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Abstract. We address the problem of approximating the moments of the solution, Xptq,4
of an Itô stochastic differential equation (SDE) with drift and diffusion terms over a time-grid5
t0, t1, . . . , tn. In particular, we assume an explicit numerical scheme for the generation of sample paths6
X̂pt0q, X̂pt1q, . . . , X̂ptnq, . . . and then obtain recursive equations that yield any desired non-central7

moment of X̂ptnq as a function of the initial condition X̂pt0q “ X0. The core of the methodology8
is the decomposition of the numerical solution Xptnq into a “central part” and an“effective noise”9
term. The central term is computed deterministically from the ordinary differential equation (ODE)10
that results from eliminating the diffusion term in the SDE, while the effective noise accounts for the11
stochastic deviation from the numerical solution of the ODE. For simplicity, we describe the proposed12
methodology based on an Euler-Maruyama integrator, but other explicit numerical schemes can be13
exploited in the same way. We also apply the moment approximations to construct estimates of the14
1-dimensional marginal probability density functions of X̂ptnq based on a Gram-Charlier expansion.15
Both for the approximation of moments and 1-dimensional densities, we describe how to handle the16
cases in which the initial condition is fixed (i.e., X0 “ x0 for some deterministic and known x0)17
or random. In the latter case, we resort to polynomial chaos expansion (PCE) schemes in order to18
approximate the target moments. The methodology has been inspired by the PCE and differential19
algebra (DA) methods used for uncertainty propagation in astrodynamics problems. Hence, we20
illustrate its application for the quantification of uncertainty in a 2-dimensional Keplerian orbit21
perturbed by a Wiener noise process.22
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1. Introduction. Let us consider the stochastic differential equation (SDE) in26

Itô form [18]27

(1.1)

"

dXptq “ upX, tqdt`GpX, tqdW ptq
Xp0q “ X0,

28

where t ě 0 denotes continuous time, Xptq is a real v-dimensional random process29

representing the solution of the SDE, X0 is a real v-dimensional random variable30

that describes the initial condition of the process, functions u ∶ Rvˆr0,8q Ñ Rv and31

G ∶ Rv ˆ r0,8q Ñ Rvˆd are the the drift coefficient and the diffusion coefficient,32

respectively, and W ptq is a d-dimensional stochastic process with independent33

increments.34

When W ptq is a Wiener process and the drift and diffusion coefficients satisfy35

some standard differentiability assumptions, it can be shown that the solution Xptq36

to Eq. (1.1) can be characterised by a time-varying probability density function (pdf)37
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2 A. LÓPEZ YELA AND J. MÍGUEZ

that we denote as fXp¨, tq and satisfies the Fokker–Planck equation [24]38
39

(1.2)
BfXpx, tq

Bt
`

v
ÿ

k“1

B

Bxpkq
rf pkqpx, tqfXpx, tqs40

´
1

2

v
ÿ

k“1

v
ÿ

j“1

B2

BxpkqBxpjq
rDpk,jqpx, tqfXpx, tqs “ 0,41

42

with initial condition fXpx,0q “ fX0pxq, where upkq, k “ 1, . . . , v, are the components43

of the drift coefficient upX, tq in Eq. (1.1) and Dpk,jqpx, tq is the entry in the k-th44

row and j-th column of the diffusion tensor Dpx, tq “ Gpx, tqGpx, tqJ. In principle,45

we may completely characterise the solution of Eq. (1.1) by solving the partial46

differential equation (PDE) (1.2). However, this cannot be done exactly except for47

special (simple) cases [24]. On the other hand, the computational cost of numerical48

schemes for PDEs, based on finite differences [26] or finite elements [5, 15], quickly49

becomes prohibitive as the dimensions v and d increase.50

Because of the difficulties in solving the Fokker-Planck equation (1.2), most51

authors have focused on the study of time-discretised numerical schemes to simulate52

realisations of the random process Xptq. Such schemes are extensions of classical53

algorithms for the numerical solution of ordinary differential equations (ODEs)54

and they include the classical Euler-Maruyama, Milstein or stochastic Runge-Kutta55

methods [8, 13], as well as their implicit and semi-implicit variants [27, 17, 32]. When56

the noise process W ptq is Wiener, the convergence and stability of these numerical57

algorithms can be studied using a variety of techniques [8, 12, 10], although Taylor58

approximations have become the standard approach in the past years [13]. Let59

us remark, however, the fundamental difference between simulating a realisation60

Xptq “ xptq for a discrete-time grid, t P tt0, t1, . . . , tNu, and the probabilistic61

characterisation that would be obtained by computing the pdf’s fXpx, tiq, even if62

just approximately. While one can certainly generate many trajectories Xptq “ xiptq,63

i “ 1, ...,N , in order to construct a standard Monte Carlo estimator over the grid64

t P tt0, t1, . . . , tNu, the computational cost of such an approach becomes intractable,65

again, as the dimension v of the process increases. More sophisticated Monte Carlo66

methods, specifically designed for high-dimensional systems, exist. For example, [4]67

applies multi-level Monte Carlo to approximate the probability distribution associated68

to the solution of a PDE, while the authors of [3] prove the stability of a sequential69

Monte Carlo sampler as the dimension of a target probability distribution goes to70

infinity. Efficient methods for Monte Carlo filtering in high-dimensional settings have71

also been proposed [21, 25]. These techniques are often used to tackle Bayesian72

inference problems (where data are available for a posteriori estimation), and they73

involve elaborate sampling schemes.74

In this paper we introduce a new approach to the probabilistic characterisation75

of the solution Xptq to the SDE (1.1). Choose a time grid tt0, . . . , tn, . . .u, an initial76

condition X0 “ x0 and let X̂n be the random sequence generated by the Euler-77

Maruyama scheme applied to the SDE (1.1). The proposed method builds upon:78

(a) The classical Euler scheme applied to the ordinary differential equation79

(ODE) 9x “ upx, tq with initial condition x0, that yields a deterministic80

sequence x̂Cn « xptnq, n “ 0,1, .... We refer to this sequence as the central81

part of X̂n.82

(b) The construction of an effective noise sequence, denoted ∆Ŵ n, that relates83

the central component and the Euler-Maruyama realisation as X̂n “ x̂Cn `84
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POLYNOMIAL PROPAGATION OF MOMENTS IN STOCHASTIC DIFFERENTIAL... 3

∆Ŵ n.85

Specifically, we show how the moments of the effective noise process ∆Ŵ n can be86

approximated recursively using a polynomial (Taylor) expansion. The moments of87

the random vectors X̂n are then obtained in a straightforward way via the binomial88

theorem. When the initial condition X0 is random, the method can be combined89

in a straightforward way with a polynomial chaos expansion (PCE) scheme [31, 16]90

to account for the initial uncertainty. Finally, we also show how to approximate91

the marginal pdf of each component X̂
pkq
n in the vector X̂n “

´

X̂
p1q
n , . . . , X̂

pvq
n

¯

by92

combining its moment estimates with a Gram–Charlier expansion of type A. The93

practical performance of the proposed scheme is illustrated with two examples related94

to astrodynamics, namely the propagation of uncertainty for a Keplerian orbit in two95

dimensions perturbed by a Wiener process.96

While in this manuscript we have restricted the analysis to the Euler and Euler-97

Maruyama schemes for the sake of clarity, our arguments can be extended to other98

numerical algorithms.99

The rest of the paper is organised as follows. In Section 2, we introduce100

the methodology and outline the recursive algorithms for the approximation of101

the moments of X̂n with both fixed (x0) and random (X0) initial condition, as102

well as the scheme to estimate the marginal pdf’s of X̂
pkq
n , k “ 1, . . . , v, from the103

approximate moments. In Sections 3 and 4 we present the analysis that supports104

the proposed algorithms. In particular, in Section 3 we establish the convergence of105

the estimates of the moments of the effective noise terms (when the order of their106

polynomial approximations increases), while in Section 4 we provide conditions for107

the convergence of the Gram-Charlier expansion of the marginal pdf’s. In Section 5108

we apply the proposed numerical schemes to the characterisation of the uncertainty109

in a 2-dimensional Keplerian orbit perturbed by a Wiener process. Finally, a brief110

discussion of the theoretical and numerical results is presented in Section 6.111

2. The algorithm. In this Section we introduce the proposed algorithms for the112

approximation of the moments and the 1-dimensional marginal pdf’s of the solution of113

Eq. (1.1) over a time grid. These schemes are the main contribution of the paper. We114

provide the general argument for their derivation and a summary aimed at facilitating115

their implementation, but postpone the proof of the key theoretical results to Sections116

3 and 4 for clarity. We start with a brief summary of the key notation used in this117

section (and the rest of the paper).118

2.1. Notation. Consider a probability space pΩ,F ,Pq, where Ω is the sample119

space, F denotes a σ-algebra of subsets of Ω and P is a reference probability measure.120

We denote real random variables (r.v.’s) and random processes (r.p.’s) on pΩ,F ,Pq121

with capital letters, e.g., X and Xptq, respectively, and use lower-case letters to122

indicate specific realisations. For example, x is a realisation of the r.v. X and xptq123

denotes a sample path of Xptq, t P r0,8q.124

Vectors are denoted with bold-face letters while we use regular-face for scalars,125

e.g., x and x, respectively. For a vector x, a superscript pkq indicates the k-th126

component of the vector, i.e., if x is a v-dimensional vector then x “
`

xp1q, . . . , xpvq
˘

.127

A multi-index r “
`

rp1q, . . . , rpvq
˘

is a vector of non-negative integers, i.e., xpiq P NYt0u128

for every i. We define the following shorthands for typical operations on multi-indices:129
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4 A. LÓPEZ YELA AND J. MÍGUEZ

130

|r|–
v
ÿ

k“1

rpkq,131

r! –
v
ź

k“1

rpkq!,132

B|r|

Bar
–

B|r|

Bap1qr
p1q

⋯ Bapvqr
pvq

133

ar
–

v
ź

k“1

ar
pkq

134

r
ÿ

r1“0

–

rp1q
ÿ

r1p1q“0

⋯

rpvq
ÿ

r1pvq“0

,135

ˆ

r
r1

˙

–

v
ź

k“1

ˆ

rpkq

r1pkq

˙

.136

We adopt the convention 0! “ 1 (hence, p0, . . . ,0q! “ 1 as well).137

2.2. Euler–Maruyama discretisation and the effective noise process.138

The discretisation of the SDE (1.1) using the explicit Euler–Maruyama scheme yields139

