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ABSTRACT. A general framework for the tomographical description of states,
that includes, among other tomographical schemes, the classical Radon trans-
form, quantum state tomography and group quantum tomography, in the set-
ting of C'*-algebras is presented. Given a C*-algebra, the main ingredients for
a tomographical description of its states are identified: A generalized sampling
theory and a positive transform. A generalization of the notion of dual to-
mographic pair provides the background for a sampling theory on C*-algebras
and, an extension of Bochner’s theorem for functions of positive type, the pos-
itive transform.

The abstract theory is realized by using dynamical systems, that is, groups
represented on C*-algebra. Using a fiducial state and the corresponding GNS
construction, explicit expressions for tomograms associated with states defined
by density operators on the corresponding Hilbert spade are obtained. In
particular a general quantum version of the classical definition of the Radon
transform is presented. The theory is completed by proving that if the rep-
resentation of the group is square integrable, the representation itself defines
a dual tomographic map and explicit reconstruction formulas are obtained by
making a judiciously use of the theory of frames. A few significant examples
are discussed that illustrates the use and scope of the theory.
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1. Introduction. In 1917 Johann Karl August Radon [51] introduced the transfor-
mation that carries his name and that allows to recover a function (regular enough)
from its averages over a family of lines. The Radon transform provides the math-
ematical backbone of modern Computerized Axial Tomography (CAT for short,
see Fig. 1, left) [47]. A similar idea was proposed [56], [7], and implemented ex-
perimentally [54], to reconstruct the Wigner function associated with the state of
a quantum system. The proposed method shares the essence of the tomographic
method: performing many measurements through slices of the given function (the
Wigner quasidistribution associated with the quantum state in this case) to obtain
a marginal probability distribution (the tomogram), from which the original object
can be reconstructed by means of an generalized inverse Radon transform, hence
the given name of quantum state tomography to these techniques.

More formally, let f(g,p) be a Schwartz function on R2. The Radon Transform
of f is defined as:

W W= [ Haep6)ds = [ e vy,

where (X, i, v) denotes the line X — pg — vp = 0, in the (g, p) plane we integrate
over, and §(X —ug—vp) the delta distribution along I(X, i, v). The original function
f can be recovered by means of the following expression [45]:

2 .p) = Wi (X, p,v) e "X —Ha=vp) X dpdy .
(2) f(g;p) (X, 1) I
R3

1
(2m)?

The state of a classical system (where, for simplicity, we will just consider a
2-dimensional phase space with coordinates (¢, p)) can be described by a classical
probability distribution w(q, p). The expected value of an observable A, a bounded
function of position and momentum A = A(g, p), is given by:

g () = | | Alapyula.p)dadp.

We can use the Radon Transform to describe the state w = w(g, p) (and to recon-
struct it) from its associated tomograms:

W (X, p,v) =/ w(q,p)d(X — pg — vp)dgdp.
]RZ

If we consider a quantum system instead of a classical one, its states are described
by density operators p, that is, by positive normalized trace class operators on a
certain Hilbert space H. Observables are self-adjoint operators A on such Hilbert
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FIGURE 1. Left: Section of a body irradiated with gamma radia-
tion and the measure of the tomogram W(X,6). Right: Scheme
of quantum state tomography. The quantum tomogram W, (X, )
obtained by homodyne measuring the quadrature operator Xy =
X — Qcosf — Psinf.

space and the expected value of the observable A in a state p is given by the trace
of its projection onto the state:

(4) (A), =Tr(pA).

One way to draw a relation between the classical average formula (3) and the
quantum one (4) will consist of associating a numerical function A(q,p) to the
quantum observable A, and a suitable ‘distribution’ function w, (g, p) to the density
operator p such that the expectation value of the quantum observable would be
obtained as:

(A)p = /Rz A(g,p)wp(q,p)dgdp.

Surprisingly perhaps, this problem has a solution. It is given by the quasi-
distribution w, introduced by E. Wigner [57], universally known as the Wigner
distribution, with the aim of studying the quantum corrections to classical statistical
mechanics [20] and given by:

(5) wp(q,p) = (271771)/R<q_ %‘p‘q+%>ei’7y/hdy,

The Radon Transform of the Wigner distribution w,, is the tomogram W,, mentioned
above used in quantum state tomography:

(6) Wy(X,0) = / wp(gq,p)d(X — gcos — psinb)dgdp,
]RZ

Remarkably enough (see Sect. 4.3, Thm. 4.2 below, for the explanation of this gen-
eral fact), the quantum tomogram W,, associated with the state p can be expressed
as:

(7) Wo(X,p,v) =Tr(pd(X1—Qcosf—Psinb)) = (§(X1—Qcos —Psinb)),,

where Q and P are the quantum position and momentum operators respectively
(see Fig. 1, right, for a schematic description of the experimental setting used to
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measure W,), and tan = p/v, making it more apparent the parallelism with the
tomogram of a classical state introduced before:

8) Wylu,v) = /11&2 w(q,p)d(X — pg — vp)dgdp = (§(X — qcosd — psinb)),, .

The Wigner function wy (g, p) can also be easily recovered from the tomogram (6):

1 00 oo p2m ) ‘ .
(9) wp(qvp) = W / / / W,,(X, 9) e*lk(qucos 0—psin6) kdodkdX 7
)" J—cJo Jo

and the matrix elements in coordinate representation of the density operator p are
given by the Fourier Transform of the Wigner function:

il — q +q
(10) p(q7Q’)=/e a0y, (2 ,p> dp.
R

A number of other different quantum tomographic techniques adapted to dif-
ferent systems, such as spin systems [43], molecular vibrational states [49], modes
of radiation fields [11], ultracold gases [8], etc., have been proposed. For systems
exhibiting a group symmetry a unified theory based on the theory of group repre-
sentations, and consequently called group quantum tomography, has been developed
by D’Ariano et al (see for instance [12], [9] and references therein). More general
situations where, for instance, no group theoretical background was available, have
also been discussed and a mature mathematical and physical theoretical background
has been laid (see for instance the monograph [13], the review [33], and references
therein).

