’ Inputs H Description
h Step-size.
to Initial time.
tn Final time.
Order of the polynomial expansions.
v Dimension of X (t).
d Dimension of W (t).
X Initial condition.
E[AW,Z] Moments of the noise increments for m > 1 and |r| < N.
Npcs Truncation order of the PCE scheme (when X = @ is
fixed, this is not needed).
N, Number of samples (if Xy = xq is fixed, Ny = 1).
N Number of i.i.d. samples of X to approximate the pdf
s fX:Lk;V (z) in Eq. (2.28).
u Drift coefficient in Eq. (1.1).
G Diffusion coefficient in Eq. (1.1).
] Outputs H Description ‘
Moments of the numerical solution of Eq. (1.1), for |r| <
E[ X;N]N N, compu’?ed .With a basis of IV, orthogonal polynomials,
? || where N, is given by Eq. (2.10).
Estimate of the pdf fg where X, is the numerical
inkiv approximation of the r.v.nX(tn)
Table 2.1: Inputs and outputs of the algorithms for moment computation and

estimation of 1-dimensional marginal pdf’s.

This manuscript is for review purposes only.
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Algorithm 2.1 Computation of moments

1:
2:

%

10:
11:
12:

13:

Generate IV, samples of X, denoted X, 7 =1,...,N,.

Compute N, using Eq. (2.10) and matrix ® using Eq. (2.11)) such that P
We assume @ is full-rank.

Set .’f}g(XOJ') = XQJ‘, AW()’N(XOJ‘) =0and AVAVOJ(XOJ') =0 fOI‘j = 1, ce 7Ns-

Set n = [(t, —to)/h], where [-] denotes the ceiling function.
form=1,...,ndo
for j=1,...,N,; do
Evaluate the central part 25 (X o) = #5_1(Xo,;) +hu(25_1(Xo;)stm-1),
where t,,, = tg + mh.
Evaluate E[AW;,N(XOJ-)] for 1 < |r| < N using Eq. (2.4).
Evaluate E[AW*) (X,)] and E[(AW, (X0,7))] for k=1,...,v.
end for
end for

Compute E[X;N (Xoyj)] for j =1,..., N, using Eq. (2.5).

Solve the least-squares problem (2.8) and compute IE[X n N]
with Eq. (2.16).

pror1<|r|<N

Algorithm 2.2 Computation of 1-dimensional marginal pdf’s

1
2
3:
4

10:
11:
12:

13:

14:
15:
16:
17:

: Generate N, samples of X, denoted X ;, j =1,..., N.
: for j=1,...,Ns; do
for k=1,...,v do
Compute p{ (X, ;) and 0{” (X ;) using Eqgs. (2.23) and (2.24) respectively.
Compute C., [)A(T(L":}V(XOJ),Zg(k)(XOJ)] forr=1,...,N.
end for
end for
Solve the least-squares problem to compute the PCE coefficients of Egs. (2.25)

and (2.26).
Generate N/ samples of X, denoted X’OJ7 j=1,...,N.L
forj=1,...,N! do

for k=1,...,v do
Compute pf (X7 ;) and o (X ;) using Eq. (2.25).
Compute C, [Xr(f)N(ng), Zg<k>(X67j)], for r=1,..., N, using Eq. (2.26).
end for
end for
Compute the coefficients of the Hermite polynomials H,, for r =0,...,N.

Apply Eq. (2.28), combined with Eq. (2.21), to compute f;x) (z) for any z € R
n,N
and k=1,...,v.

3. Variational solution based on a polynomial expansion over the noise

process. In this section we provide the analysis needed to support the results in

Se

ction 2.3 and, specifically, Algorithm 2.1 for the approximate computation of

moment of the random sequence X ,,. Our analysis relies on the notion of convergence

This manuscript is for review purposes only.
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12 A. LOPEZ YELA AND J. MIGUEZ

region for a Taylor expansion as defined below.

DEFINITION 3.1. Let g be a smooth function, g : R” x [0,00) — R. The
convergence region of the Taylor expansion of g, centred around xg € RY at time
t€[0,00), is the set

L1 olrl

Pg(To,t) = {5'3 eR": Z oo
|r|=0

glxo, )" < oo} c R".

Let us assume a fixed initial condition Xy = x¢. The moments of the sequence X,
follow readily from the statistics of the effective noise sequence AW, (xo). Therefore,
we start with the expansion formula for the effective noise in Eq. (2.3).

THEOREM 3.2. Assume that the functions w and G in Eq. (1.1) are real and
smooth. For any positive integers N and n, the effective noise given an initial
condition Xy = xy can be written as

N
X 1o
AW, (o) = AW, (o) + h Y. i u® (&S (20), tn 1) AW, (20)
=1 “Fn—1
N L d o )
+ Zﬁar G*D (&S (®0), tn 1) AW AW, (a0)
\r\:0j=1r Tn—1

(3.1)

/‘\

AW,H AWn 1 (mo))

where AWO(mO) =0 and R;f)N is the remainder term of the polynomial expansion at
step n with truncation order N. If

AW, _1(x0) € puco (:&f_l(wo), tn1) ﬁﬁ-lzl PGk (ﬁ’?g_ﬂwo), tn—1),

then
lim R\ (AW, AW, _1(x0)) = 0.

N—w

AW” 1(fvo)

Remark 3.3. Note that =1 for |r| =0.

PROOF: Recall the decomposition of the sequence X n(xo) into its central part
and the effective noise,

(3.2) Xn_1(mo) =25 (z0) + AW _1 (o).