(2.1) X̂n “ X̂n´1 ` hu
`

X̂n´1, tn´1

˘

`G
`

X̂n´1, tn´1

˘

∆W n, n “ 1,2, . . . ,140

where X̂n «Xptnq is the approximation of the solution at time tn, with tn “ t0`nh,141

the subscript n denotes discrete time, h is the step-size and ∆W n “W ptnq´W ptn´1q142

is the increment of the r.p. W ptq in the interval ptn´1, tnq. The key of the proposed143

method is to decompose the random sequence Xn into two parts: a central part, that144

results from the integration of an ODE, and an effective noise sequence that accounts145

for the randomness in Xn. These two notions are explicitly introduced below.146

Definition 2.1. The random sequence in Eq. (2.1) can be written as

X̂n “ x̂Cn `∆Ŵ n,

where the deterministic sequence x̂Cn « xptnq is the central part that results from the147

explicit Euler integration of the ODE 9x “ upx, tq with a prescribed initial condition148

xCpt0q “ x0; specifically149

(2.2) x̂Cn “ x̂Cn´1 ` hu
`

x̂Cn´1, tn´1

˘

, n P N,150

and ∆Ŵ n “ X̂n ´ x̂Cn is the effective noise r.p.151

The central part is easily computed as in Eq. (2.2). However, the characterisation152

of the effective noise is not straightforward. The gist of our approach is to perform153

a Taylor expansion of ∆Ŵ n around x̂Cn´1 at each time step. Such expansion is154

convenient because it naturally provides a probabilistic description of the effective155

noise (and, as a consequence, of the numerical solution X̂n) and it can be carried out156

recursively over time.157
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2.3. Polynomial expansion of the effective noise. For the analysis of the158

effective noise process it is convenient to handle separately the uncertainty in Eq.159

(2.1) due to the random initial condition X0 and the uncertainty due to the sequence160

of independent noise increments ∆W n (this separation is already implicit in the161

definition of the effective noise). Consequently, let us first assume that the initial162

condition is deterministic and fixed, i.e., X0 “ x0. The probability distributions and163

statistical moments of the r.p.’s X̂n and ∆Ŵ n can then be computed conditionally164

on X0 “ x0. In particular, in Section 3, we prove that the polynomial expansion165

of order N for the effective noise at time n with initial condition X0 “ x0 can be166

recursively written as167

∆Ŵ
pkq
n,N px0q “∆Ŵ

pkq
n´1,N px0q168

`h
N
ÿ

|r|“1

1

r!

B|r|

Bxr
n´1

upkq
`

x̂Cn´1px0q, tn´1

˘

∆Ŵ
r

n´1,N px0q169

`

N´1
ÿ

|r|“0

d
ÿ

j“1

1

r!

B|r|

Bxr
n´1

Gpk,jq
`

x̂Cn´1px0q, tn´1

˘

∆W pjq
n ∆Ŵ

r

n´1,N px0q,(2.3)170

for k “ 1, . . . , v and, hence, we denote ∆Ŵ n,N px0q “
`

∆Ŵ
p1q
n,N px0q, . . . ,∆Ŵ

pvq
n,N px0q

˘

.171

Note that we explicitly indicate the dependance on the initial condition of the central172

component x̂Cn px0q and the effective noise increments ∆Ŵ n,N px0q. Besides, since we173

have assumed that the initial condition is fixed, then, ∆Ŵ 0,N px0q “ 0. Let us also174

notice that the multi-index r in the summations is v-dimensional. The subscript N175

in ∆Ŵ n,N px0q indicates that we construct a polynomial approximation of order N176

with no remainder term.177

From Eq. (2.3), it is straightforward to obtain the expansion of ∆Ŵ
r

n,N px0q (using178

combinatorics) for any v-dimensional multi-index r such that |r| ą 1. In particular,179

the conditional moments of the effective noise truncated to order N can be written as180

(2.4) E
“

∆Ŵ
r

n,N px0q
‰

“

N
ÿ

|s|`|r1|“1

as,r
1

r,n,N

`

x̂Cn´1px0q, tn´1

˘

E
“

∆W
s
n

‰

E
“

∆Ŵ
r1

n´1,N px0q
‰

,181

where as,r
1

r,n,N

`

x̂Cn´1px0q, tn´1

˘

are the coefficients of the expansion obtained from the182

polynomial coefficients of Eq. (2.3). Note that the multi-index r1 is v-dimensional183

and the multi-index s is d-dimensional.184

To obtain the identity (2.4), we have assumed that the noise increments ∆W n185

form an independent random sequence, which implies that the effective noise ∆Ŵm186

is itself independent of ∆W n for every m ă n.187

Finally, using the binomial theorem, we arrive at a the formula of the conditional188

moments of X̂n given the initial condition X0 “ x0 in terms of the conditional189

moments of the effective noise in Eq. (2.4) and the central part,190

(2.5) E
“

X̂
r

n,N px0q
‰

“

r
ÿ

r1“0

ˆ

r
r1

˙

x̂Cn px0q
pr´r1q

E
“

∆Ŵ
r1

n,N px0q
‰

,191

for any multi-index r. Because of the truncation of order N , the approximation192

is accurate for moments of order k ď N . For example, if we choose N “ 1, the193

approximation is truncated to order 1 and the polynomial is linear in the noise and194

hence, not dependent on the second or higher moments of the r.p. W n.195

This manuscript is for review purposes only.



6 A. LÓPEZ YELA AND J. MÍGUEZ

The convergence of the polynomial expansions presented above is rigorously196

established in Section 3.197

2.4. Initial uncertainty. In general, the initial condition for the SDE (1.1) is198

unknown and X0 is modelled as a random vector with a given probability distribution.199

It is tempting to handle this uncertainty as an initial effective noise, i.e., to assume200

that ∆Ŵ 0,N px0q “X0 and x0 “ 0 in Eqs. (2.3) and (2.4). However, this approach201

turns out naive. Since Eqs. (2.3) and (2.4) are obtained from a Taylor expansion of202

∆Ŵ 0,N px0q, when the higher order moments of the effective noise are significant we203

need to increase the order N of the approximation in order to maintain a prescribed204

(sufficiently good) accuracy. A larger N implies the computation of higher-order205

derivatives of functions u and G and, as a consequence, an increased computational206

effort. In general, the uncertainty of the initial conditions can be expected to be207

independent of the dynamical perturbation W ptq and, possibly, to have a larger208

power and more significant higher-order moments compared to the process W ptq.209

For these reasons, it is more convenient to handle the initial uncertainty using a210

specific expansion of order possibly higher than N .211

The polynomial chaos expansion (PCE) method [31, 16] is a technique that212

provides a polynomial expansion of a r.v. propagated through a deterministic213

dynamical system. The standard PCE scheme cannot be used in a SDE like Eq.214

(1.1). However, the argument in Section 2.3 enables us to circumvent this problem,215

as we have already obtained a deterministic recursion for the moments of the effective216

noise in Eq. (2.4).217

In order to compute a PCE of the conditional moments of X̂n we take a set of218

Np polynomials tΦi ∶ R
v Ñ Ru

Np

i“1, selected to be orthogonal with respect to the pdf219

fX0 of the initial condition X0. Then, we construct the approximation220

(2.6) E
“

X̂
r

n,N

ˇ

ˇX0

‰

«

Np
ÿ

i“1

c
prq
i,n,NΦipX0q ,221

where X0 is the σ-algebra generated by X0 and the c
prq
i,n,N ’s are the PCE coefficients222

(note thet the superscript prq simply indicates dependence on the multi-index r on223

the left-hand side). A simple way to compute these coefficients is the so-called non-224

intrusive method [16], for which225

(2.7)
!

c
prq
i,n,N

)Np

i“1
“ argmin

tcku
Np
k“1

ż

˜

E
“

X̂
r

n,N px0q
‰

´

Np
ÿ

k“1

ckΦkpx0q

¸2

fX0px0qdx0 .226

While the optimisation problem (2.7) above cannot be solved exactly in general, for227

most practical applications it is possible to approximate the integral using Monte228

Carlo. If we draw Ns samples from the pdf fX0 , denoted by X0,j , j “ 1, . . . ,Ns, it is229

straightforward to compute an approximation of the PCE coefficients by solving the230

linear least-squares problem231

(2.8)
!

ĉ
prq
i,n,N

)Np

i“1
“ argmin

tcku
Np
k“1

Ns
ÿ

j“1

˜

E
“

X̂
r

n,N pX0,jq
‰

´

Np
ÿ

k“1

ckΦkpX0,jq

¸2

,232

which, in turn, yields the approximate conditional moments233

(2.9) E
“

X̂
r

n,N

ˇ

ˇX0

‰

« E
“

X̂
r

n,N

ˇ

ˇX0

‰

Np
–

Np
ÿ

i“1

ĉ
prq
i,n,NΦipX0q .234
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235

Some remarks are in order regarding the validity of Eq. (2.9):236

237

‚ When the dimension of the state space is v, the PCE approximation is of238

order NPCE where the number of orthogonal polynomials is [2, Chapter 2]239

(2.10) Np “

ˆ

NPCE ` v
v

˙

.240

‚ The least-squares problem in (2.8) can be solved when the correlation matrix241

ΦJΦ has full rank, where242

(2.11) Φ –

¨

˝

Φ1pX0,1q ⋯ ΦNppX0,1q

⋮ ⋱ ⋮

Φ1pX0,Nsq ⋯ ΦNppX0,Nsq

˛

‚.243

This implies that Ns ě Np (in practice, Ns ą Np and sufficiently large). The244

numerical computation of (2.8) is typically more stable when the polynomials245

tΦiu
Np

i“1 are orthonormal [7], i.e., when }Φi} “ 1.246

‚ The polynomial expansions (2.6) and (2.9) converge in mean square error247

(MSE) when the L2-norm of the conditional moments with respect to the248

measure fX0px0qdx0 are finite [6], i.e.,249

(2.12)

ż

E
“

X̂
r

n,N px0q
‰2
fX0px0qdx0 ă8.250

for the selected multi-index r.251

Finally, we recall the rule of iterated expectations [30, Theorem 3.4]), which yields252

(2.13) E
“

X̂
r

n,N

‰

“ E
”

E
“

X̂
r

n,N

ˇ

ˇX0

‰

ı

«

Np
ÿ

i“1

ĉ
prq
i,n,NE

“

ΦipX0q
‰

.253

When the polynomials Φi are orthonormal with respect to fX0 it follows that254

(2.14)