A systematic exploration of the mathematical background for the various quan-
tum tomographic frameworks based on the so called quantizer-dequantizer formal-
ism, has been conducted and the underlying mathematical and physical problems
have been described [45], [35], [22], [5], [6]. From these efforts it emerges that an
analysis based on the algebraic description of quantum systems, i.e., using the C*-
algebraic picture of quantum mechanics, would be relevant (see for instance, [36]
and [42, Chap. 2]) being this the main objective of this paper.

More precisely, the description of a physical system always involves the selection
of its algebra of observables O and a family of states S. The outputs of measuring
a given observable A € O, when the system is in the state p € S, are described by a
probability measure p4 , on the real line, such that p14,,(A) is the probability that
the output of A belongs to the subset A C R. Thus, a measure theory (or better
a theory of measurement) for the physical system under consideration, is a pairing
between states p and observables A that assigns Borel probability measures 4, to
them. Then, the expected value of the observable A in the state p is given by:

(11) )= [ A,

The C*-algebraic description of quantum systems assumes that the algebra of ob-
servables of a given quantum system is a C*-algebra A (observables are its self-
adjoint elements) and the states of the system are the mathematical states (i.e.,
positive, normalized linear forms) of the C*-algebra. The main contribution of
this work will be to develop a C*-algebra based Quantum Tomography, aiming to
provide, not only a unified picture of all previous tomographic analysis of quan-
tum systems, but a natural extension of the Radon transform that could be used
effectively in other areas of application.
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Thus, the main ingredients needed to construct a tomographic picture of a sys-
tem in a C*-algebraic framework, will be thoroughly developed: A sampling theory
on C*-algebras and, a positive, Bochner-like, transform including a general recon-
struction theorem. The objective of the first will be to provide a sufficient number
of samples of the state, and the second will transform them into a probability dis-
tribution, the seeked tomograms, on a given auxiliary space.

The notion of a C*-dual tomographic pair will be introduced that will abstract
both, the Marmo-Manko quantizer-dequantizer formalism and D’Ariano’s quorum-
quantum estimator settings for quantum tomography. At the same time necessary
and sufficient conditions for the reconstruction of the original state will be provided.

A particularly interesting framework for the application of the theory is provided
by dynamical systems, that is, representations of groups in C*-algebras. This setting
extends in a natural way the group quantum tomography developed by D’Ariano et
al and, consequently, will be analyzed in depth showing the existence of a natural
Radon transform associated with a reference or fiducial state. This extension of the
Radon transform unifies both, the sampling and the positive transformation needed
to develop a tomographic picture of the theory, it will provide a natural extension
to Eq. (7), and could, consequently, be called a quantum Radon transform.

Moreover, a reconstruction theorem, relying on the theory of frames applied to
square integrable representations of groups, will be proved. The particular instance
of finite and compact groups will be used to illustrate the theory, as well as the
Weyl-Heisenberg group and its associated Wigner-Weyl tomographic picture.

The rest of the paper will be organized as follows. Section 2 will be devoted to
summarize basic notations and constructions of the theory of C*-algebras. In Sec-
tion 3, the main notions of a tomographic theory in C*-algebras will be introduced.
Section 4 will be devoted to develop the theory of quantum tomography on C*-
algebras based on dynamical systems; there both the natural C*-extension of the
Radon transform will be introduced and a reconstruction theorem will be proved.
Finally, in Section 5, some particular situations and applications illustrating the
theory will be exhibited.

2. C*—algebras and quantum tomography. Given a quantum mechanical sys-
tems with associated Hilbert space H, the self-adjoint part of the algebra of bounded
operators B(#) is usually considered as the algebra of (bounded) observables of the
system, however, as von Neumann [48] pointedly realized, it is often necessary to
consider more general algebras of observables. In what follows we will assume that
observables are elements of a C*—algebra A or, more especifically, of a von Neumann
algebra, that is, a concrete realization of a C*-algebra as a closed subalgebra of the
C*-algebra of bounded operators of a complex separable Hilbert space.

2.1. States, observables and C*-algebras. A x—algebra A is a complex Banach
algebra with a norm | - || and an involution operation * satisfying:,

1. (a*)* = aq,

2. (ab)* =b*a*,

3. (a+ Ab)* = a* + \b*,
for all a,b € A and X\ € C. A C*—algebra (there is a huge literature on the subejct,
we may cite for instance [50] and references therein) is a *—algebra A such that

la*all = Ha||27 Va € A.
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We will assume that the algebras considered here are unital in the sense that there
exists an element 1 such that 1a = al for all a € A.

Oservables of the system will correspond to self-adjoint elements, that is elements
such that a* = a. The subspace of all self-adjoint elements is denoted by A,
and constitutes the Lie-Jordan Banach algebra of observables of the corresponding
quantum system (see [23] for more details).

In particular, as indicated above, we can consider the C*—algebra B(H) of all
bounded operators on the Hilbert space H equipped with the operator norm and
the involution defined by the adjoint operation, that is, A* = AT where AT denotes
the adjoint operator of A € B(H). Observables in such case correspond to self-
adjoint operators on H.

The states of the system are normalized positive functionals on A, that is, linear
maps p : A — C such that

(12) p(l)=1, pla*a) >0, Va e A.

In the case in which A = B(H), because of Gleason theorem [31], states are
in one-to-one correspondence with normalized non-negative Hermitean operators p
acting on the Hilbert space H, often called, as in Sect. 1, density operators. The
relation between states p of the C*—algebra B(H) and density operators p on the
Hilbert space H is given by the formula:

(13) p(A) = Tr(pA), VA € B(H).

The space of states of a given C*—algebra A will be denoted by S(A) and it is a
convex weak*-compact subset of the topological dual A’ of A [2].

Notice that according to the physical interpretation of the C*—algebra A as the
the C*-algebra of the Lie-Jordan algebra of observables of a given physical system,
when the algebra is commutative, it will be describing a classical system whereas
non-commutativity will correspond to “genuine” quantum systems. A unital com-
mutative C*-algebra is the C*-algebra of continuous functions C(£2) on a compact
space §), its observables are continuous real functions and states are defined by
probability Radon measures on 2. Another instance of classical systems is found
when () is a measure space, u a probability measure and the von Neumann algebra
associate to it is given by the space L (€, u) of essentially bounded functions on
Q. In this sense the discussion to follow will comprehend classical tomography and
the classical Radon transform as well.