Using the relationship above, the the Taylor expansions of u(*) (of order V) and Gk-9)
(of order N — 1) with respect to X,_1(zo) and centred at &5, (x() can be written

n—1
as
. N1 ol o
W (Xt Z e @ (w0) ) AW (a0)
=0 n 1
(3.3) +R,“f_k)LN(AWn_1(wo))

This manuscript is for review purposes only.
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POLYNOMIAL PROPAGATION OF MOMENTS IN STOCHASTIC DIFFERENTIAL... 13

and
o N=L 1 pirl N o .
GFI(X o1, tyor) = ;WGUW)(ﬁin_l(mo)vtn—l)ﬁwnq(xo)
lrj=0 """l
) A
(34) +R§_17N_1(Awn—l(m0))7

respectively, where RZ(_ICLN (AWn_l(mo)) and Rgikl’f;v_l (AWn_l (@0)) are remainder

terms. If we substitute Eqs. (3.2)—(3.4) into the Euler-Maruyama scheme of (2.1),
we obtain the expansion

~ k) ~ (k
Xo(@o) = 35 (wo) + AW, (m0)

N
1 ol aT
+h Y = u® (251 (€0), tno1) AW, (20)

"20 rlox]_,
N @ 1 (‘)lTl . C [€)] AT
+ 20 2 S G (@1 (o), ta1) AW, AW, (@)
-~ rloxr_,|
|r|=04=1 n
(3.5) +RY (AW, AW,y (20)),

where the new remainder term is

RN (AW 0, AW 1 (@0)) = hRED) 5 (AW o1 (@0))

d .
+ Z AW, Rgik{f])\;_l (Awn—l (z0)).
i=1

If we decompose X:lk) (xg) = ig(k) (zo) + AW, (zo) and then substitute

- C .C .

Ty, (wo) = $n71(w0) + hu(mgfl(wovtnfly
on the left-hand side of Eq. (3.5), then we arrive at the identity (3.1) in the statement
of Theorem 3.2. The convergence condition of the expansion is straightforward from
Definition 3.1. ]

Let us remark that the polynomial approximation given in Theorem 3.2 can be

written as a polynomial exclusively dependent on the subsequence of independent

noise increments AW ,,, for m =1,...,n, i.e., it is possible to write
(3.6) AW," = poly (AW ..., AW1) + R (AW, ..., AWY),

where poly (---) denotes a polynomial of order N. This fact can be easily verified by
induction. Specifically, expression (3.6) shows that the convergence of the expansion
at step n depends only on the noise increments AW ,,,, m = 1,...,n. Therefore, in
order to apply Theorem 3.2 in the analysis of Algorithm 2.1, we need to establish
the conditions that AW, should satisfy in order to guarantee the convergence of the
polynomial expansions of X,, or AW, (zo).-

From Eq.(3.6) it can be seen that if the increments of the original noise process,
AW ., m=1,...,n, are bounded, then the increments of the effective noise process,
AW ,,, are bounded too. Lemma 3.4 below yields explicit bounds for the effective
noise AW, in terms of any available bound on AW ,,.

This manuscript is for review purposes only.



405
406

409
410
411
412
413
114
415
416

417

418

419
420
421
422

14 A. LOPEZ YELA AND J. MIGUEZ

LEMMA 3.4. If there are finite constants A;j such that |A Wy

) &)
"l < Ay for every

n=1andj=1,...,d, then the constants recursively computed as
N
~(k) ~(k) 1] ol .C ~T
A (o) = A, y(mo) + hZ Far u““) (51 (20),tn-1)| A,_1 n(20)
\7’\—1
N—1 d
1] ol C G~
002 g G @ @0), )| A AL (o),
|r|=04=1"" n—l

where AO,N(mO) =0, are finite and satisfy the inequalities
2 (k ~(k
AW < ALy

for everyn>=1and k=1,...,d. Moreover, if

Ay 1 N (0) € puc (251 (®0), tn1) NI_y pas (1 (T0), tn—1),

then
A}lm R(kf (AWn,AWn 1(5130)) 0.

PROOF: It is straightforward from Theorem 3.2.

We can now apply the results above to provide a convergenc
recursive approximation of moments in Eq. (2.4).

THEOREM 3.5. Assume that the functions w and G in Eq.

| |
e condition for the

(1.1) are real and

smooth. For any positive integers N and n, and any fized initial condition X = xg,

we have the identity

E[AW! (20)] = Z al*7) (&8 (o), by )E[AW S JE[AW, |y (0)]
[s|+]r'|=1
(3.7) +E[RT) (AW, AW, (20))],

where R(Tgv is the remainder term of the expansion and ais;lrzz, (532

1 (0), ty—1) are the

constant coeﬁiczents of the ewpanszon of the effective noise in Theorem 3.2. Moreover,

if there are finite constants A such that |AW(]>

j=1,...,d, then

|<A for

(3.8) lim B[R\ (AW ., AW, _1(x0))] = 0.

N—w0

every n = 1 and

PROOF: Note that the effective noise monomial AW:L(wO) can be written as

AW ( ]_[ AW (a0),

where the factors AW,(L”)(:CO) are expanded using Theorem 3.2 and then truncated

to order N. We arrive at the identity (3.7), after straightforward
taking expectations and realising that

B[AW; AW (20)] = E[AW [E[AW_, (x0

This manuscript is for review purposes only.
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which is a consequence of Eq. (3.6) and the independence of the noise increments.
As for the convergence of the expansion (3.7), Lemma 3.4 yields

lim R\ (AW, AW, _1(x0)) =0,  k=1,...,v

N—w

and, since the remainder term of the expansion of AW;(IB()) is the addition of a finite
sum of products involving RS)N (AWn,AWn_l(wo)) for all k = 1,...,v, we obtain
that

(3.9) lim R\ (AW, AW, (20)) = 0.