ż

R

Φipx0qΦjpx0qfX0px0qdx0 “ δij ∶“

"

1, if i “ j,
0, otherwise,

255

and in particular,256

(2.15) E
“

ΦipX0q
‰

“ δi1.257

Therefore, Eq. (2.13) readily yields258

(2.16) E
“

X̂
r

n,N

‰

« E
“

X̂
r

n,N

‰

Np
“ ĉ

prq
1,n,N259

when the expansion is based on an orthonormal set of polynomials and Er¨sNp is260

constructed as in (2.9).261

2.5. 1-Dimensional marginal densities. The approximate moments in262

Eq. (2.16) yield a partial description of the probability distribution of X̂n. However,263

in many problems, the uncertainty associated to the random sequence X̂n is easier to264

interpret in terms of the probability density function (pdf) of the r.v.’s of interest. In265
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8 A. LÓPEZ YELA AND J. MÍGUEZ

this section, we describe a procedure to approximate the marginal pdf of each variable266

X̂
pkq
n using a Gram–Charlier expansion [14].267

We introduce some notation first. Let X be a real r.v. The pdf of X is denoted268

by fX , while ΨXptq – EreiXts is the characteristic function of X (where i is the269

imaginary unit and t P R). The cumulant generating function of X is [14]270

(2.17) log
`

ΨXptq
˘

“

8
ÿ

r“1

κrpXq

r!
pitqr,271

where κr denotes the r-th order cumulant. The cumulants κrpXq can be computed272

in terms of the moments of X using lookup tables [14].273

The general Gram–Charlier expansion of the marginal pdf of X̂
pkq
n,N conditional274

on a fixed initialization X0 “ x0 can be written as275

(2.18) f
X̂
pkq
n,N

|x0
px|x0q «

«

1`
N
ÿ

r“1

p´1qr

r!
Cr

“

X̂
pkq
n,N px0q, Zϕ

‰ dr

dxr

ff

ϕpxq276

for any x P R (such that the expansion converges), where277

278

(2.19) Cr
“

X̂
pkq
n,N px0q, Zϕ

‰

– Br

´

κ1

`

X̂
pkq
n,N px0q

˘

´ κ1pZϕq, . . .279

. . . , κr
`

X̂
pkq
n,N px0q

˘

´ κrpZϕq
¯

,280
281

and Br is the r-th Bell polynomial [1], ϕ is an auxiliary pdf and Zϕ is a r.v. with282

density ϕ.283

In the case at hand, we note that for a fixed X0 “ x0 the distribution of284

the solution X̂npx0q “ x̂Cn px0q `∆Ŵ npx0q depends essentially on the distribution285

of the effective noise ∆Ŵ npx0q, as x̂Cn px0q is the numerical approximation of the286

deterministic solution to the ODE 9xCptq “ upxC , tq with initial condition xCpt0q “287

x0. Using Eq. (2.3), we can expand the effective noise in terms of the noise increments288

∆W n. Specifically, if we apply a truncation of order N “ 1, the k-th effective noise289

coordinate becomes290

(2.20) ∆Ŵ
pkq
n,1 px0q “

d
ÿ

j“1

n
ÿ

m“1

b
pkq
n,m,jpx0q∆W

pjq
m ,291

where the b
pkq
n,m,jpx0q’s are deterministic coefficients. Hence, ∆Ŵ

pkq
n,1 px0q is a linear292

combination of independent r.v.’s. If W ptq is a Wiener process, then ∆Ŵ
pkq
n,1 px0q is293

Gaussian and, even for more general processes, recent results on Berry–Essen bounds294

[9, 11] suggest that a Gaussian approximation for ∆Ŵ
pkq
n,1 px0q is a plausible choice.295

Therefore, we let the auxiliary pdf ϕpxq in Eq. (2.18) be a normal pdf depending on296

x0, denoted by ϕG
pkq

n px|x0q with mean µ
pkq
n px0q and standard deviation σ

pkq
n px0q. We297

write ZG
pkq

ϕ px0q to denote a r.v. with pdf precisely ϕG
pkq

n p¨ |x0q.298

The Gram–Charlier expansion with a Gaussian auxiliary density is well studied299

and known as Gram–Charlier expansion of type A. In particular, Eq. (2.18) can be300
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rewritten as [14]301

302

(2.21) f
X̂
pkq
n,N

|x0
px|x0q «

«

1`
N
ÿ

r“1

1

r!σ
pkq
n px0q

r
Cr

”

X̂
pkq
n,N px0q, Z

Gpkq

ϕ px0q

ı

303

ˆHer

˜

x´ µ
pkq
n px0q

σ
pkq
n px0q

¸ff

ϕG
pkq

n px|x0q,304

305

where Her pxq is the r-th Hermite polynomial that satisfies the Rodrigues formula [20]306

(2.22) Her pxq “ p´1qr ex
2
{2 dr

dxr
e´x

2
{2 .307

For simplicity, we propose to compute the mean µ
pkq
n px0q and standard deviation308

σ
pkq
n px0q of the auxiliary Gaussian density ϕG

pkq

n px|x0q using the truncations of order309

N “ 1 of the effective noise ∆Ŵ
pkq
n,1 px0q. This yields310

(2.23) µpkqn px0q “ x̂C
pkq

n px0q `E
“

∆Ŵ
pkq
n,1 px0q

‰

,311

and312

(2.24) σpkqn px0q “

b

E
“`

∆Ŵ
pkq
n,1 px0q

˘2‰
´E

“

∆Ŵ
pkq
n,1

`

x0q
‰2
,313

for k “ 1, . . . , v where E
“

∆Ŵ
pkq
n,1

`

x0q
‰

and E
“`

∆Ŵ
pkq
n,1 px0q

˘2‰
can be computed314

recursively from Eq. (2.3).315

The convergence of the expansion in Eq. (2.21), i.e., the analysis of the316

approximation error when the series is truncated to some finite order is addressed317

in Section 4.318

When the initial condition X0 is random, it is possible to construct PCE319

approximations of µ
pkq
n , σ

pkq
n and Cr in a similar way as we computed the320

approximations of conditional moments of X̂
r

n,N in Section 2.4. In particular,321

(2.25) µpkqn pX0qNp“

Np
ÿ

i“1

ĉ
µpkq
i,n Φi

`

X0

˘

, σpkqn pX0qNp“

Np
ÿ

i“1

ĉ
σpkq
i,n Φi

`

X0

˘

,322

and323

(2.26) Cr

”

X̂
pkq
n,N pX0q, Z

Gpkq

ϕ pX0q

ı

Np

“

Np
ÿ

i“1

ĉ
Crpkq
i,n Φi

`

X0

˘

,324

where, the same as in Section 2.4, the coefficients of the expansion are obtained by325

solving the least-squares problem326

(2.27)
!

ĉ
rsspkq
i,n

)Np

i“1
“ argmin

tcku
Np
k“1

Ns
ÿ

j“1

˜

ursspkqn pX0,jq ´

Np
ÿ

k“1

ckΦkpX0,jq

¸2

, s “ 1,2,3,327

where328

‚ ĉ
r1spkq
i,n “ ĉ

µpkq
i,n and u

r1spkq
n “ µ

pkq
n ;329
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10 A. LÓPEZ YELA AND J. MÍGUEZ

‚ ĉ
r2spkq
i,n “ ĉ

σpkq
i,n and u

r2spkq
n “ σ

pkq
n ;330

‚ ĉ
r3spkq
i,n “ ĉCr

i,n and u
r3spkq
n “ Cr

”

X̂
pkq
n,N , Z

Gpkq

ϕ

ı

.331

Finally, if we draw N 1s i.i.d. samples from the random initial condition X0,332

denoted X 1
0,j , j “ 1, . . . ,N 1s, then we can use Eq. (2.21) to approximate the pdf of333

X̂
pkq
n,N as334

(2.28) f
X̂
pkq
n,N

pxq “

ż

Rv

f
X̂
pkq
n,N

|X0
px|x0qfX0px0qdx0 «

1

N 1s

N 1s
ÿ

j“1

f
X̂
pkq
n,N

|X0
px|X 1

0,jq.335

2.6. Outline of the algorithms. In this section we provide a summary of the336

proposed algorithms for the approximate computation of the moments E
“

X̂
r

n,N

‰

and337

the 1-dimensional marginal densities f
X̂
pkq
n,N

pxq, k “ 1, . . . , v.338

Table 2.1 provides a list, with brief descriptions, of the inputs and outputs of339

the two proposed approximation schemes. Algorithm 2.1 displays a pseudocode, with340

cross-references to Sections 2.3 and 2.4, of the numerical scheme for the computation341

of moments assuming a random initial condition X0. If X0 “ x0 the algorithm is342

simply run with Ns “ 1. Algorithm 2.2 shows a pseudocode for the approximation of343

marginal densities, with cross-references to Section 2.5.344

Inputs Description

h Step-size.
t0 Initial time.
tn Final time.
N Order of the polynomial expansions.
v Dimension of Xptq.
d Dimension of W ptq.
X0 Initial condition.

E
“

∆W
r
m

‰

Moments of the noise increments for m ě 1 and |r| ď N .

NPCE
Truncation order of the PCE scheme (when X0 “ x0 is
fixed, this is not needed).

Ns Number of samples (if X0 “ x0 is fixed, Ns “ 1).

N 1s
Number of i.i.d. samples of X0 to approximate the pdf
f
X̂
pkq
n,N

pxq in Eq. (2.28).

u Drift coefficient in Eq. (1.1).
G Diffusion coefficient in Eq. (1.1).

Outputs Description

E
“

X̂
r

n,N

‰

Np

Moments of the numerical solution of Eq. (1.1), for |r| ď
N , computed with a basis of Np orthogonal polynomials,
where Np is given by Eq. (2.10).

f
X̂
pkq
n,N

Estimate of the pdf fX̂n
where X̂n is the numerical

approximation of the r.v. Xptnq

Table 2.1: Inputs and outputs of the algorithms for moment computation and
estimation of 1-dimensional marginal pdf’s.

This manuscript is for review purposes only.



POLYNOMIAL PROPAGATION OF MOMENTS IN STOCHASTIC DIFFERENTIAL... 11

Algorithm 2.1 Computation of moments

1: Generate Ns samples of X0, denoted X0,j , j “ 1, . . . ,Ns.

2: Compute Np using Eq. (2.10) and matrix Φ using Eq. (2.11)
˘

such that ΦJΦ.
We assume Φ is full-rank.