A state p of the C*—algebra A represents the state of the physical system under
consideration and the number p(a), for any given observable a € A, is interpreted
as the expected value of the observable a measured in the state p, consequently, it
is also denoted by:

(14) (a)p = pla).

In this sense, Eq. (13) represents the expected value of the observable described by

the operator A when the system is in the state given by the density operator p.
Each self-adjoint element a € Ay, defines a continuous affine function @ on the

space of states S(A),

(15) a(p) = pla).
A theorem by Kadison [40] states that the correspondence a — @ is an isometric

isomorphism from the self-adjoint part of A onto the space of all continuous affine
functions from S(A) into R. Thus, the self-adjoint part of the algebra of observables
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Asq can be recovered directly from the space of states and its complexification
provides the whole algebra [23].

2.2. The GNS construction. The picture of quantum mechanical systems pro-
posed by P.A.M. Dirac [17] favours the assignment of a Hilbert space to a given
quantum mechanical system. Moreover starting with the algebraic picture provided
by a C*-algebra A, Dirac’s Hilbert space is recovered by means of the GNS con-
struction [30, 53] named after Israil M. Gel’fand, Mark A. Naimark and Irving E.
Segal, provided that a state p is given.

The Hilbert space H, is constructed as the completion of the quotient inner
product space A/J,, where J, = {a € A|p(a*a) = 0}, is the Gel’fand ideal of null
elements for p, and the inner product (-,-) is defined as:

(16) (la], [b])p = p(a®d),  a,b€ A,

where [a] denotes the class a + 7, in the quotient space A/J,.
Thus, given a state p on a C*-algebra A, there is canonical representation m, of
A in the C*-algebra on bounded operators of a Hilbert space #H, defined as:

(17) mp(a)[b] = [abl, Ya,b € A.

The GNS construction provides a cyclic representation 7, of 4 with the cyclic
vector corresponding to the unit element 1. Such vector 7,(1) will be called the
vacuum vector of H, and denoted by |0). Moreover, we get that the state p is also
described by

(18) pla) = Olm,(@0),  acA.

In addition, given any element a € A, we have the associated vector 7,(a)|0) =
[al] = [a] that, in what follows, will be denoted by |a) € H,, thus

(19) mp(a)[0) = |a).
Conversely, each unitary vector |a) € H, defines a state on A by means of
(20) pa(b) = (alm,(b)[a) = p(a*ba).

Such states will be called vector states of the representation 7,. More general states,
called normal states, can be defined by means of density operators o in B(#,) by
the formula:

(21) o(a) =Tr(om,(a)), Va e A.
Notice that, in such case,
(22) o(l) =1, o(a*a) = (alo|a) >0, Vae A.

The family of states given by (21) is called the folium of the representation 7, (see
[32], page 124).

The tomographic description of the state p of a quantum system described by the
C*-algebra A will consist of assigning to this state a probability density W, in some
auxiliary space N, in such a way that given W, the state p can be reconstructed
unambiguously [33], such reconstruction will be called the tomographic problem
(see Fig. 2).

There is, however, not a single “tomographic theory”, nor a canonical way to
construct a tomogram W, out of p. In what follows, we will individuate the main
ingredients that a tomographic description must contain: a Sampling Theory and a
Positive Transform. We will discuss these two basic ingredients that together will
constitute what we will call a Quantum Radon Transform.
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Space of probability

_ measures on N
Tomographic problem

FiGURE 2. Tomographic problem.

3. Tomographic description on C*-algebras.

3.1. Sampling on C*—algebras. Let A be a C*-algebra with unit 1. A tomo-
graphic theory begins by extracting information from the system, that is, by ‘sam-
pling it’. This will be achieved by introducing the notion of a tomographic set.

3.1.1. Tomographic sets: the sampling map. Consider a family of elements {U(z) |
x € M} in A parametrized by an index & € M which can be discrete or continuous.
This family can be described by a map U: M — A where M is a measurable space
labelling the elements U(x).

p€S(A)

FicUurE 3. Tomographic map U.

Given a state p and a set {U(z) | z € M}, we will call the function F, : M — C
defined as:

(23) Fp(z) = (p,U(2)) = p(U(x)), z€M,

the sampling function of p with respect to U, Fig. 3. In what follows, we will use
indistinctly the notation p(a) or (p,a) to denote the evaluation of the state p on
the element a € A.

We will say that the map U separates states if given two states p and p there
exist * € M such that F,(z) # Fj(x).

Definition 3.1. Let A be a C*-algebra and M a measurable space with measure
p. A family of elements U = {U(z)|z € M} will be called a tomographic set and
the map U: M — A, z — U(x), a tomographic map, if it satisfies:
1. For every state p € S(A), the sampling function F,(z) = (p,U(x)) is p-
measurable and belongs to L?(M, ).
2. The map U separates states.
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Given a tomographic set U, the map:
Fu:S(A) = LA (M, ),

defined as Fyy(p) = F, = (p,U(-)), will be called the sampling map associated to U.

A number of comments are in order here. In the definition of a tomographic
set a different integrability condition could have been chosen, for instance, we could
have asked F}, to be integrable instead of square integrable. The square integrability
condition for the sampling functions will allow us to use Hilbert space techniques and
they will prove to be critical when discussing one of the main families of examples,
the so called group quantum tomography (see Sect. 4.5).

The notion of tomographic set introduced here is closer in spirit to the notion
of frames used in the classical theory of sampling [15], [41]. There are various
extensions of the classical theory of sampling to quantum systems (see for instance
[24], [29] and references therein). In this sense, notice that the tomographic map U
(and a dual tomographic map D discussed later on) is a far reaching generalization
of the notion of frame (and its dual frame). We will analyse this situation in detail
in the case of group quantum tomography in Sect. 4.5. We will just point out here
that there is a mature theory of sampling on C*-algebras that extends the well-
known results of standard sampling theory (see [25] and references therein) but we
will not make use of them beyond the notions discussed in this section.