Finally, if we take the expectation of (3.9) and apply the dominated convergence
Theorem [22] we arrive at (3.8) and complete the proof.
||

The results we have obtained are useful to guarantee convergence when the
support of the dynamical noise W, is bounded but, in general, this is not the
case. However, even if in the most common models (Gaussian distributions, Gamma
distributions, etc.) the support is not actually bounded, when the tails of a
distribution decrease rapidly enough the support can be treated as bounded for
numerical purposes. For example, if WT(Lk) ~ N(0,0) then IP(|WT(Lk)| < 30) > 0.9973,
ie., Wﬁbk) is bounded with high probability.

For a prescribed probability P € (0, 1), let us choose the quantities

€]

(3.10) AY(P) = inf{ae]Rg P(W,| <a) > P}, j=1,....d,

ie., AS)(P) is an upper bound for |Wn(j)‘ with probability P. One can combine

bounds that hold with some probability P and Lemma 3.4 to assess the convergence
of the polynomial expansions of the moments of the effective noise in Algorithm 2.1.

4. Approximation of 1-dimensional marginal densities. In this section
we prove that the approximate 1-dimensional pdf’s computed using Algorithm 2.2
converge as the order of the Gram-Charlier expansion, IV, increases, provided that
the initial condition is fixed, Xo = xg. When the initial condition is random, we
further extend the latter result with the convergence of the Monte Carlo estimator in
Eq. (2.28) as the number of samples N increases.

THEOREM 4.1. Let X be a real random variable with pdf fx and characteristic

function Vx; then choose an auziliary random wvariable Z, with smooth pdf ¢ and

characteristic function ¥, such that |\\II’,X((:))| < oo for all finite t. The density fx can
=]

be expanded with respect to the derivatives of ¢ as

r! dz

o (=17 d’
(4.1) fx(z) = 1+Z Cr[X, Zyo)— |o(x) + Ry (fx, ¢52),

where C,. [X, Zw] are the coefficients of the expansion defined in Eq. (2.19) and Ry (fX,
go;m) is a remainder term.

This manuscript is for review purposes only.
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16 A. LOPEZ YELA AND J. MIGUEZ

PROOF: We write ¥ x as

Ul = G0

exp (log (x(t)) —log (\I/g,(t)))\ll@(t)

N
kr(X) — ke (Zy) , .00 Uy
(4.2) = [exp <Z_:0 T@(zt) + Ry \P—@;t U, (t),
where Ry (g—x;t) is the remainder of the Taylor expansion of function ¥x/¥,. If

we expand the exponential function in (4.2) in terms of Bell polynomials [1] and then
compute the inverse Fourier transform on both sides of the equation we arrive at

N - .
fx(z) = l1+ 3 (*1') CrX,Z,] d 1¢($) n if RN(\I/X;t>\I/@(t)emtdt,
r=1 R

r! dx” 2w v,

where the second term on the r.h.s. is the remainder in Eq. (4.1). ]

Many families of orthogonal polynomials are related to specific probability
distributions [6] in the sense that there are formulas to generate the polynomials
from the derivatives of probability densities (the so-called Rodrigues formulas [20]).
In particular, the class of probabilistic Hermite polynomials are orthogonal w.r.t. the
Gaussian distribution and the Rodrigues formula for them is given by Eq. (2.22).

If we let the auxiliary pdf ¢ be Gaussian, the Gram—Charlier expansion of fx in
Theorem 4.1 reduces to a series of Hermite polynomials multiplied by ¢. Hence,
the convergence of expression (4.1) becomes a standard problem, similar to the
convergence of the PCE (2.6) in Section 2.4. Indeed, if ¢ is Gaussian, the series
in (4.1) is termed a Gram—Charlier expansion of type A and it can be expected to
converge when' %‘ e L? (R, o) (see [6]).

In the sequel, we restrict our attention to the Gram-Charlier expansion of type
A and hence assume that the auxiliary pdf ¢ used to approximate the k-th 1-
dimensional marginal pdf folk>‘m0 is Gaussian, with mean u;’“) (xo) and standard

deviation ar(lk)(wo). We specifically denote it as gpgfzco (z) (note the dependence on the

initial condition ).
Below, we establish some regularity assumptions and then use them to provide
an explicit convergence theorem for the approximations of fX(k)le.

ASSUMPTION 4.2. Let supp(f) denote the support of function f and let faw,,
denote the pdf of the random vector of noise increments at time m, W ,,. There are
bounded sets D,, c R¢, m =1,...,n, such that

supp(faw,,) S D.

Moreover, there is a sequence of finite constants M,,, m = 1,...,n, that satisfy the
inequalities

sup (faw,, (z)) < My,
rzeR

"'We construct the class of real L2 functions w.r.t. a density ¢ : S + (0,00) as

L2(8,¢) := {h : S — R such that J;; h(x)p(z)dr < 00} .