3: Set x̂C0 pX0,jq “X0,j , ∆Ŵ 0,N pX0,jq “ 0 and ∆Ŵ 0,1pX0,jq “ 0 for j “ 1, . . . ,Ns.

4: Set n “ rptn ´ t0q{hs, where r ¨ s denotes the ceiling function.
5: for m “ 1, . . . , n do
6: for j “ 1, . . . ,Ns do
7: Evaluate the central part x̂CmpX0,jq “ x̂Cm´1pX0,jq`hu

`

x̂Cm´1pX0,jq, tm´1

˘

,
where tm “ t0 `mh.

8: Evaluate E
“

∆Ŵ
r

m,N pX0,jq
‰

for 1 ď |r| ď N using Eq. (2.4).

9: Evaluate E
“

∆Ŵ
pkq
m,1pX0,jq

‰

and E
“`

∆Ŵ
pkq

m,1pX0,jq
˘2‰

for k “ 1, . . . , v.
10: end for
11: end for
12: Compute E

“

X̂
r

n,N pX0,jq
‰

for j “ 1, . . . ,Ns using Eq. (2.5).

13: Solve the least-squares problem (2.8) and compute E
“

X̂
r

n,N

‰

Np
for 1 ď |r| ď N

with Eq. (2.16).

Algorithm 2.2 Computation of 1-dimensional marginal pdf’s

1: Generate Ns samples of X0, denoted X0,j , j “ 1, . . . ,Ns.
2: for j “ 1, . . . ,Ns do
3: for k “ 1, . . . , v do
4: Compute µpkqn pX0,jq and σpkqn pX0,jq using Eqs. (2.23) and (2.24) respectively.

5: Compute Cr

”

X̂pkq

n,N pX0,jq, Z
Gpkq

ϕ pX0,jq

ı

for r “ 1, . . . ,N .

6: end for
7: end for
8: Solve the least-squares problem to compute the PCE coefficients of Eqs. (2.25)

and (2.26).
9: Generate N 1s samples of X0, denoted X 1

0,j , j “ 1, . . . ,N 1s.
10: for j “ 1, . . . ,N 1s do
11: for k “ 1, . . . , v do
12: Compute µpkqn pX

1
0,jq and σpkqn pX

1
0,jq using Eq. (2.25).

13: Compute Cr

”

X̂pkq

n,N pX
1
0,jq, Z

Gpkq

ϕ pX 1
0,jq

ı

, for r “ 1, . . . ,N , using Eq. (2.26).

14: end for
15: end for
16: Compute the coefficients of the Hermite polynomials Her for r “ 0, . . . ,N .
17: Apply Eq. (2.28), combined with Eq. (2.21), to compute f

X̂
pkq
n,N

pxq for any x P R

and k “ 1, . . . , v.

3. Variational solution based on a polynomial expansion over the noise345

process. In this section we provide the analysis needed to support the results in346

Section 2.3 and, specifically, Algorithm 2.1 for the approximate computation of347

moment of the random sequence X̂n. Our analysis relies on the notion of convergence348
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12 A. LÓPEZ YELA AND J. MÍGUEZ

region for a Taylor expansion as defined below.349

350

Definition 3.1. Let g be a smooth function, g ∶ Rv ˆ r0,8q Ñ R. The
convergence region of the Taylor expansion of g, centred around x0 P R

v at time
t P r0,8q, is the set

ρgpx0, tq–
!

x P Rv ∶
8
ÿ

|r|“0

1

r!

B|r|

Bxr
gpx0, tqx

r
ă8

)

Ď Rv.

Let us assume a fixed initial condition X0 “ x0. The moments of the sequence X̂n351

follow readily from the statistics of the effective noise sequence ∆Ŵ
pkq

n px0q. Therefore,352

we start with the expansion formula for the effective noise in Eq. (2.3).353

354

Theorem 3.2. Assume that the functions u and G in Eq. (1.1) are real and355

smooth. For any positive integers N and n, the effective noise given an initial356

condition X0 “ x0 can be written as357

∆Ŵ
pkq

n px0q “∆Ŵ
pkq

n´1px0q ` h
N
ÿ

|r|“1

1

r!

B|r|

Bxr
n´1

upkq
`

x̂Cn´1px0q, tn´1

˘

∆Ŵ
r

n´1px0q358

`

N´1
ÿ

|r|“0

d
ÿ

j“1

1

r!

B|r|

Bxr
n´1

Gpk,jq
`

x̂Cn´1px0q, tn´1

˘

∆W pjq
n ∆Ŵ

r

n´1px0q359

`R
pkq
n,N

`

∆W n,∆Ŵ n´1px0q
˘

,(3.1)360

where ∆Ŵ 0px0q “ 0 and Rpkqn,N is the remainder term of the polynomial expansion at361

step n with truncation order N . If362

∆Ŵ n´1px0q P ρupkq
`

x̂Cn´1px0q, tn´1

˘

X
d
j“1 ρGpk,jq

`

x̂Cn´1px0q, tn´1

˘

,363

then

lim
NÑ8

R
pkq
n,N

`

∆W n,∆Ŵ n´1px0q
˘

“ 0.

364

Remark 3.3. Note that
∆Ŵ

r

n´1px0q

r!
“ 1 for |r| “ 0.365

Proof: Recall the decomposition of the sequence X̂npx0q into its central part366

and the effective noise,367

(3.2) X̂n´1px0q “ x̂Cn´1px0q `∆Ŵ n´1px0q.368

Using the relationship above, the the Taylor expansions of upkq (of order N) and Gpk,jq369

(of order N ´ 1) with respect to X̂n´1px0q and centred at x̂Cn´1px0q can be written370

as371

upkq
`

X̂n´1, tn´1

˘

“

N
ÿ

|r|“0

1

r!

B|r|

Bxr
n´1

upkq
`

x̂Cn´1px0q, tn´1

˘

∆Ŵ
r

n´1px0q372

`Ru
pkq

n´1,N

`

∆Ŵ n´1px0q
˘

(3.3)373
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and374

Gpk,jq
`

X̂n´1, tn´1

˘

“

N´1
ÿ

|r|“0

1

r!

B|r|

Bxr
n´1

Gpk,jq
`

x̂Cn´1px0q, tn´1

˘

∆Ŵ
r

n´1px0q375

`RG
pk,jq

n´1,N´1

`

∆Ŵ n´1px0q
˘

,(3.4)376

respectively, where Ru
pkq

n´1,N

`

∆Ŵ n´1px0q
˘

and RG
pk,jq

n´1,N´1

`

∆Ŵ n´1px0q
˘

are remainder377

terms. If we substitute Eqs. (3.2)–(3.4) into the Euler–Maruyama scheme of (2.1),378

we obtain the expansion379

X̂npx0q “ x̂C
pkq

n´1 px0q `∆Ŵ
pkq

n´1px0q380

`h
N
ÿ

|r|“0

1

r!

B|r|

Bxr
n´1

upkq
`

x̂Cn´1px0q, tn´1

˘

∆Ŵ
r

n´1px0q381

`

N´1
ÿ

|r|“0

d
ÿ

j“1

1

r!

B|r|

Bxr
n´1

Gpk,jq
`

x̂Cn´1px0q, tn´1

˘

∆W
pjq

n ∆Ŵ
r

n´1px0q382

`Rpkqn,N
`

∆W n,∆Ŵ n´1px0q
˘

,(3.5)383

where the new remainder term is384

R
pkq
n,N

`

∆W n,∆Ŵ n´1px0q
˘

– hRu
pkq

n´1,N

`

∆Ŵ n´1px0q
˘

385

`

d
ÿ

j“1

∆W
pjq

n RG
pk,jq

n´1,N´1

`

∆Ŵ n´1px0q
˘

.386

If we decompose X̂
pkq

n px0q “ x̂C
pkq

n px0q `∆Ŵ
pkq

n px0q and then substitute

x̂Cn px0q “ x̂Cn´1px0q ` hu
`

x̂Cn´1px0, tn´1

˘

,

on the left-hand side of Eq. (3.5), then we arrive at the identity (3.1) in the statement387

of Theorem 3.2. The convergence condition of the expansion is straightforward from388

Definition 3.1. ∎389

Let us remark that the polynomial approximation given in Theorem 3.2 can be390

written as a polynomial exclusively dependent on the subsequence of independent391

noise increments ∆Wm, for m “ 1, . . . , n, i.e., it is possible to write392

(3.6) ∆Ŵ
pkq

n “ polN
`

∆W n, . . . ,∆W 1

˘

`Rpkqn,N
`

∆W n, . . . ,∆W 1

˘

,393

where polN p⋯q denotes a polynomial of order N . This fact can be easily verified by394

induction. Specifically, expression (3.6) shows that the convergence of the expansion395

at step n depends only on the noise increments ∆Wm, m “ 1, . . . , n. Therefore, in396

order to apply Theorem 3.2 in the analysis of Algorithm 2.1, we need to establish397

the conditions that ∆Wm should satisfy in order to guarantee the convergence of the398

polynomial expansions of X̂n or ∆Ŵ npx0q.399

From Eq.(3.6) it can be seen that if the increments of the original noise process,400

∆Wm, m “ 1, . . . , n, are bounded, then the increments of the effective noise process,401

∆Ŵ n, are bounded too. Lemma 3.4 below yields explicit bounds for the effective402

noise ∆Ŵ n in terms of any available bound on ∆Wm.403

404

This manuscript is for review purposes only.
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Lemma 3.4. If there are finite constants A
pjq

n such that
ˇ

ˇ∆W
pjq

n

ˇ

ˇ ă A
pjq

n for every405

n ě 1 and j “ 1, . . . , d, then the constants recursively computed as406

rA
pkq

n,N px0q “ rA
pkq

n´1,N px0q ` h
N
ÿ

|r|“1

1

r!

ˇ

ˇ

ˇ

ˇ

ˇ

B|r|

Bxr
n´1

upkq
`

x̂Cn´1px0q, tn´1

˘

ˇ

ˇ

ˇ

ˇ

ˇ

rA
r

n´1,N px0q407

`

N´1
ÿ

|r|“0

d
ÿ

j“1

1

r!