The notion of tomographic map U has appeared in the literature under different
names, for instance in the work by D’Ariano et al is called a quorum [13].

3.1.2. Tomographic pairs: the reconstruction map. A tomographic theory should
allow for the reconstruction of the state of the system from its samples. This will
be achieved by introducing a map D that is ‘dual’ to the tomographic map U.
Thus, given a tomographic map U we would require the existence of another map
D: M — A’ which reconstructs the state p from the sampling functions F), i.e.,
such that it will satisfy the reconstruction property:

(21) p= [ Foe)D@ant),

for any state p. The family D = {D(z) | € M} will be called a dual tomographic
set.
These considerations will lead us to the following definition:

Definition 3.2. Let A be a C*-algebra. A map D: M — A’ will be called a dual
tomographic map of the tomographic map U: M — A if it satisfies:
1. The function ||D(z)|| = sup) 4 =1 [(D(x), )|, belongs to L*(M, p).
2. The function k(y,z) = (D(x),U(y)), =,y € M, satisfies the reproducing
condition:

(25) wwzﬁﬁmmw@wm,

for any @ in the range of the sampling map Fy .
Under these conditions we will call the pair of maps U, D a tomographic pair, the
set D(x) a dual tomographic set to U(x) and x will be called the kernel of the
tomographic pair.

The reproducing equation (25) can be understood in the sense of distributions
and the function k can be thought, for instance, to be the Dirac’s delta distribution.
In this situation the maps U, D are also said to be biorthogonal. It is also common
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to call the functions F,(x) the “tomographic symbols” of the state p, see for instance

Note that in parallel with the definition of a tomographic set, the first condition in
the definition of a dual tomographic set implies that the function F,(z) = (D(z), a)
is square integrable. In fact:

[ @R ) < | ID@)elRaua) = 1] llol

As in the case of the tomographic map U, there is a natural map Fp: L*(M, u) —
A’, defined as:

(26) Fo@)= [ e@D@du).  ®e (M),

M
Note that the element Fp(®) is a continuous linear map on A because:
2D|[(Fp(®),a0)] < /M@(x)IIFa(x)Idu(x)

< /M @) [|D (@) [lalldp(z) < [[®]|L2an [Pz llall

where the Cauchy-Schwarz inequality has been used in the r.h.s. of the previous
equation.

We would like Fp to be a left inverse of Fy7, in which case we will properly
call Fp a reconstruction map as it would allow to reconstruct the state p from its
sampling function F, by using Eq. (24).

3.1.3. Normalization. It is noticeable that the function F,(z)({D(z), a) is integrable
for all a € A, in fact:

/ |Fp(2)(D(2), a)ldp(z) < |[Fpl[L2[[DC)I| 2 lall,
M

hence we may assume the convenient normalization condition:
(28) [ Fo@) (D). 1) due) = 1.
M

If condition (28) is satisfied we will say that U , D is a normalized tomographic
pair. In what follows we will always assume this to be the case.

3.1.4. The reconstruction theorem. With the notations and assumptions introduced
in the previous sections, we obtain the following general reconstructioin theorem:

Theorem 3.1. Let U, D be a normalized tomographic pair on the C*—algebra A.
Then the reconstruction map Fp: L?>(M,u) — A’ is a left-inverse of the sampling
map Fy: S(A) — L2(M, p). In particular the reconstruction equation (24) holds.

Proof. Let F), be the sampling function associated with the state p by the sampling
map Fy, i.e., Fy(p) = F,, then, we will show that Fp(F),) is equal to p. First, we
observe that the functional p = Fp(F},) defined by:

i) = [ F@(D@).a)du).  aea.

is continuous because of Eq. (27).
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Moreover, because the tomographic pair is normalized we have:

i) = | F@)(De). Dinte) = 1.

To show that p = p, we observe that:
GUW) = [ F@)D@).U)due
M
— [ Bt o)) = E) = (p.U ).

but as U separates states, then p = p. O

The formalism involving a tomographic map U and a tomographic dual map D
has been widely used for applications in different settings and it was introduced by
G. Marmo and V. Man’ko under the name of the “quantizer-dequantizer” formalism
(see for instance [44], [10]).

3.1.5. Positivity: a simple instance of tomographic pairs. Given a tomographic set
U it is not obvious how to construct a dual tomographic set D for it. The use of
an auxilary state will help to do it. Let pg a fixed fiducial state on A. Consider a
map U': M — A, then the map D: M — A’ defined by:

(D(x),a) = (po,U'(x)a),  a€A,

could be used to try to construct dual tomographic sets. In particular if the map
U'(z) = U(x)* were used, then the kernel of the tomographic pair would be given
as:

(y,z) = (D(x),U(y)) = (po, U(x)"Uly)), x,yeM.

In Sect. 4.2 it will be shown that when the auxiliary space is a group G and the
tomographic map U is a square integrable representation this construction actually
provides a tomographic pair (with the appropriate normalization).

There is a natural notion of positivity associated with the construction of the
sampling function and the kernel in this instance and that will be exploited later
on. We will say that a function F': M x M — C is of positive type, or positive
semidefinite, if for all N € N, & € C and any x; € M, i=1,..., N, it satisfies that

N
ij=1
Then we have the following lemma:

Lemma 3.1. Given a state p and a tomographic set U: M — A on a C*—algebra
A, the two-points sampling function F,(z,y) = (p,U(x)*U(y)), z,y € M, is of
positive type.

Proof. Tt follows after a straightforward computation:

N N
DG Fp(way) = Y &&(p, Ulwi) Ulay))

i,j=1 N i,j=1 N o
= (X &&UG V@) = (o (Z@Um)) (Z@U<xj>>> >0,
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We will use this notion in establishing the properties of the second ingredient of
a tomographic picture of states on a C*-algebra. Moreover, later on, we will take
advantage of this property when dealing with group quantum tomography.

Summarizing, we may say that the theory sketched in this section consists basi-
cally on reconstructing the positive form p from a set of samples F,(z) by means of
the generalized Fourier transform provided by a tomographic pair, Eq. (24), Fig. 4.