This manuscript is for review purposes only.
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Remark 4.3. When the SDE (1.1) is driven by, e.g., a Wiener process W (t) and
we define AW ,,, = W(t,,,) — W(t,,—1), the support of faw,, is R” and Assumption
4.2 does not hold. It is well known, however, that weak Euler-Maruyama schemes can
be designed with simplified noise increments [13]. To be specific, weak convergence
of the Euler-Maruyama scheme (2.1) can be guaranteed when the noise increments

AW#{ ), j=1,...,v, are independent and satisfy the set of the inequalities
. N\ 3 N2
‘]E [AW,S{)” + ']E [(AW},{)) ” + ‘]E [(AW},{)) - h” <Ch?, 1<j<uv,

for some constant C' < o0 —see [13, Section 14.1] for details. Hence, if weak convergence
is sufficient, the noise increments AW,(,f ) can be selected in many ways. For example,
choosing the AWY)s to be i.i.d. with common uniform distribution I (—ah,+ah),

for some constant a > 0, guarantees that (4.3) is satisfied for any C' > a2, while

3
Assumption 4.2 holds with D,,, = [—ah, +ah]".

ASSUMPTION 4.4. There are ﬁnite constants {ASL) m=1,....n; j=1,... 7U}
such that |AW \ < Am ,for1<j<vandl<m<n, and
(4.4) A, v (T0) € pu (:;;,?L(wo),tm) NI pas (T (T0), tm)

where k-th entry of the v-dimensional vector Zim,N(wo) is constructed as

olr!
oxl,

1

~

Amfl,N(xO)

(k)

A, (o) = g;n) 1. (o) +hZ
Ir|= 1"

i 1

!

a\r
with initial condition :4071\[(300) =0.

u® (&5 _1(20)stm—1)

1

PR @ T
G*? (935171(930)7?%71) Asz Amfl,N(:BO)’

(4.5) + NZ
|r|=07

While Assumption 4.2 states that the support of the noise components is bounded,
Assumption 4.4 guarantees that finite noise increments AT/V,(,Zc ) yield finite effective
noise terms AWT(,ZC ) and enables us to apply Lemma 3.4. Given the above regularity

assumptions we can provide guarantees on the approximation of the marginal densities
'va(LM [zo (l‘)

THEOREM 4.5. Let the functions w and G in the SDE (1.1) be smooth, let
Assumptions 4.2 and J.J hold and let xyg be a fized initial condition. Then, the
type A Gram-Charlier expansion of the 1-dimensional marginal pdf of )A(T(Lk) (o),
ke{l,...,v}, can be written as

(k)

fX““)\m 14 2 5 [Xflkj)v(wO) Z(k)(aro)]HeT (W)} %

X%ﬁ,)mo(x) + Ri}v(fxg%ov P (); ),

T'O-(’C) ol (wo)

where {H@T}Oo are the probabilistic Hermite polynomials given by Eg.(2.22),

Z®) (x0) is a random variable with pdf gpn mo and the remainder term vanishes as

This manuscript is for review purposes only.
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18 A. LOPEZ YELA AND J. MIGUEZ

the truncation order N is increased, i.e.,
. k
(4.6) dm R;}v(f)m%,so%’f.lo(-);z) =0.

PrOOF: The type A Gram—Charlier expansion of f}”(““)\mo (z) is immediately

obtained from Eq. (2.18) when the auxiliary pdf is Gaussian (namely, ¢ = go%k)mo)

Additionally, we need to prove that Eq. (4.6) holds, which takes more effort.
¢ ()
Specifically, hereafter we prove that the function XT(Z)‘EO belongs to L*(R, wﬁl’fio),

Pn,xg

which, in turn, implies that Rff;v (fX(k)lm[)’SDSﬁ;O(-);x) NP0 in L2 (see [6]).
First, we prove using an induction argument that the pdf f X0 |mo

and it has a bounded support. Let us assume that at time n — 1 there are a bounded
set D,,_1 < R and a finite constant M,,_; such that

is bounded

(4.7 supp(fj(n_l‘mo) c D, 1cR® and 22% (an_1|m0 (2)) < M, <.

From the expression of the Euler-Maruyama integrator in Eq. (2.1), we can write the
pdf of X, in terms of the densities of X,,_1; and AW, as

Ix, 20 (xn) = J}R“M Fx0 jwo (n—1)faw, (wy) x

(4.8) X0 (Xn — Tpe1 — h (Xp_1,tn—1) — G(Xp_1,tn_1) Wy) dx,_1dw,,

where 0(+) denotes the Dirac delta function (see Eq. 4.34 in [23]). Using Assumption
4.2 and the induction hypothesis (4.7) we obtain an upper bound for the pdf
Ix, 120 (z,) in Eq. (4.8) of the form

fj(n|m0(33n) <
MnfanJ 6(wn —Tp-1— hu(wnflatnfl) - G(CL‘n,h tnfl)wn)dxnfldwn <
ﬁn—l XDn
Mnfanv

hence

(4.9) sup (fX o (x)) < M, <o, where M, = M,_1M,.
zeR "

Moreover, since u and G are smooth and ﬁn,l x D,, is bounded, all the solutions of
the equation

T, — Ly 1 — hu(:cn,l,tn,l) — G(azn,htn,l)wn =0
necessarily lie in a bounded set D, c RY, which implies that
(4.10) supp(anlwo) cD,cR".
To complete the induction argument, we need to prove that

supp(fxl‘mo) cDicRY and su]]é})1 (ff(l\mo (x)) <M, <o
T e
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for some bounded set Dl and some finite constant Ml. Resorting again to the
expression of the Euler—-Maruyama integrator (2.1) and Assumption 4.2 we obtain
the inequalities

le\mo (IEl) - J]Rd fAWI (w1)5($1 —Zo — hu(azo,to) - G(Ilfo,to)’wl)d'wl

< M J 5(331 —xo — hu(zo, o) — G(wo,to)w1>dw1
Rd
< M < o0,
hence M; = M, and, by the same reasoning as in the induction step, the solutions of
the equation x; — gy — hu(wo,to) — G(mo,to)wl = 0 lie in a bounded set D; < R"
which contains the support of lelmo'

The bounds in (4.9) and (4.10) imply that fg | € L? (IR, gogf)mo (x)dx) To show

it, let Dﬁf“) be the projection of the bounded set D, c RY along the k-th dimension
and then note that