ˇ

ˇ

ˇ

ˇ

ˇ

B|r|

Bxr
n´1

Gpkjq
`

x̂Cn´1px0q, tn´1

˘

ˇ

ˇ

ˇ

ˇ

ˇ

A
pjq

n
rA

r

n´1,N px0q,408

where rA0,N px0q “ 0, are finite and satisfy the inequalities

ˇ

ˇ∆Ŵ
pkq
n,N

ˇ

ˇ ă rA
pkq
n,N

for every n ě 1 and k “ 1, . . . , d. Moreover, if

rAn´1,N px0q P ρupkq
`

x̂Cn´1px0q, tn´1

˘

X
d
j“1 ρGpk,jq

`

x̂Cn´1px0q, tn´1

˘

,

then
lim
NÑ8

Rpkqn,N
`

∆W n,∆Ŵ n´1px0q
˘

“ 0.

Proof: It is straightforward from Theorem 3.2.409

∎410

We can now apply the results above to provide a convergence condition for the411

recursive approximation of moments in Eq. (2.4).412

413

Theorem 3.5. Assume that the functions u and G in Eq. (1.1) are real and414

smooth. For any positive integers N and n, and any fixed initial condition X0 “ x0,415

we have the identity416

E
“

∆Ŵ
r

npx0q
‰

“

N
ÿ

|s|`|r1|“1

a
ps,r1q
r,n,N

`

x̂Cn´1px0q, tn´1

˘

E
“

∆W
s
n

‰

E
“

∆Ŵ
r1

n´1,N px0q
‰

417

`E
“

R
prq
n,N

`

∆W n,∆Ŵ n´1px0q
˘‰

,(3.7)418

where R
prq
n,N is the remainder term of the expansion and a

ps,r1q
r,n,N

`

x̂Cn´1px0q, tn´1

˘

are the419

constant coefficients of the expansion of the effective noise in Theorem 3.2. Moreover,420

if there are finite constants A
pjq

n such that
ˇ

ˇ∆W
pjq

n

ˇ

ˇ ă A
pjq

n for every n ě 1 and421

j “ 1, . . . , d, then422

(3.8) lim
NÑ8

E
“

R
prq
n,N

`

∆W n,∆Ŵ n´1px0q
˘‰

“ 0.423

Proof: Note that the effective noise monomial ∆Ŵ
r

npx0q can be written as

∆Ŵ
r

npx0q “
ź

i

∆Ŵ priq
n px0q,

where the factors ∆Ŵ
priq
n px0q are expanded using Theorem 3.2 and then truncated

to order N . We arrive at the identity (3.7), after straightforward manipulations, by
taking expectations and realising that

E
“

∆W
s
n∆Ŵ

r1

n´1px0q
‰

“ E
“

∆W
s
n

‰

E
“

∆Ŵ
r1

n´1px0q
‰

,
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which is a consequence of Eq. (3.6) and the independence of the noise increments.
As for the convergence of the expansion (3.7), Lemma 3.4 yields

lim
NÑ8

Rpkqn,N
`

∆W n,∆Ŵ n´1px0q
˘

“ 0, k “ 1, . . . , v

and, since the remainder term of the expansion of ∆Ŵ
r

npx0q is the addition of a finite424

sum of products involving Rpkqn,N
`

∆W n,∆Ŵ n´1px0q
˘

for all k “ 1, . . . , v, we obtain425

that426

(3.9) lim
NÑ8

R
prq
n,N

`

∆W n,∆Ŵ n´1px0q
˘

“ 0.427

Finally, if we take the expectation of (3.9) and apply the dominated convergence428

Theorem [22] we arrive at (3.8) and complete the proof.429

∎430

The results we have obtained are useful to guarantee convergence when the431

support of the dynamical noise W n is bounded but, in general, this is not the432

case. However, even if in the most common models (Gaussian distributions, Gamma433

distributions, etc.) the support is not actually bounded, when the tails of a434

distribution decrease rapidly enough the support can be treated as bounded for435

numerical purposes. For example, if W
pkq
n „ N p0, σq then Pp|W

pkq
n | ă 3σq ą 0.9973,436

i.e., W
pkq
n is bounded with high probability.437

For a prescribed probability P P p0,1q, let us choose the quantities438

(3.10) A
pjq

n pP q– inf
!

a P R`0 ∶ P
`
ˇ

ˇW
pjq

n

ˇ

ˇ ă a
˘

ą P
)

, j “ 1, . . . , d,439

i.e., A
pjq

n pP q is an upper bound for
ˇ

ˇW
pjq

n

ˇ

ˇ with probability P . One can combine440

bounds that hold with some probability P and Lemma 3.4 to assess the convergence441

of the polynomial expansions of the moments of the effective noise in Algorithm 2.1.442

4. Approximation of 1-dimensional marginal densities. In this section443

we prove that the approximate 1-dimensional pdf’s computed using Algorithm 2.2444

converge as the order of the Gram-Charlier expansion, N , increases, provided that445

the initial condition is fixed, X0 “ x0. When the initial condition is random, we446

further extend the latter result with the convergence of the Monte Carlo estimator in447

Eq. (2.28) as the number of samples N 1s increases.448

449

Theorem 4.1. Let X be a real random variable with pdf fX and characteristic450

function ΨX ; then choose an auxiliary random variable Zϕ with smooth pdf ϕ and451

characteristic function Ψϕ such that |ΨXptq
Ψϕptq

| ă 8 for all finite t. The density fX can452

be expanded with respect to the derivatives of ϕ as453

(4.1) fXpxq “

«

1`
N
ÿ

r“1

p´1qr

r!
Cr

“

X,Zϕ
‰ dr

dxr

ff

ϕpxq `RN
`

fX , ϕ;x
˘

,454

where Cr
“

X,Zϕ
‰

are the coefficients of the expansion defined in Eq. (2.19) and RN
`

fX ,455

ϕ;x
˘

is a remainder term.456
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Proof: We write ΨX as457

ΨXptq “
ΨXptq

Ψϕptq
Ψϕptq458

“ exp
´

log
`

ΨXptq
˘

´ log
`

Ψϕptq
˘

¯

Ψϕptq459

“

«

exp

˜

N
ÿ

r“0

κrpXq ´ κrpZϕq

r!
pitqr

¸

`RN

ˆ

ΨX

Ψϕ
; t

˙

ff

Ψϕptq,(4.2)460

where RN

´

ΨX

Ψϕ
; t
¯

is the remainder of the Taylor expansion of function ΨX{Ψϕ. If

we expand the exponential function in (4.2) in terms of Bell polynomials [1] and then
compute the inverse Fourier transform on both sides of the equation we arrive at

fXpxq “

«

1`
N
ÿ

r“1

p´1qr

r!
Cr

“

X,Zϕ
‰ dr

dxr

ff

ϕpxq `
1

2π

ż

R

RN

ˆ

ΨX

Ψϕ
; t

˙

Ψϕptq e
´ixt dt,

where the second term on the r.h.s. is the remainder in Eq. (4.1). ∎461

Many families of orthogonal polynomials are related to specific probability462

distributions [6] in the sense that there are formulas to generate the polynomials463

from the derivatives of probability densities (the so-called Rodrigues formulas [20]).464

In particular, the class of probabilistic Hermite polynomials are orthogonal w.r.t. the465

Gaussian distribution and the Rodrigues formula for them is given by Eq. (2.22).466

If we let the auxiliary pdf ϕ be Gaussian, the Gram–Charlier expansion of fX in467

Theorem 4.1 reduces to a series of Hermite polynomials multiplied by ϕ. Hence,468

the convergence of expression (4.1) becomes a standard problem, similar to the469

convergence of the PCE (2.6) in Section 2.4. Indeed, if ϕ is Gaussian, the series470

in (4.1) is termed a Gram–Charlier expansion of type A and it can be expected to471

converge when1 fX
ϕ
P L2 pR, ϕq (see [6]).472

In the sequel, we restrict our attention to the Gram-Charlier expansion of type473

A and hence assume that the auxiliary pdf ϕ used to approximate the k-th 1-474

dimensional marginal pdf f
X̂
pkq
n |x0

is Gaussian, with mean µ
pkq
n px0q and standard475

deviation σ
pkq
n px0q. We specifically denote it as ϕ

pkq
n,x0pxq (note the dependence on the476

initial condition x0).477

Below, we establish some regularity assumptions and then use them to provide478

an explicit convergence theorem for the approximations of f
X̂
pkq
n |x0

.479

Assumption 4.2. Let supppfq denote the support of function f and let f∆Wm

denote the pdf of the random vector of noise increments at time m, Wm. There are
bounded sets Dm Ă R

d, m “ 1, . . . , n, such that

supppf∆Wmq ĎDm.

Moreover, there is a sequence of finite constants Mm, m “ 1, . . . , n, that satisfy the
inequalities

sup
xPR

`

f∆Wmpxq
˘

ďMm.

1We construct the class of real L2 functions w.r.t. a density ϕ ∶ S ↦ p0,8q as

L2
pS,ϕq ∶“

"

h ∶ S ↦ R such that

ż

S
hpxqϕpxqdx ă8

*

.
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480

Remark 4.3. When the SDE (1.1) is driven by, e.g., a Wiener process W ptq and481

we define ∆Wm “W ptmq ´W ptm´1q, the support of f∆Wm is Rv and Assumption482

4.2 does not hold. It is well known, however, that weak Euler-Maruyama schemes can483

be designed with simplified noise increments [13]. To be specific, weak convergence484

of the Euler-Maruyama scheme (2.1) can be guaranteed when the noise increments485

∆W
pjq
m , j “ 1, . . . , v, are independent and satisfy the set of the inequalities486

(4.3)
ˇ

ˇ

ˇ
E
”

∆W pjq
m

ı
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

ˇ

E
„

´

∆W pjq
m

¯3

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

E
„

´

∆W pjq
m

¯2

´ h


ˇ

ˇ

ˇ

ˇ

ď Ch2, 1 ď j ď v,487

for some constant C ă8 –see [13, Section 14.1] for details. Hence, if weak convergence488

is sufficient, the noise increments ∆W
pjq
m can be selected in many ways. For example,489

choosing the ∆W
pjq
m ’s to be i.i.d. with common uniform distribution Up´ah,`ahq,490

for some constant a ą 0, guarantees that (4.3) is satisfied for any C ě 1
3
a2, while491

Assumption 4.2 holds with Dm “ r´ah,`ahs
v.492

Assumption 4.4. There are finite constants
 

A
pjq

m ∶ m “ 1, . . . , n; j “ 1, . . . , v
(

493

such that |∆W
pjq
m | ă A

pjq
m , for 1 ď j ď v and 1 ďm ď n, and494

(4.4) rAm,N px0q P ρupkq
`

x̂Cmpx0q, tm
˘

X
d
j“1 ρGpk,jq

`

x̂Cmpx0q, tm
˘

495

where k-th entry of the v-dimensional vector rAm,N px0q is constructed as496

rA
pkq

m,N px0q “ rA
pkq

m´1,N px0q ` h
N
ÿ

|r|“1

1

r!