As it was previously indicated there is a mature theory of frames on Hilbert C*-
modules and C*-algebras [25] that could be used for such purpose, however, we will
restrict ourselves to the simpler picture described in this section as it fits naturally
into the many applications of quantum tomography commented in the introduction.

Sampling p
A>3 U(x)

Tomographic
set
tomographic set

FIGURE 4. Sampling diagram.

3.2. A Positive transform. The problem we are facing now is how to actually
‘measure’ the samples F),(x). Notice that in general it is not possible to determine
the sampling function F), by direct measurements because it is a complex function
and the quantities that can be measured are real probability distributions. For
that reason, we need a transformation that will allow us to obtain the sampling
function F), from a marginal probability distribution WW,. Thus, the second tool in
our tomographic programme for states on C*-algebras is the choice of a Positive
Transform R that relates the sampling function F), to probability distributions.

One way to do that is by considering a second auxiliary space A that parametrizes
a family of distributions R(y) on M, y € N, and define the transform of a function
F on M as the function R(F): N — C given by:

(30) R(F)(y) = (R(y), F),

where (-,-) denotes the natural pairing between of the distribution R(y) and the
function F. Again, if NV is a measure space with measure o, we will assume that R is
integrable in the weak sense, that is, the function R(F') = (R(-), F) is oc—integrable
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for any F' integrable. If we assume in addition that the function (R(y), F) is in
L>*(N, o), then we get:

[IR(E)Lr vy S/j\[\<R(y)7F>IdU(y)SKIIFHOO,

and R: Cp(M) — L*(N, o) is continuous.

This is what is done for the Classical Radon Transform. The C*-algebra would
be, for instance, the space of continuous functions on a compact subset Q € R2.
Then N will be the set of lines [ on R? and R will be the map R: N' — C(Q2),
R: 1 ~ §;, where ¢; is the delta distribution along [, and the tomogram will be
(recall Eq. (1)):

(31) Wy(l) = (R(1), F,) = /l F, (q(s). p(s))ds,

with F,(q,p) a function describing a state p on C(2), i.e., a Radon measure.

Thus, in general, we would like to identify the image R(F) of the function F as a
density probability or, as the Radon-Nikodym derivative of an absolutely continuous
measure o, with respect to the measure o, that is, we would like to determine the
class of functions F' whose transform will be positive. For instance, if ' = M = R,
because of Bochner’s theorem, the inverse Fourier transform of a Borel probability
measure o is a positive definite function F(z) = 3= [€™¥do(y) on R = M. We
have already realized that the function F,(z,y) = (p,U(z)*U(y)) associated to a
tomographic set U(x) is positive definite (Lemma3.1) and we will use in in the
coming section to construct a positive transform.

Then we will say that the map R: F ~» R(F) is a Positive Transform if it maps
functions of the form F, on M into non-negative functions on NV, i.e., if F: M — C

is in the range of Fy, then:
(32) R(F)(y) = (R(y),F) 20,  VyeN.

We will say that R is non-degenerate if it has a left inverse. Under this rather
long list of conditions, we conclude by noticing that if p is a state, chosings the
appropriate normalizations, R(F),) will be a normalized non-negative function on

N, that is:

(33) /N R(F,)(w)do(y) = 1.

Moreover, if we know R(F},), we could obtain F, by applying a left-inverse map
R~ ie., F, =R oR(F,). The function R(F,) will be called the tomogram of
the state p and we will denote it by W, (see Fig. 5):

(34) Wp(y) = (R(y), Fp)-

Notice again that the tomogram W,(y) satisfies that it is a probability density
related with the state p:

(35) W20 [ Wdet) =1,
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e ) jR

Folx Tomogram

R(y) ,
Tomographic
N distribution
Yy

FI1GURE 5. Positive Transform diagram.

4. Quantum Tomography and groups. Given a state p on a C*-algebra A,
it is not apparent how to construct the two ingredients, a sampling theory and a
positive transform, needed for its tomographic description. There is, however, a
situation when both ingredients are interlocked and arise in a natural way. This
happens when there is a group G represented on the system, sometimes called a
dynamical system. Such situation occurs, for example, in Spin Tomography [43]
with the group SU(N) (see Sect. 5.1.2) or, in standard Quantum Tomography,
with the Weyl-Heisenberg group (Sect. 5.2).

In this section, a tomographic theory, following the steps laid in Sect. 3, for a
class of normal states in dynamical systems on C*-algebras will be described.

4.1. Equivariant tomographic theories on C*—algebras. In many situations
of interest, either describing symmetries of the system or the dynamical background
of the theory, there is a group present in the system whose states we want to
describe tomographically. We will assume that there is a Lie group G acting on the
C*—algebra A, that is, there is a strongly continuous map T: G — Aut(A), such
that:

(36) Te = ]]'v Tnggz = Tg1g27 v.gth €q.

The triple (G, T, A) is also called a dynamical system (there is a canonical construc-
tion of a C*-algebra, the crossed product algebra, associated with this structure that
will not be needed in what follows).

If we have a tomographic theory for the states of A, that is a tomographic pair
U: M— A D: M — A and a positive transform R: N'— D(M), then we will
assume, in order to have a consistent theory, that the group G also acts on the
auxiliary spaces M and N. Such actions will be simply denoted by = ~ ¢ -z and
y~g-y,g€ G € Mandy €N, respectively. Then it will be assumed that
both maps U, D are equivariant, that is:

(37) T,U(x)=U(g-z), VreM and VgeG,
and

(38) T;.D(x)=D(g-z), VreM and VgeG@G,
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with T the natural action of G' on the space of states, that is (T} p,a) = (p, T,a),
Va e A,p e S(A).

Under these conditions, it is easy to conclude that the sampling function F|,
verifies:

(39) Fo(g-z) = Fgp(x), Vee M, gedG,
(40) Fplg-x) = (p,U(g-z)) = (Typ,U(x)) = Fg=p(2),

where g*p = Typ. Notice that if p is an invariant state, Ty;p = p, then, the
corresponding sampling function will be invariant:

(41) Fy(g-x)=F,(z), YVge G, zeM.