(4.11) LR <wa> (p(k) (2)de < SDLM (ink>\m0 (x)) dz .

k n,o . k
Phteo ’ inf 0 Pk, (2)

)

where the second inequality holds because

e inf cH® gosl )mo( ) > 0, since gogf)mo is Gaussian and Dﬁf) is bounded, and

. the margmal density fX(’”\mo is bounded because the joint density f X |20 is

bounded.
The inequality (4.11) yields anlmo el? (]R7 @%’20 (x)d;v) which, in turn, implies that
(4.6) holds [6]. |

Theorem 4.5 states that the estimates of the 1-dimensional marginal pdf’s
inf“)Iwo (z) converge pointwise, for any fixed g and x € D,,, as the truncation order
N increases. When the initial condition is random, the natural estimate to compute is
the Monte Carlo approximation in Eq. (2.28). The proposition below guarantees that,
under similar assumptions as in Theorem 4.5, the Monte Carlo estimator converges

to
o) Bl 01,0

almost surely (a.s.) for any z € D,,.

PROPOSITION 4.6. Let X, j = 1,...,N., be i.i.d. samples form the initial
distribution with pdf fx,. If Assumptions 4.2 and 4.4 hold and fx, is bounded with
bounded support, then

(4.12) Nl’lgloo 1\}1_1)1100 N7 Z fX(kf\;IX' ()| = fro () a.s.,

fork=1,... v
PROOF: For any N, € N, Theorem 4.5 yields

N’ N’

NN N! Z fX““EVIX’ - N/ Z Fxpoixy (@).

This manuscript is for review purposes only.



or Ot Ot Ot Ot Ot Ot Ot Ut

(S, 3NNV, G, ) |
oo

oo
—_

582

583
584
585
586
587
588
589
590
591

592

593

594

20 A. LOPEZ YELA AND J. MIGUEZ

Moreover, since fx, is bounded and has a bounded support, the same argument as
in the proof of Theorem 4.5 shows that the pdf’s f}Z(’“’|X/ are uniformly bounded?,
n 0,j

2
hence |:(fX7(Zk) X, (x)) ] < oo and the strong law of large numbers yields Eq. (4.12).
]

5. Numerical examples. In order to illustrate the performance of the proposed
uncertainty quantification scheme we provide a numerical example in which we
compare the solution of the dynamics of a Keplerian orbit in two-dimensional space,
perturbed by a diffusion term, using Algorithm 2.1 for the approximation of moments
and a Monte Carlo simulation with 10 samples as a baseline. We present two sets
of simulation results that differ essentially in the choice of initial condition, which is
deterministic for the first set (Section 5.1) while we assume it random, with a Gaussian
distribution, for the second one (Section 5.2).

We start from the general equation (1.1). The state vector of the orbiting object
has dimension d = 4 and we denote it as X(t) = (x(t),y(t)mm(t)my(t))T, where
(x(t),y(t)) is the object position in km and (v;(t),vy(t)) is its velocity in km/s,
respectively, in 2-dimensional space. For the Keplerian dynamics, the drift coefficient
u(X,t) can be written as [28]

where p is the standard gravitational parameter, and we set the diffusion coefficient
as the 4 x 4 diagonal matrix G(X,t) = diag (0,0, 0, /|v(t)|,0w/|v(t)|), where oy, is a
known positive constants and [[v(t)|| = 4/vx(t)? + vy (t)? is the Euclidean norm of the
velocity. The noise process W (t) is a standard 4 x 1 Wiener process. Physically, the
diffusion term G(X,t)dW (t) represents a stochastic perturbation in the acceleration
of the orbiting object (which depends on the object velocity v(t)). The numerical
values used for the simulation are summarised in Table 5.1.

All computer experiments have been performed using Matlab R2018b running on
a Mac Book Pro computer equipped with a 2.3 GHz Intel Core i5 CPU and 16 GB
of RAM.

5.1. Deterministic initial condition. For the first experiment, we fix the
initial condition as

200 + Rr
0
(52) rog = 0 s

_
200 + Ry

2The bounds M, in the proof of Theorem 4.5 depend on the initialization, i.e., M, = Mn(XO)-
However, the bounds Mn(Xo) are continuous by construction and, since the support of Xg is
bounded, sup x, Mn(Xo) < .
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’ Parameters \ Value H Description
g 3.986 km® /s? || Standard gravitational parameter.
h 0.1s Step-size for time discretisation.
to 0days Initial time.
tn 1.51 days Final time.
Number of discrete-time steps in the simu-
n 1,304, 640 lations, namely, n = [(t, — to)/h] where [-]
denotes the ceiling function.
N 2 Order of the polynomial expansions.
Truncation order of PCE (for the second
Npcg 4
example only).
N, 140 Number of samples (for the second example
only).
, 6 Number of samples of X, generated to
N! 10 . ,
s reconstruct the marginal pdf’s few) (z).
n, N
Ow 2x 10772 Scale parameter in the diffusion term.

Table 5.1: Simulation parameters.

where Rt = 6.378 x 102 km is the Earth radius. By taking a known initial condition, we
can asses the moment and density approximations when the only source of uncertainty
is the dynamical noise W (t) and, therefore, we avoid any PCE approximation.

The initial state oy has been chosen to simulate the evolution of a nearly circular
orbit at 200 km above the Earth surface. At this low altitude, it is relevant to use
a SDE to represent the orbital dynamics because the object motion depends on the
atmosphere drag which, in turn, depends on several parameters (atmosphere density,
mass, volume, shape of the object, etc.) which are often difficult to determine in
practice [28]. The diffusion term G(X,t)dW (¢) may account for these uncertainties.