ˇ

ˇ

ˇ

ˇ

ˇ

B|r|

Bxr
m´1

upkq
`

x̂Cm´1px0q, tm´1

˘

ˇ

ˇ

ˇ

ˇ

ˇ

rA
r

m´1,N px0q497

`

N´1
ÿ

|r|“0

d
ÿ

j“1

1

r!

ˇ

ˇ

ˇ

ˇ

ˇ

B|r|

Bxr
m´1

Gpk,jq
`

x̂Cm´1px0q, tm´1

˘

ˇ

ˇ

ˇ

ˇ

ˇ

A
pjq

m
rA

r

m´1,N px0q,(4.5)498

with initial condition rA0,N px0q “ 0.499

While Assumption 4.2 states that the support of the noise components is bounded,500

Assumption 4.4 guarantees that finite noise increments ∆W
pkq
m yield finite effective501

noise terms ∆Ŵ
pkq
m and enables us to apply Lemma 3.4. Given the above regularity502

assumptions we can provide guarantees on the approximation of the marginal densities503

f
X̂
pkq
n |x0

pxq.504

505

Theorem 4.5. Let the functions u and G in the SDE (1.1) be smooth, let506

Assumptions 4.2 and 4.4 hold and let x0 be a fixed initial condition. Then, the507

type A Gram-Charlier expansion of the 1-dimensional marginal pdf of X̂
pkq
n px0q,508

k P t1, . . . , vu, can be written as509

f
X̂
pkq
n |x0

pxq “

«

1`
N
ÿ

r“1

1

r!σpkqn px0q
r
Cr

”

X̂
pkq
n,N px0q, Z

pkq
px0q

ı

Her

˜

x´ µ
pkq
n px0q

σ
pkq
n px0q

¸ff

ˆ510

ˆϕpkqn,x0
pxq `R

pkq
n,N

`

f
X̂
pkq
n |x0

, ϕpkqn,x0
p¨q;x

˘

,511

where
 

Her

(8

r“0
are the probabilistic Hermite polynomials given by Eq. (2.22),512

Zpkqpx0q is a random variable with pdf ϕ
pkq
n,x0 and the remainder term vanishes as513
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18 A. LÓPEZ YELA AND J. MÍGUEZ

the truncation order N is increased, i.e.,514

(4.6) lim
NÑ8

R
pkq
n,N

`

f
X̂
pkq
n |x0

, ϕpkqn,x0
p¨q;x

˘

“ 0.515

Proof: The type A Gram–Charlier expansion of f
X̂
pkq
n |x0

pxq is immediately516

obtained from Eq. (2.18) when the auxiliary pdf is Gaussian (namely, ϕ “ ϕ
pkq
n,x0).517

Additionally, we need to prove that Eq. (4.6) holds, which takes more effort.518

Specifically, hereafter we prove that the function
f
X̂
pkq
n |x0

ϕ
pkq
n,x0

belongs to L2pR, ϕ
pkq
n,x0q,519

which, in turn, implies that R
pkq
n,N

`

f
X̂
pkq
n |x0

, ϕ
pkq
n,x0p¨q;x

˘ NÑ8
ÐÑ 0 in L2 (see [6]).520

First, we prove using an induction argument that the pdf fX̂n´1|x0
is bounded521

and it has a bounded support. Let us assume that at time n´ 1 there are a bounded522

set D̂n´1 Ă R
v and a finite constant M̂n´1 such that523

(4.7) supp
`

fX̂n´1|x0

˘

Ď D̂n´1Ă R
v and sup

xPR

`

fX̂n´1|x0
pxq

˘

ď M̂n´1 ă8.524

From the expression of the Euler–Maruyama integrator in Eq. (2.1), we can write the525

pdf of X̂n in terms of the densities of X̂n´1 and ∆W n as526

fX̂n|x0
pxnq “

ż

Rv`d

fX̂n´1|x0
pxn´1qf∆Wnpwnq ˆ527

ˆδ pxn ´xn´1 ´ hu pxn´1, tn´1q ´G pxn´1, tn´1qwnqdxn´1dwn,(4.8)528

where δp¨q denotes the Dirac delta function (see Eq. 4.34 in [23]). Using Assumption529

4.2 and the induction hypothesis (4.7) we obtain an upper bound for the pdf530

fX̂n|x0
pxnq in Eq. (4.8) of the form531

fX̂n|x0
pxnq ď532

M̂n´1Mn

ż

D̂n´1ˆDn

δ
´

xn ´xn´1 ´ hu
`

xn´1, tn´1

˘

´G
`

xn´1, tn´1

˘

wn

¯

dxn´1dwn ď533

M̂n´1Mn,534

hence535

(4.9) sup
xPR

´

fX̂n|x0
pxq

¯

ď M̂n ă8, where M̂n “ M̂n´1Mn.536

Moreover, since u and G are smooth and D̂n´1 ˆDn is bounded, all the solutions of
the equation

xn ´xn´1 ´ hu
`

xn´1, tn´1

˘

´G
`

xn´1, tn´1

˘

wn “ 0

necessarily lie in a bounded set D̂n Ă R
v, which implies that537

(4.10) supp
`

fX̂n|x0

˘

Ď D̂n Ă R
v.538

To complete the induction argument, we need to prove that

supp
`

fX̂1|x0

˘

Ď D̂1Ă R
v and sup

xPR

`

fX̂1|x0
pxq

˘

ď M̂1 ă8
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for some bounded set D̂1 and some finite constant M̂1. Resorting again to the539

expression of the Euler–Maruyama integrator (2.1) and Assumption 4.2 we obtain540

the inequalities541

fX̂1|x0
px1q “

ż

Rd

f∆W 1pw1qδ
´

x1 ´x0 ´ hu
`

x0, t0
˘

´G
`

x0, t0
˘

w1

¯

dw1542

ďM1

ż

Rd

δ
´

x1 ´x0 ´ hu
`

x0, t0
˘

´G
`

x0, t0
˘

w1

¯

dw1543

ďM1 ă8,544

hence M̂1 “M1 and, by the same reasoning as in the induction step, the solutions of545

the equation x1 ´ x0 ´ hu
`

x0, t0
˘

´G
`

x0, t0
˘

w1 “ 0 lie in a bounded set D̂1 Ă R
v546

which contains the support of fX̂1|x0
.547

The bounds in (4.9) and (4.10) imply that fX̂n|x0
P L2

´

R, ϕ
pkq
n,x0pxqdx

¯

. To show548

it, let D̂
pkq
n be the projection of the bounded set D̂n Ă R

v along the k-th dimension549

and then note that550

(4.11)

ż

R

˜

f
X̂
pkq
n |x0

pxq

ϕ
pkq
n,x0pxq

a

¸2

ϕpkqn,x0
pxqdx ď

ş

D̂
pkq
n

´

f
X̂
pkq
n |x0

pxq
¯2

dx

inf
xPD̂

pkq
n
ϕ
pkq
n,x0pxq

ă 8,551

where the second inequality holds because552

‚ inf
xPD̂

pkq
n
ϕ
pkq
n,x0pxq ą 0, since ϕ

pkq
n,x0 is Gaussian and D̂

pkq
n is bounded, and553

‚ the marginal density f
X̂
pkq
n |x0

is bounded because the joint density fX̂n|x0
is554

bounded.555

The inequality (4.11) yields fX̂n|x0
P L2

´

R, ϕ
pkq
n,x0pxqdx

¯

which, in turn, implies that556

(4.6) holds [6]. ∎557

Theorem 4.5 states that the estimates of the 1-dimensional marginal pdf’s
f
X̂
pkq
n |x0

pxq converge pointwise, for any fixed x0 and x P Dn, as the truncation order

N increases. When the initial condition is random, the natural estimate to compute is
the Monte Carlo approximation in Eq. (2.28). The proposition below guarantees that,
under similar assumptions as in Theorem 4.5, the Monte Carlo estimator converges
to

f
X̂
pkq
n
pxq “ E

”

f
X̂
pkq
n |X0

pxq
ı

almost surely (a.s.) for any x PDn.558

559

Proposition 4.6. Let X0,j, j “ 1, . . . ,N 1s, be i.i.d. samples form the initial560

distribution with pdf fX0 . If Assumptions 4.2 and 4.4 hold and fX0 is bounded with561

bounded support, then562

(4.12) lim
N 1sÑ8

»

– lim
NÑ8

1

N 1s

N 1s
ÿ

j“1

f
X̂
pkq
n,N

|X1
0,j

pxq

fi

fl “ f
X̂
pkq
n
pxq a.s.,563

for k “ 1, . . . , v.564

Proof: For any N 1s PN, Theorem 4.5 yields

lim
NÑ8

1

N 1s

N 1s
ÿ

j“1

f
X̂
pkq
n,N

|X1
0,j

pxq “
1

N 1s

N 1s
ÿ

j“1

f
X̂
pkq
n |X1

0,j

pxq.
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Moreover, since fX0 is bounded and has a bounded support, the same argument as565

in the proof of Theorem 4.5 shows that the pdf’s f
X̂
pkq
n |X1

0,j

are uniformly bounded2,566

hence E

„

´

f
X̂
pkq
n |X1

0,j

pxq
¯2


ă8 and the strong law of large numbers yields Eq. (4.12).567

∎568

5. Numerical examples. In order to illustrate the performance of the proposed569

uncertainty quantification scheme we provide a numerical example in which we570

compare the solution of the dynamics of a Keplerian orbit in two-dimensional space,571

perturbed by a diffusion term, using Algorithm 2.1 for the approximation of moments572

and a Monte Carlo simulation with 104 samples as a baseline. We present two sets573

of simulation results that differ essentially in the choice of initial condition, which is574

deterministic for the first set (Section 5.1) while we assume it random, with a Gaussian575

distribution, for the second one (Section 5.2).576

We start from the general equation (1.1). The state vector of the orbiting object577

has dimension d “ 4 and we denote it as Xptq “ pxptq, yptq, vxptq, vyptqq
J

, where578

pxptq, yptqq is the object position in km and pvxptq, vyptqq is its velocity in km/s,579

respectively, in 2-dimensional space. For the Keplerian dynamics, the drift coefficient580

upX, tq can be written as [28]581

(5.1) upX, tq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

vxptq
vyptq
´µxptq

“

xptq2 ` yptq2
‰3{2

´µyptq
“

xptq2 ` yptq2
‰3{2

˛

‹

‹

‹

‹

‹

‹

‹

‚

,582

where µ is the standard gravitational parameter, and we set the diffusion coefficient583

as the 4ˆ4 diagonal matrix GpX, tq “ diag p0,0, σw{}vptq}, σw{}vptq}q, where σw is a584

known positive constants and }vptq} “
a

vxptq2 ` vyptq2 is the Euclidean norm of the585

velocity. The noise process W ptq is a standard 4ˆ 1 Wiener process. Physically, the586

diffusion term GpX, tqdW ptq represents a stochastic perturbation in the acceleration587

of the orbiting object (which depends on the object velocity vptq). The numerical588

values used for the simulation are summarised in Table 5.1.589

All computer experiments have been performed using Matlab R2018b running on590

a Mac Book Pro computer equipped with a 2.3 GHz Intel Core i5 CPU and 16 GB591

of RAM.592

5.1. Deterministic initial condition. For the first experiment, we fix the593

initial condition as594

(5.2) x0 “

¨

˚

˚

˚

˚

˝

200`RT
0
0

c

µ

200`RT

˛

‹

‹

‹

‹

‚

,595

2The bounds M̂n in the proof of Theorem 4.5 depend on the initialization, i.e., M̂n “ M̂npX0q.