As indicated before, we will also consider that the group G acts on the auxiliary
space N used to define the Positive Transform. If we assume that the map R : N' —
D(M) is equivariant, i.e.:

(42) 9:R(y) =R(g™" ),
where g, indicates now the natural action induced on the space of distributions
D(M) C F(M)' given by the action of G on M, more explicitly:
(43) (9+R(y), F) = (R(y),g"F) and g"F(x) = F(g-x).
If R is actually a positive transform and W, the tomogram of the state p, we will
get:
(44) Wolg™ -y) = (R(g™-y),Fp) = (9. R(y), Fp)
= <R(y>79*Fp> = <R(y)7 Fg*p> = Wg*p(?/) )

and, in the particular instance that p is an invariant state, we conclude by observing
that its tomogram will be invariant too:

(45) Wolg-y) =Woly), VYgeG.

4.2. Quantum tomography and dynamical systems. Thus, if we want to con-
struct a tomographic theory using a group G, it is natural to consider auxiliary
spaces M and N which are homogeneous spaces for the group, in particular we can
consider the group itself. Hence, we will concentrate in the particular instance that
the auxiliary spaces M and N are a Lie group G.

Moreover we will assume that the group G is represented by inner autormor-
phisms of the C*-algebra A, that is, we will assume that the tomographic map
U: G — A is provided by a strongly continuous unitary representation U of G on
A, thus for all g, g1, 92 € G:

(46) U(g192) =U(91)U(g2), U(e)=1, and U(g)" = U(QY1 =U (971) )
and the action of G on A is given by the group homomorphism Ty, : G — Aut(A):

(47) Ty(a) = U(g)aU(g)*,
with @ € 4 and g € G. We see immediately that
(48) Ulghg™) =U(@U(MU(9)" = Ty(U(h)),  Vg,h€G,

which is the equivariant property (37) for the conjugation action of G on itself.
The sampling function corresponding to the state p is given by:

(49) Fylg) = (p,U(9))
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and the function F,: G — C is of positive type because the map F,(g,h) =
(p,U(g)*U(h)) = F,(g~'h) is of positive type, Lemma 3.1, then:

N
(50) Y &&F (9 g) 2 0,
ij=1
foral N e N, ¢ €C, g, € Gwithie=1,...,N. Moreover a simple computation
shows that F), satisfies (39) too.
If the C*-algebra A is the C*-algebra of all bounded operators on a Hilbert
space B(H), because of the one-to-one correspondence between states and density
operators, the sampling function F, can be written as

(51) Fy(9) = Tr(pU(9)),

for some density operator p, then, since the character of a finite-dimensional repre-
sentation U of the group G is defined as:

(52) x(g) = Tr(U(g))

we will call the sampling function F), the smeared character of the representation U
with respect to the state p and, consequently, we will denote it in what follows by

Xp(9) = Fp(g) = (p,U(9)) -

Note that if H is finite-dimensional with dimension n and the state p is the nor-
malized unit %]l7 its smeared character is just the (normalized) standard character
of the group representation (52).

Given a state p, the GNS construction described before, Sect. 2.2, provides, a
representation 7, of A in H,, hence we get a strongly continuous unitary represen-
tation U, of G given by:

(53) Uy(g) = 7, (U(9))-

Notice that U,(g) is actually a unitary operator on the Hilbert space H, because,
recall Eq. (16):

(54)  (Up(9)lal, Up(9)[b]), = p((U(g)a)"(U(g)b)) = p(a”d) = ([al, [b]),,

for all g € G, [a], [b] € H,.
Now, because of (18), the sampling function of a representation U corresponding
to a state p can be written as

(55) Xp(9) = (01U,(9)[0),

where |0) is the fundamental vector of H,. Moreover, fixed the state p, the smeared
character of U with respect to any other state o in the folium of p, Eq. (21), will be
given by

(56) Xo(9) = (0,U(g)) = Tr (07, (U(9))) = Tx(oU,(9)-

If G is represented in the C*-algebra A, then the map U: G — A extends to a
C*-algebra homomorphism, denoted as 7y : C*(G) — A between the envelopping
C* algebra of the group G and A. Given a state p on A, it induces a state py on
C*(G) as pu(a) = p(ry(a)) with a € C*(G). States are characterized by means of
their smeared characters (or sampling functions):
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Theorem 4.1. Let p: A — C be a continuous linear function and consider the
smeared character x,(g9) = (p,U(g)) where U is a strongly continuous unitary rep-
resentation of the Lie group G on A. Then, p is a state iff x, = F, is a positive
type function on G and x,(e) = 1.

Proof. We have seen already, Eq. (50), that x, is of positive type if p is a state and
X,(€) =1 because of the normalization of p.

Conversely, if x, is a positive type function on G, because of Naimark recon-
struction theorem [46], there exist a complex separable Hilbert space H supporting
a strongly continuous unitary representation V' of G and a vector |0) € H, such
that:

xol9) = 01V, (9)[0).
Actually such representation is obtained as the GNS representation of the C*-
algebra of the group G determined by the state py: C*(G) — C defined by po(a) =
(p,mu(a)). Note that pg is a state because by hyphotesis:

po(1) = (p,mu(1)) = (p, La) = (p,Ul(e))) = x,(e) = 1.
Moreover if x, is of positive type on G, then the natural extension of x, to C*(G)
is positive. Then
pola*a) = (p, mu(a*a)) = xp(a"a) 2 0.

because x, is of positive type.

Hence, the representation 7,,: C*(G) — B(#,,) determines the representation
V of the group G above.

Then because of Eq. (18) we conclude:

(57) {p,mu(a)) = Fy(a) = po(a) = (0]my, (a)]0)

Let a € C*(G) be such that a € kermy, ie., my(a) = 0, then because of (57),
po(a) = 0. But kermy is a closed bilateral ideal and C*(G)/kermy = A, then
po projects to a state on the quotient algebra C*(G)/ker 7y, but because of (57)
again, p coincides with the projection of py on A and p is a state. O

Note that the state pg on C*(G) used in the previous proof is just the extension
of the state p on A to C*(G) by the homomorphism 7y : C*(G) — A.

In what follows we will assume that a fiducial state p has been chosen and we
will describe the tomographic theory of states o on its folium.