Table 5.2 shows a comparison between the outcomes, at the final time ¢, of
Algorithm 2.1 and the baseline Monte Carlo method with 10* independent trajectories
generated using the Euler-Maruyama scheme (2.1). The first column in the table
displays the expected values of z, y, v, and v, computed with Algorithm 2.1, while
the second column shows the Monte Carlo estimates for each state variable. The
third column displays the absolute differences between the first and second columns,
and the fourth column shows the relative difference (with the Monte Carlo estimates
taken as reference). We can observe that both methods yield very similar outputs,
with relative differences between 0.4% and 0.8% for all state variables.

Table 5.3 shows a comparison between the estimates of the second order moments
of X (t,,) computed via Algorithm 2.1 and the standard Monte Carlo method that runs
the Euler-Maruyama scheme 10* times. The first row shows the covariance matrix
of X(t,) as output by Algorithm 2.1, while the second row shows the Monte Carlo
estimate. The entry-wise absolute and relative differences between the two matrices
are displayed in the third and fourth rows of the table, respectively. The differences
are larger than for the first-order moments, yet the two methods still yield similar
outputs (with relative differences between 10% and 20% for all entries of the covariance
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Algorithm 2.1 Monte Carlo, Absolute Relative

10* samples difference difference
5.95 x 10°km | 5.92 x 10° km 24.34km 4.09 x 1072
y | —2.67x103km | —2.69 x 10® km 20.64 km 7.74 x 1073
Uy 3.01km/s 2.99km/s 227 x 1072 km/s | 7.58 x 1073
Uy 6.66 km/s 6.68 km/s 2.82 x 10 2km/s | 4.21 x 1073

Table 5.2: Estimate of E[X (¢,)] with the moment-computation Algorithm 2.1,
compared with standard Monte Carlo estimates. The initial condition is deterministic.

6.08 x 10°  1.58 x 105 —1.77x 10>  7.01 x 10?

1.58 x 106  3.46 x 106 —3.87x10%®  1.81 x 103
—1.77x 103 —3.87 x 103 4.32 —2.03

7.01 x 10> 1.81 x 10° —2.03 8.09 x 107!

Algorithm 2.1

741 x10°  1.32x10 —1.47x10° 8.45x 102

1.32x 10 3.14x10° —3.52x10%  1.51 x 103
—1.47x10® —3.52 x 103 3.93 —1.69

8.45x 102  1.51 x 103 —1.69 9.65 x 107!

Monte Carlo

1.33 x 10° 2.61 x 10> 2.97 x 10>  1.44 x 102
Absolute 2.61 x 10> 3.18 x 10° 3.52 x 10> 2.98 x 102
differences 297 x 102 3.52x 10> 3.89x107' 3.39x 107!
1.44 x 102 298 x 102 3.39 x 1071 1.56 x 107!

1.79 x 1071 1.99 x 107' 2.02x 107' 1.71 x 107!

Relative 1.99 x 1071 1.01 x 107* 1.00 x 107* 1.97 x 107!
differences 2.02x 107! 1.00x 107' 9.90 x 1072 2.01 x 107!
1.71 x 107" 1.97x 107" 2.01x107' 1.62x 107!

Table 5.3: Estimates of the covariance matrix of X (t,,) computed via Algorithm 2.1
and standard Monte Carlo, with 10* independent samples, with deterministic initial
condition.

matrix).

Since Algorithm 2.1 yields outputs which are close to the baseline Monte Carlo
estimates, it is of interest to compare the computational cost of the two procedures.
This is done in Table 5.5, which displays the mean run-time per discrete time step
(first row) and the total run-time up to time ¢,, (second row)

e for Algorithm 2.1,

o for the Monte Carlo method with 10* samples and

e for a single run of the Euler-Maruyama scheme (2.1).
We see that the cost of running the Algorithm 2.1 (computation of moments) is
roughly of the same order as running the standard Euler-Maruyama scheme once, and
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two orders of magnitude less expensive than computing the Monte Carlo estimators.

Algorithm 2.1 | Monte Carlo, | Euler-Maruyama,
10* samples single run

Mean run-time
per time step

Total run-time 11.30s 2.11 x 103 s 7.04s

8.66 x107%s | 1.62 x 107 3s 5.39 x 10~ %5

Table 5.4: Run-times in seconds (s) with deterministic initial condition. The total
number of discrete time steps is n = 1,304, 640.

= | v [ v [ v ]

[ 1.71x107° | 2.09x 10°° [ 1.64 x 10° [ 1.82 x 1072 |

Table 5.5: TVD between the estimates of the marginal densities computed with
Algorithm 2.2 and the KDEs computed from 10* Monte Carlo samples.

Next, we turn attention to the performance of Algorithm 2.2, which yields
estimates of the marginal densities of the state variables z, y, v, and v,. Figure
5.1 shows corresponding pdf’s as generated by Algorithm 2.2 (in red colour) and
the kernel density estimators® (KDEs) computed from the independent samples
generated by running the Euler-Maruyama scheme (2.1) 10* times. We see that
the KDEs are clearly non-Gaussian for x and v, and there is a clear mismatch with
the approximations computed using Algorithm 2.2. The reason for this discrepancy
is that Algorithm 2.2 uses only the moments up to second order (in this example) to
construct the Gram-Charlier approximations. This means that, effectively, we obtain
a Gaussian-like estimate of the density. Performance can be improved by increasing
the order of the polynomial approximation, at the expense of a higher computational
cost.