However, the bounds M̂npX0q are continuous by construction and, since the support of X0 is

bounded, supX0
M̂npX0q ă 8.
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Parameters Value Description

µ 3.986 km3
{s2 Standard gravitational parameter.

h 0.1 s Step-size for time discretisation.
t0 0 days Initial time.
tn 1.51 days Final time.

n 1,304,640
Number of discrete-time steps in the simu-
lations, namely, n “ rptn ´ t0q{hs where r ¨ s

denotes the ceiling function.
N 2 Order of the polynomial expansions.

NPCE 4
Truncation order of PCE (for the second
example only).

Ns 140
Number of samples (for the second example
only).

N 1s 106 Number of samples of X0 generated to
reconstruct the marginal pdf’s f

X̂
pkq
n,N

pxq.

σw 2ˆ 10´4 Scale parameter in the diffusion term.

Table 5.1: Simulation parameters.

whereRT “ 6.378ˆ103 km is the Earth radius. By taking a known initial condition, we596

can asses the moment and density approximations when the only source of uncertainty597

is the dynamical noise W ptq and, therefore, we avoid any PCE approximation.598

The initial state x0 has been chosen to simulate the evolution of a nearly circular599

orbit at 200 km above the Earth surface. At this low altitude, it is relevant to use600

a SDE to represent the orbital dynamics because the object motion depends on the601

atmosphere drag which, in turn, depends on several parameters (atmosphere density,602

mass, volume, shape of the object, etc.) which are often difficult to determine in603

practice [28]. The diffusion term GpX, tqdW ptq may account for these uncertainties.604

Table 5.2 shows a comparison between the outcomes, at the final time tn, of605

Algorithm 2.1 and the baseline Monte Carlo method with 104 independent trajectories606

generated using the Euler-Maruyama scheme (2.1). The first column in the table607

displays the expected values of x, y, vx and vy computed with Algorithm 2.1, while608

the second column shows the Monte Carlo estimates for each state variable. The609

third column displays the absolute differences between the first and second columns,610

and the fourth column shows the relative difference (with the Monte Carlo estimates611

taken as reference). We can observe that both methods yield very similar outputs,612

with relative differences between 0.4% and 0.8% for all state variables.613

Table 5.3 shows a comparison between the estimates of the second order moments614

of Xptnq computed via Algorithm 2.1 and the standard Monte Carlo method that runs615

the Euler-Maruyama scheme 104 times. The first row shows the covariance matrix616

of Xptnq as output by Algorithm 2.1, while the second row shows the Monte Carlo617

estimate. The entry-wise absolute and relative differences between the two matrices618

are displayed in the third and fourth rows of the table, respectively. The differences619

are larger than for the first-order moments, yet the two methods still yield similar620

outputs (with relative differences between 10% and 20% for all entries of the covariance621
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Algorithm 2.1 Monte Carlo, Absolute Relative
104 samples difference difference

x 5.95ˆ 103 km 5.92ˆ 103 km 24.34 km 4.09ˆ 10´3

y ´ 2.67ˆ 103 km ´2.69ˆ 103 km 20.64 km 7.74ˆ 10´3

vx 3.01 km/s 2.99 km/s 2.27ˆ 10´2 km/s 7.58ˆ 10´3

vy 6.66 km/s 6.68 km/s 2.82ˆ 10´2 km/s 4.21ˆ 10´3

Table 5.2: Estimate of ErXptnqs with the moment-computation Algorithm 2.1,
compared with standard Monte Carlo estimates. The initial condition is deterministic.

Algorithm 2.1

¨

˚

˚

˝

6.08ˆ 105 1.58ˆ 106 ´1.77ˆ 103 7.01ˆ 102

1.58ˆ 106 3.46ˆ 106 ´3.87ˆ 103 1.81ˆ 103

´1.77ˆ 103 ´3.87ˆ 103 4.32 ´2.03
7.01ˆ 102 1.81ˆ 103 ´2.03 8.09ˆ 10´1

˛

‹

‹

‚

Monte Carlo

¨

˚

˚

˝

7.41ˆ 105 1.32ˆ 106 ´1.47ˆ 103 8.45ˆ 102

1.32ˆ 106 3.14ˆ 106 ´3.52ˆ 103 1.51ˆ 103

´1.47ˆ 103 ´3.52ˆ 103 3.93 ´1.69
8.45ˆ 102 1.51ˆ 103 ´1.69 9.65ˆ 10´1

˛

‹

‹

‚

Absolute
differences

¨

˚

˚

˝

1.33ˆ 105 2.61ˆ 105 2.97ˆ 102 1.44ˆ 102

2.61ˆ 105 3.18ˆ 105 3.52ˆ 102 2.98ˆ 102

2.97ˆ 102 3.52ˆ 102 3.89ˆ 10´1 3.39ˆ 10´1

1.44ˆ 102 2.98ˆ 102 3.39ˆ 10´1 1.56ˆ 10´1

˛

‹

‹

‚

Relative
differences

¨

˚

˚

˝

1.79ˆ 10´1 1.99ˆ 10´1 2.02ˆ 10´1 1.71ˆ 10´1

1.99ˆ 10´1 1.01ˆ 10´1 1.00ˆ 10´1 1.97ˆ 10´1

2.02ˆ 10´1 1.00ˆ 10´1 9.90ˆ 10´2 2.01ˆ 10´1

1.71ˆ 10´1 1.97ˆ 10´1 2.01ˆ 10´1 1.62ˆ 10´1

˛

‹

‹

‚

Table 5.3: Estimates of the covariance matrix of Xptnq computed via Algorithm 2.1
and standard Monte Carlo, with 104 independent samples, with deterministic initial
condition.

matrix).622

Since Algorithm 2.1 yields outputs which are close to the baseline Monte Carlo623

estimates, it is of interest to compare the computational cost of the two procedures.624

This is done in Table 5.5, which displays the mean run-time per discrete time step625

(first row) and the total run-time up to time tn (second row)626

‚ for Algorithm 2.1,627

‚ for the Monte Carlo method with 104 samples and628

‚ for a single run of the Euler-Maruyama scheme (2.1).629

We see that the cost of running the Algorithm 2.1 (computation of moments) is630

roughly of the same order as running the standard Euler-Maruyama scheme once, and631
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two orders of magnitude less expensive than computing the Monte Carlo estimators.632

Algorithm 2.1 Monte Carlo, Euler-Maruyama,
104 samples single run

Mean run-time
per time step

8.66ˆ 10´6 s 1.62ˆ 10´3 s 5.39ˆ 10´6 s

Total run-time 11.30 s 2.11ˆ 103 s 7.04 s

Table 5.4: Run-times in seconds (s) with deterministic initial condition. The total
number of discrete time steps is n “ 1,304,640.

x y vx vy

1.71ˆ 10´5 2.09ˆ 10´6 1.64ˆ 10´3 1.82ˆ 10´2

Table 5.5: TVD between the estimates of the marginal densities computed with
Algorithm 2.2 and the KDEs computed from 104 Monte Carlo samples.

Next, we turn attention to the performance of Algorithm 2.2, which yields633

estimates of the marginal densities of the state variables x, y, vx and vy. Figure634

5.1 shows corresponding pdf’s as generated by Algorithm 2.2 (in red colour) and635

the kernel density estimators3 (KDEs) computed from the independent samples636

generated by running the Euler-Maruyama scheme (2.1) 104 times. We see that637

the KDEs are clearly non-Gaussian for x and vy and there is a clear mismatch with638

the approximations computed using Algorithm 2.2. The reason for this discrepancy639

is that Algorithm 2.2 uses only the moments up to second order (in this example) to640

construct the Gram-Charlier approximations. This means that, effectively, we obtain641

a Gaussian-like estimate of the density. Performance can be improved by increasing642

the order of the polynomial approximation, at the expense of a higher computational643

cost.644

Despite the visual discrepancy in Figure 5.1, Table 5.5 shows that the total645

variation distance (TVD) between the marginal densities estimated using Algorithm646

2.2 and Monte Carlo (KDEs with 104 samples generated via Euler-Maruyama) is647

small. Let us recall that the TVD between two probability distributions with pdf’s648

f and g can be computed as }f ´ g}TV “
1
2

ş

R
|fpxq ´ gpxq|dx ď 1. We can see that649

the TVD is particularly small for the estimators of the pdf’s of the position variables650

x and y –of order 10´5 and 10´6, respectively. This can be expected from Figure651

5.1 because both densities (of x and y) are very spread, with maximum values of652

order 10´3 (for x) and 10´4 (for y). Hence the tails accumulate a large fraction of653

the probability mass and this is well approximated by Algorithm 2.2, despite the654

discrepancy around the mode for the pdf of x. A similar argument can be made for655

the densities of vx and vy. While there is more probability mass around the modes656

(the maximum values of the pdfs are « 0.2 and « 0.8 for vx and vy, respectively),657

which leads to higher discrepancies in TVD (« 10´3 and « 10´2, respectively), the658