4.3. The quantum Radon transform associated with a dynamical system.
Given the Lie group G we can consider the space g x R, where g denotes the
Lie algebra of GG, and the extended exponential map: exp: g x R — G, given by
exp(§,t) = exp(tf), t € R, £ € g, where exp: g — G, is the ordinary exponential
map. In particular, if G is a matrix Lie group, then,

- tn n
(5) exp(t) = 30 en

n=0
with £ a matrix in the matrix Lie algebra of G.

Given the representation U of the group G on the algebra A and the fiducial
state p, we have the canonical unitary representation U, of G on the Hilbert space
H, associated with the GNS construction, Sect. 2.2. Also, given £ € g, we can
consider the strongly continuous one-parameter group U; of unitary operators on
H, given by:

Ur = Uy (exp(t€)) = m, (U (exp(t€)) ,
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with ¢ € R. Note that,

UtT = FP(U(eXp(tf)*) = WP(U(eXp(t‘f)_l>
mo(U(exp(—t)) =U_, = U "

Because of Stone’s theorem [55], there exists a densely defined self-adjoint oper-
ator £ on H, such that

(59) ' = U, (exp(t€)).

Note that the element £ in the Lie algebra and the operator € have opposite sym-
metry because of the i factor in the exponent in the r.h.s. of (59), that is, if G is
a matrix Lie group, then £ € g is a skew-Hermitian matrix while the operator £ is
Hermitean.

Let us denote by © the canonical left-invariant Cartan 1-form on G, i.e., the
tautological g-valued 1-form given by ©(§) = £, where ¢ denotes both an element
on the Lie algebra of G and the corresponding left-invariant vector field on G.

Let ®, be the “quantization” of the Cartan 1-form, i.e., @, is a left-invariant
1-form on G with values in self-adjoint operators on H, defined by:

0,(8)=¢, Vieg.

In other words, ®, maps the Lie algebra g of the Lie group G in the space of
densely defined self-adjoint operators on H,, by assigning to each element £ € g the
generator & of the one-parameter group U; = 7,(U(exp(t§)) of unitary operators
defined by expt€.

We will often use the notation (®,,&) = & instead for the evaluation of the 1-
form ©, on the Lie algebra element &. Thus if E,, a = 1,...,r, is a basis for the
Lie algebra g, any element £ can be written as ¢ = {°E, (Einstein’s summation
convention understood). Then (©,,&) = ©,(§) = £ = £*E,. We will call ®, the
quantum Cartan 1-form associated with the representation U and the state p and
in what follows we will omit the subindex p if there is no risk of confussion.

It is easy to check that the operators & provide a representation of g in H,, that
is, it is satisfied:

(60) [EaC] = Z<®’ [ga C]>’ V€, C € g.

We may use the spectral theorem, [52, Chap. 7], to represent each self-adjoint
operator § on H, as:

(61) ¢ = [ T OB,

where E¢ denotes the spectral measure associated with £. Then using (59), we can

write:
o0

(62) U, (exp(t)) = ¢i*€ = / et Eg(dN).

Let o be a state on the folium of p, i.e., o is a density operator on H, and
o is defined by Eq.(21), then consider the measure i, ¢(d\) = Tr(oE¢(d))), in
other words, if A is a Borel set in R, the probability P(&,0; A) that the output of
measuring the observable £ will be in the set A when the system is in the state o
is given by:

(63) P&, A) = /A o (AN) = e (A) = Tr(0 Be(A)).
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Then, obviously, we get s ¢(R) = 1. Moreover, if the measure pi, ¢ (dA) is absolutely
continuous with respect to the Lebesgue measure dX on R, there will exist a function
W, (X;€) in L' (R,dX) such that for all measurable A:

(64) /A e (V) = /A Wi (X:€)dX > 0.

In general, this will not be true if the measure i, ¢(dA) has singular part, for
instance, if & has discrete spectrum, however, we get a similar result in such case
too (see later on, Sect. 4.5).

Definition 4.1. Given a state o in the folium of a reference state p and a unitary
representation U of a Lie group G on the unital C*—algebra A, the family of Borelian
probability measures py¢(dA) = Tr (O'E‘g(d)\)), ¢ € g, will be called the quantum
tomogram of o.

Then, the absolutely continuous part of the measure p,¢(d\) defines a function
W, : g xR — R given by Eq. (64), that will be also called the quantum continuous
tomogram of o, in other words, W, (X;¢) is the Radon—Nikodym derivative of the
measure /i, ¢(dX) with respect to the Lebesgue measure dX:

5/10,5 (dX)
). G
Notice that this formula is another way of rewriting (64). Notice that if W, is

continuous it is non-negative: W, > 0.
From (56) and (62), we get immediately:

WU(X95) =

o0

(65) Xo(exp(t)) = [ ().
ie., Xo ( exp(tf)) is the Inverse Fourier Transform of the measure fi, ¢(dX) then, as
we already know and, in agreement with Bochner’s theorem, the smeared character
(sampling function) x, is a function of positive type. This, as indicated in Sect.
3.2 (see the comments after Eq. (31)), will give us the clue to define the positive
transform needed for a tomographic descripton of quantum states. The auxiliary
space N will be the set R x g, and the map R: N' — D(G) is the distribution
defined by the Fourier kernel, that is:
L ix

R(X.€) = e ™,

i.e., the Positive Transform R(F’) is given by, recall Eq. (30):

R(F)X.6) = (RXO.F) = 5 [ e Pugar.

27 J_ o
If the measure p,¢(dX) had only continuous part, we would have that:
1 <
(66) Wa(X5§) = R(G)X.€) = (RO Ohoxa ) = o [ e xa(explt))d.
—00

Then, in such case, the following properties of the quantum tomograms W,, are
immediate consequences of Eq. (66):

Proposition 4.1. Under the conditions stated previously, the quantum tomogram
We satisfies:

1. Normalization: / We(X;€)dX =1.
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1
2. Homogeneity: W, (sX;86) = ;WU(X;g), s> 0.
3. Equivariance (44): Wy (X5Ad j-18) = Wy o (X5 6).