Despite the visual discrepancy in Figure 5.1, Table 5.5 shows that the total
variation distance (TVD) between the marginal densities estimated using Algorithm
2.2 and Monte Carlo (KDEs with 10* samples generated via Euler-Maruyama) is
small. Let us recall that the TVD between two probability distributions with pdf’s
f and g can be computed as |f — g|rv = %SR |f(z) — g(z)|dz < 1. We can see that
the TVD is particularly small for the estimators of the pdf’s of the position variables
x and y —of order 1075 and 107%, respectively. This can be expected from Figure
5.1 because both densities (of z and y) are very spread, with maximum values of
order 1072 (for z) and 10™* (for y). Hence the tails accumulate a large fraction of
the probability mass and this is well approximated by Algorithm 2.2, despite the
discrepancy around the mode for the pdf of z. A similar argument can be made for
the densities of v, and v,. While there is more probability mass around the modes
(the maximum values of the pdfs are ~ 0.2 and ~ 0.8 for v, and v,, respectively),
which leads to higher discrepancies in TVD (~ 1072 and ~ 1072, respectively), the

3We use the ksdensity function available in Matlab, which determines the kernel bandwidth for
the estimator automatically from the samples.
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Alg.2.2
X . y MC ——
_: x _
1 x10 25 x10 ‘
0.81 2
0.6 1.5
0.4+ 1
0.2 0.5
0 : : 0 : :
—2000 0 2000 4000 6000 8000 —10000 —5000 0 5000
km km
v (Y
0.2 ‘ = : 0.8 : : Y
0.15 + 0.6
0.1} 0.4
0.05 - 0.2
0 0 ‘
-5 0 5 10 2 4 6 8 10
km/s km/s

Fig. 5.1: Marginal pdf’s at the final time ¢,, when the initial condition is fixed. The
red curves are the estimates obtained with Algorithm 2.2 and the blue curves are
KDEs computed from 10* independent samples.

tails still accumulate a large fraction of the probability mass and this is captured by
Algorithm 2.2.

5.2. Random initial condition. We illustrate the performance of the proposed
approximation methods for the same dynamical model in Section 5.1, except that we
now assume a random initial condition X . This is modelled as a Gaussian random
vector with mean @g, the same as in Eq. (5.2), and covariance matrix

10710 0 0

0 100' 0 0

(5.3) Yo=1| g 0 107* 0
0 0 0 107*

The computation of moments is carried out using Algorithm 2.1, with a PCE of order
Npcg = 4 and N; = 140 samples. We emphasise that the PCE is not needed when
the initial condition is deterministic.
The computer experiments are similar to Section 5.1. In particular:
e Table 5.6 shows a comparison of the expected values of the state variables
(z,y,v, and v,) as obtained though Algorithm 2.1 and the baseline Monte
Carlo method with 10* independent trajectories. Both the (approximate)
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673 expectations, computed by the two methods, and the absolute and relative
674 differences are displayed. We observe small relative differences, the largest
675 ones ~ 1% for variables y and v, while for z and v, they are less than 0.02%.

676 e Table 5.7 shows a comparison of the second-order moment estimates, also at
677 time t,,, using Algorithm 2.1 and standard Monte Carlo with 10* independent
678 runs. The entry-wise relative differences between the two matrices, displayed
679 in the fourth row of the table, shows similar discrepancies for all entries of
680 the covariance matrix, ranging between 1% and 8%.

681 e Table 5.8 displays a comparison of the computational cost of Algorithm 2.1
682 (with Npcg = 4 and N, = 140) and the baseline Monte Carlo procedure
683 (with 10* independent runs). We see that the overall run-time of Algorithm
684 2.1 for this example is one order of magnitude smaller than the Monte Carlo
685 scheme, while both methods yield very similar approximations of the first and
686 second order moments.

687 e Table 5.9 shows the TVD between the marginal densities estimated using
688 Algorithm 2.2 and KDEs computed from the independent samples generated
689 by running the Euler-Maruyama scheme (2.1) 10* times with random and

690 independent initialisations. The results are similar to those obtained in
691 Section 5.1. The discrepancies are very small for the position variables and

692 larger, yet very moderate (< 3 x 1072), for the velocity variables.

693 e Figure 5.2 displays a graphical comparison of the marginal densities
694 approximated via Algorithm 2.2 and Monte Carlo KDEs. We observe that all
695 densities are clearly non-Gaussian. Since the initial condition X is random,
696 the density approximations of Algorithm 2.2 are computed using Eq. (2.28),
697 which enables the approximation of non-Gaussian pdf’s by averaging many
698 Gram—Charlier estimates.

699 However, we observe that the resulting estimates are not necessarily proper
)0 densities, as they can take negative values. This is a drawback of the Gram—
| Charlier expansion compared, e.g., to KDEs. We have chosen the final

2 time, t,, of the simulation to make sure that the marginal densities depart
significantly from the initial Gaussian distribution at time ¢y and show the

approximation can be improved by increasing the order of the polynomial
6 expansion in Algorithm 2.1 (N = 2 for this example) and the order of the PCE
7 (Npck = 4 here) at the expense of an increased computational complexity.

-~ =1 =~ =~ =1 =~ =~ =

)

)

)3

)4 artefacts in the tails of the densities of x and v,. The accuracy of the
)5

)

)

Algorithm 2.1 Monte Carlo, Absolute Relative error
10* samples difference difference
509 x 103km | 5.09x 103km | 6.47x 107 km | 1.27x 107*
y | —2.32x10%km | —2.34 x 103km | 2.42 x 10 km 1.03 x 1072
Uy 2.59 km/s 2.62km/s 2.75x 1072 km/s | 1.05x 1072
vy 5.72km/s 5.72km/s 222 x 107*km/s | 3.89 x 1075

Table 5.6: Estimate of E[X(¢,)] with the moment-computation Algorithm 2.1,
compared with standard Monte Carlo estimates. The initial condition X is a
Gaussian random vector.
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417 %105 1.07x 107 —1.20 x 10* 4.67 x 103
—4.65x 10 —1.20x10*  1.35 x 10! —5.20
499 x 103 4.67 x 103 —5.20 5.59

4.46 x 105 4.17x 105 —4.65x 10® 4.99 x 103
Algorithm 2.1

424 %105 3.89x10°% —4.32x10> 4.74 x 10?