3We use the ksdensity function available in Matlab, which determines the kernel bandwidth for
the estimator automatically from the samples.
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24 A. LÓPEZ YELA AND J. MÍGUEZ

Fig. 5.1: Marginal pdf’s at the final time tn when the initial condition is fixed. The
red curves are the estimates obtained with Algorithm 2.2 and the blue curves are
KDEs computed from 104 independent samples.

tails still accumulate a large fraction of the probability mass and this is captured by659

Algorithm 2.2.660

5.2. Random initial condition. We illustrate the performance of the proposed661

approximation methods for the same dynamical model in Section 5.1, except that we662

now assume a random initial condition X0. This is modelled as a Gaussian random663

vector with mean x0, the same as in Eq. (5.2), and covariance matrix664

(5.3) Σ0 “

¨

˚

˚

˝

10´1 0 0 0
0 10´1 0 0
0 0 10´4 0
0 0 0 10´4

˛

‹

‹

‚

.665

The computation of moments is carried out using Algorithm 2.1, with a PCE of order666

NPCE “ 4 and Ns “ 140 samples. We emphasise that the PCE is not needed when667

the initial condition is deterministic.668

The computer experiments are similar to Section 5.1. In particular:669

‚ Table 5.6 shows a comparison of the expected values of the state variables670

(x, y, vx and vy) as obtained though Algorithm 2.1 and the baseline Monte671

Carlo method with 104 independent trajectories. Both the (approximate)672
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expectations, computed by the two methods, and the absolute and relative673

differences are displayed. We observe small relative differences, the largest674

ones « 1% for variables y and vx, while for x and vy they are less than 0.02%.675

‚ Table 5.7 shows a comparison of the second-order moment estimates, also at676

time tn, using Algorithm 2.1 and standard Monte Carlo with 104 independent677

runs. The entry-wise relative differences between the two matrices, displayed678

in the fourth row of the table, shows similar discrepancies for all entries of679

the covariance matrix, ranging between 1% and 8%.680

‚ Table 5.8 displays a comparison of the computational cost of Algorithm 2.1681

(with NPCE “ 4 and Ns “ 140) and the baseline Monte Carlo procedure682

(with 104 independent runs). We see that the overall run-time of Algorithm683

2.1 for this example is one order of magnitude smaller than the Monte Carlo684

scheme, while both methods yield very similar approximations of the first and685

second order moments.686

‚ Table 5.9 shows the TVD between the marginal densities estimated using687

Algorithm 2.2 and KDEs computed from the independent samples generated688

by running the Euler-Maruyama scheme (2.1) 104 times with random and689

independent initialisations. The results are similar to those obtained in690

Section 5.1. The discrepancies are very small for the position variables and691

larger, yet very moderate (ă 3ˆ 10´2), for the velocity variables.692

‚ Figure 5.2 displays a graphical comparison of the marginal densities693

approximated via Algorithm 2.2 and Monte Carlo KDEs. We observe that all694

densities are clearly non-Gaussian. Since the initial condition X0 is random,695

the density approximations of Algorithm 2.2 are computed using Eq. (2.28),696

which enables the approximation of non-Gaussian pdf’s by averaging many697

Gram–Charlier estimates.698

However, we observe that the resulting estimates are not necessarily proper699

densities, as they can take negative values. This is a drawback of the Gram–700

Charlier expansion compared, e.g., to KDEs. We have chosen the final701

time, tn, of the simulation to make sure that the marginal densities depart702

significantly from the initial Gaussian distribution at time t0 and show the703

artefacts in the tails of the densities of x and vy. The accuracy of the704

approximation can be improved by increasing the order of the polynomial705

expansion in Algorithm 2.1 (N “ 2 for this example) and the order of the PCE706

(NPCE “ 4 here) at the expense of an increased computational complexity.707

Algorithm 2.1 Monte Carlo, Absolute Relative error
104 samples difference difference

x 5.09ˆ 103 km 5.09ˆ 103 km 6.47ˆ 10´1 km 1.27ˆ 10´4

y ´ 2.32ˆ 103 km ´2.34ˆ 103 km 2.42ˆ 101 km 1.03ˆ 10´2

vx 2.59 km/s 2.62 km/s 2.75ˆ 10´2 km/s 1.05ˆ 10´2

vy 5.72 km/s 5.72 km/s 2.22ˆ 10´4 km/s 3.89ˆ 10´5

Table 5.6: Estimate of ErXptnqs with the moment-computation Algorithm 2.1,
compared with standard Monte Carlo estimates. The initial condition X0 is a
Gaussian random vector.
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Algorithm 2.1

¨

˚

˚

˝

4.46ˆ 106 4.17ˆ 106 ´4.65ˆ 103 4.99ˆ 103

4.17ˆ 106 1.07ˆ 107 ´1.20ˆ 104 4.67ˆ 103

´4.65ˆ 103 ´1.20ˆ 104 1.35ˆ 101 ´5.20
4.99ˆ 103 4.67ˆ 103 ´5.20 5.59

˛

‹

‹

‚

Monte Carlo

¨

˚

˚

˝

4.24ˆ 106 3.89ˆ 106 ´4.32ˆ 103 4.74ˆ 103

3.89ˆ 106 1.09ˆ 107 ´1.22ˆ 104 4.35ˆ 103

´4.32ˆ 103 ´1.22ˆ 104 1.36ˆ 101 ´4.84
4.74ˆ 103 4.35ˆ 103 ´4.84 5.29

˛

‹

‹

‚

Absolute
differences

¨

˚

˚

˝

2.26ˆ 105 2.89ˆ 105 3.23ˆ 102 2.59ˆ 102

2.89ˆ 105 1.14ˆ 105 1.30ˆ 102 3.27ˆ 102

3.23ˆ 102 1.30ˆ 102 1.48ˆ 10´1 3.65ˆ 10´1

2.59ˆ 102 3.27ˆ 102 3.65ˆ 10´1 2.96ˆ 10´1

˛

‹

‹

‚

Relative
differences

¨

˚

˚

˝

5.34ˆ 10´2 7.44ˆ 10´2 7.48ˆ 10´2 5.47ˆ 10´2

7.44ˆ 10´2 1.05ˆ 10´2 1.07ˆ 10´2 7.51ˆ 10´2

7.48ˆ 10´2 1.07ˆ 10´2 1.08ˆ 10´2 7.55ˆ 10´2

5.47ˆ 10´2 7.51ˆ 10´2 7.55ˆ 10´2 5.60ˆ 10´2

˛

‹

‹

‚

Table 5.7: Estimates of the covariance matrix of Xptnq computed via Algorithm 2.1
and standard Monte Carlo, with 104 independent samples. The initial condition X0

is random.

Algorithm 2.1 Monte Carlo, Euler-Maruyama,
104 samples single run

Mean run-time
per step

2.12ˆ 10´4 s 1.75ˆ 10´3 s 4.16ˆ 10´6 s

Total run-time 2.76ˆ 102 s 2.29ˆ 103 s 5.43 s

Table 5.8: Run-times in seconds (s) with random initial condition (NPCE “ 4,
Ns “ 140). The total number of discrete time steps is n “ 1,304,640.

x y vx vy

1.97ˆ 10´5 2.75ˆ 10´6 1.23ˆ 10´3 2.62ˆ 10´2

Table 5.9: Total variation distance when initial condition is a Gaussian random vector.
Algorithm 2.2 has truncation order NPCE “ 4 for the PCE and Ns “ 140 samples
for the approximation. The Monte Carlo baseline KDEs are constructed from 104

independent samples.
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Fig. 5.2: Marginal pdf’s at the final time tn when the initial condition is Gaussian.
The red curves are the estimates obtained with Algorithm 2.2 (NPCE “ 4, Ns “ 140)
and the blue curves are KDEs computed from 104 independent samples.

6. Conclusions. We have introduced a methodology for the computation of708

the moments of the numerical solution of a multidimensional SDE, denoted X̂n,709

using truncated Taylor polynomial approximations. The core of the method is710

the decomposition of the solution X̂n into a central part that can be computed711

deterministically from an ODE using an explicit numerical scheme and an effective712

noise process, whose moments determine the characterisation of X̂n.713

While we have derived the algorithm based on an Euler-Maruyama numerical714

scheme, the same ideas can be extended in a rather straightforward way to other715

explicit schemes, such as stochastic Runge-Kutta methods. When the initial condition716

is deterministic, the proposed algorithm involves a single run of the Euler-Maruyama717

numerical scheme (plus minor additional computations for the moments) and attains718

approximately the same performance as a Monte Carlo scheme with 104 independent719

runs of the Euler-Maruyama scheme. When the initial condition is random, we resort720

to a PCE scheme and still attain the same performance as the standard Monte Carlo721

estimators of the mean and second order moments with just a fraction (approximately722

10%) of the run-time for a problem involving the propagation of uncertainty in a 2-723

dimensional Keplerian orbit.724

We have also shown how to use the approximate moments of the numerical725

solution to compute type A Gram–Charlier estimates of the 1-dimensional marginal726

This manuscript is for review purposes only.
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pdf’s of the dynamical variables. When the initial condition is random, a PCE727

scheme combined with a simple averaging enables the approximation of non-Gaussian728

densities. The Gram–Charlier expansions, however, are not guaranteed to yield proper729

probability densities and we have shown, numerically, that they can take negative730

values on the tails of the estimated function. This can be an important drawback.731

Improving the accuracy of the density estimators is conceptually straightforward (by732

computing higher order moments of the distribution) but implies an increase in the733

computational complexity of the numerical procedure.734

The implementation of the algorithms as they have been presented demands the735

a priori calculation of the partial derivatives of the drift and diffusion coefficients736

of the SDE. Although it has not been explored in this paper, such calculations737

can be implemented automatically in the numerical scheme resorting to the tools738

of Taylor differential algebra [29]. As future work, we intend to explore the numerical739

performance of the method for a more realistic model of the orbital dynamics in 3-740

dimensional space and including the effect of the atmospheric drag in the drift. A741

realistic representation of this drag can be obtained from the NRLMSISE-00 model742

of the atmospheric density [19]. Such model brings in two relevant features that743

are not present in the simpler example of Section 5: first, the atmospheric density744

output by the NRLMSISE-00 model is time-inhomogeneous (while the drift in the745

current example is time-homogeneous) and, second, the partial derivatives of the746

atmospheric density have to be computed numerically (NRLMSISE-00 is a computer,747

non-algebraic, model). The latter approximation is not accounted for by our analysis,748

hence a numerical study is of interest.749
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