3.89 x 105  1.09 x 107 —1.22x10*  4.35 x 103
—4.32x10% —1.22x10* 1.36 x 10" —4.84

474 x10% 435 x 103 —4.84 5.29

Monte Carlo

—

2.26 x 10° 2.89 x 10°  3.23 x 102 2.59 x 102

Absolute 2.89 x 10° 1.14 x 10°  1.30 x 102 3.27 x 102
differences 3.23 x 102 1.30 x 10> 148 x107' 3.65x 107!
2.59 x 102 3.27x10%° 3.65x107' 296x 107!
5.34x 1072 7.44x1072 748 x1072 547 x 1072
Relative 744 %1072 1.05x1072 1.07x1072 7.51 x 1072
differences 748 x 1072 1.07x 1072 1.08x1072 7.55 x 1072

547 x 1072 7.51x 1072 7.55x 1072 5.60 x 1072

Table 5.7: Estimates of the covariance matrix of X (¢,) computed via Algorithm 2.1
and standard Monte Carlo, with 10* independent samples. The initial condition X
is random.

Algorithm 2.1 | Monte Carlo, | Euler-Maruyama,
10* samples single run

Mean run-time
per step
Total run-time 2.76 x 10%s 2.29 x 10%s 5.43s

2.12x 1075 1.75 x 103 s 4.16 x 107 %5

Table 5.8: Run-times in seconds (s) with random initial condition (Npcg = 4,
N = 140). The total number of discrete time steps is n = 1, 304, 640.

] x \ Yy \ Vg ‘ Uy |

197 x107° [ 275 x 10°° [ 1.23x 10 [ 2.62 x 102 |

Table 5.9: Total variation distance when initial condition is a Gaussian random vector.
Algorithm 2.2 has truncation order Npcg = 4 for the PCE and N, = 140 samples

for the approximation. The Monte Carlo baseline KDEs are constructed from 10%
independent samples.
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Alg.2.2 —
A . y MC ——
_ z 5
6 x10 ‘ ‘ ‘ 15 x 10 ‘ :
10 1
5
4 0
—5000 0 5000 —10000 —5000 0 5000 10000
km km
Uy
0.1f
0.08 +
0.06 r
0.04 ¢
0.02 +
0
0 5 10
km/s km/s

Fig. 5.2: Marginal pdf’s at the final time ¢,, when the initial condition is Gaussian.
The red curves are the estimates obtained with Algorithm 2.2 (Npcg =4, N, = 140)
and the blue curves are KDEs computed from 10* independent samples.

6. Conclusions. We have introduced a methodology for the computation of
the moments of the numerical solution of a multidimensional SDE, denoted X s
using truncated Taylor polynomial approximations. The core of the method is
the decomposition of the solution X, into a central part that can be computed
deterministically from an ODE using an explicit numerical scheme and an effective
noise process, whose moments determine the characterisation of X n-

While we have derived the algorithm based on an Euler-Maruyama numerical
scheme, the same ideas can be extended in a rather straightforward way to other
explicit schemes, such as stochastic Runge-Kutta methods. When the initial condition
is deterministic, the proposed algorithm involves a single run of the Euler-Maruyama
numerical scheme (plus minor additional computations for the moments) and attains
approximately the same performance as a Monte Carlo scheme with 10* independent
runs of the Euler-Maruyama scheme. When the initial condition is random, we resort
to a PCE scheme and still attain the same performance as the standard Monte Carlo
estimators of the mean and second order moments with just a fraction (approximately
10%) of the run-time for a problem involving the propagation of uncertainty in a 2-
dimensional Keplerian orbit.

We have also shown how to use the approximate moments of the numerical
solution to compute type A Gram—Charlier estimates of the 1-dimensional marginal
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pdf’s of the dynamical variables. When the initial condition is random, a PCE
scheme combined with a simple averaging enables the approximation of non-Gaussian
densities. The Gram—Charlier expansions, however, are not guaranteed to yield proper
probability densities and we have shown, numerically, that they can take negative
values on the tails of the estimated function. This can be an important drawback.
Improving the accuracy of the density estimators is conceptually straightforward (by
computing higher order moments of the distribution) but implies an increase in the
computational complexity of the numerical procedure.

The implementation of the algorithms as they have been presented demands the
a priori calculation of the partial derivatives of the drift and diffusion coefficients
of the SDE. Although it has not been explored in this paper, such calculations
can be implemented automatically in the numerical scheme resorting to the tools
of Taylor differential algebra [29]. As future work, we intend to explore the numerical
performance of the method for a more realistic model of the orbital dynamics in 3-
dimensional space and including the effect of the atmospheric drag in the drift. A
realistic representation of this drag can be obtained from the NRLMSISE-00 model
of the atmospheric density [19]. Such model brings in two relevant features that
are not present in the simpler example of Section 5: first, the atmospheric density
output by the NRLMSISE-00 model is time-inhomogeneous (while the drift in the
current example is time-homogeneous) and, second, the partial derivatives of the
atmospheric density have to be computed numerically (NRLMSISE-00 is a computer,
non-algebraic, model). The latter approximation is not accounted for by our analysis,
hence a numerical study is of interest.
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