4.4. A universal formula for the quantum Radon transform. We will end
this section by providing a universal formula that will allow a direct computation
of the tomogram W, and that includes the standard quantum Radon transform (7)
as a particular instance. This will justify why such expression could be called the
Quantum Radon Transform of a given state.

In order to provide such formula we will collect first a few facts on functional
calculus of self-adjoint operators that will be needed in what follows (see for instance
[16], [1] and references therein).

If T is a densely defined sefl-adjoint operator with spectral measure Eg(d)\),
given a measurable and integrable function f with respect to the spectral measure
Er(d)), we define the linear operator f(T) as

£(T) = / (N Ex(dy).

The map Fr: L' (R, Ex(d\)) — B(H), given by F(f) = f(T) satisfies: F(f+g) =
F(f)+ F(g), F(cf) =cF(f), F(fg) = F(f)F(g) and is called a functional calculus
[38, chap. 4.4].

Given a real number X we may also define the operator:

(67) FOL=T) = [ X -0 Exlay).

Then, we may extend the notion of functional calculus introducing the symbol
(X1 — T) defined formally using Eq. (67):

(68) S(X1—T) = / S(X — A) Br(d))

In order to make sense of the previous expression, we will consider it as an element
in the dual of a class of bounded operators in the Hilbert space H. More specifically,
as the previous expression will be evaluated in density operators, it makes sense to
consider the family of trace class operators whose dual space is the space of all
bounded operators with respect to the natural pairing provided by the trace:

(69) (A,n) =Tr(n'A), Trn<oco, Ae€B(H).

In this sense we will define §(X1 — T) as an element in the dual of the space of
trace class operators by means of:

:27T

((X1-T),0) = — /oo dk /oo CF XN Ty (o Brp (dN))

Notice that the r.h.s. in last expression can also be written as:
1 [ ) ,

(70) (6(X1-T),0) = 27/ dk eszrﬁ(o.e—sz)
™

— 00
1 (o)
= —Tr 0'/ dk eF(X—FT)
2m oo ’

and, for instance, §(X1 — T) will be well defined provided that Tr(oe™*7T) ¢
L2(R, dk).
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Then, using Eq. (70), with a slight abuse of notation, we can write:
1 [ .
§(X1-T) = 7/ ek (X1=T) g .
2r J_ o
We are ready to establish the main formula describing quantum tomograms W, .
Theorem 4.2. Given a state p in a unital C*—-algebra A, the quantum tomogram

Ws (X&) of any state o in the folium of p associated to the strongly continuous
unitary representation U of the Lie group G on A is given by:

(71) Wo(X;8) =Tr(o6(X1—(©,8))), VEeg XeR
Proof. First notice that Tr (U, (exp(t€))) is the smeared character x, of the rep-
resentation U, with respect to the state o, then, because of Eq. (70), we get:
1 o - - 1 [ -
6(X1-¢),0)= —/ dk X Tr (e~ *8) = —/ dk ey, (exp(—kf)).
2 J_ o 2 J_ o
and because of Eq. (66), we get:
<5(X]]' - é)a O'> = WU(X’ 5) )
hence, substituting € = (©,&) and using the canonical pairing (69), we get the
desired formula W, (X;¢) = Tr(o6(X1 — (©,¢))). O

Note that from the formula (71), we get easily that W, (X;€) is real:

(72) We(X:6) = Tr(00(X1 ~ (O,€))) = Tr(ad(X17 — (©,6)1))
=Tr(0d(X1 - (©,¢))) = Wo(X;€),
completing the list of conditions satisfied by quantum tomograms in Prop. 4.1.

4.5. Reconstruction of states from quantum tomograms on groups. The
lasts previous sections 4.3, 4.4, ended with the construction, using a group repre-
sentation U and a fiduciary state pg, of tomograms W, for a family of normal states
o. Because of (65), we can obtain the smeared character x, of such states, as the
inverse Fourier transform of the tomogram W,:

(73) Xo (exp(1€)) = Tr (U, (exp(t0)) ) = / W, (X €)dX

What is needed now is to recover the state o from the smeared character x,, in
other words, we would like to know under what conditions the representation U
determines a tomographic pair.

The notion of frames [15], [41], a widely studied subject with many applications’,
will provide the key idea to achieve this. In the following paragraphs, we will
succinctly review the main notions of the theory that will be needed in this context.

Let H be a complex separable Hilbert space and M a measurable space with a
measure p. A family of vectors F = {|¢,) | x € M} is called a frame based on M
if it satisfies:

1. For every |¢) € H, the function evy: M — C given by evy(x) = (¢ | ¥) is
p-measurable and belongs to L?(M, i) (we may also say that the frame F is
square integrable).

1Even if we will focus here on their use in sampling theory, very close in spirit to the problem
we are facing here (see, for instance, [27] and references therein for classical sampling theory, and
[28], for the use of frames in such context).
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2. (Stability condition) There are real numbers 0 < A < B such that:

AL < llevylizm) = /M (0, %) *du(z) < B[y,

for all [¢) € H. The numbers A and B in the previous expression are called
(lower ande upper) frame bounds for the frame F, respectively. If A = B, the
frame is called tight.

A frame F = {|9);) | © € M} defines a bounded linear operator, called the frame
operator, §: H — L*(M, p), given by §|v) = (1(|1), in other words, the function
§|¢): M — C, denoted otherwise as Fy, is defined as (§v))(x) = Fy(z) = (¥ |¢),
x € M. Moreover, the frame operator § is injective and admits a bounded left
inverse.

The adjoint frame operator §*: L?(M, u) — H is defined as:

) = (f.31V)r2my,  Vf € LP(M),[¥) e H.
Then,

@ o = [ F@Fe) )
[ F@ el duta) = ([ 5@y dnte)) ).

and
5f= / F@) ) dule),  VF € LM, p),
M

in the weak sense (as all other operator-valued or vector-valued integrals we have
encountered so far).

Using the frame operator and its adjoint we can define the metric operator S =
$*§: H — H, which is bounded and definite positive, with bounded definite positive
inverse S71, and satisfying 0 < AI < S < BI.

The metric operator S allows to define the dual frame F* of the frame F =
{|z) | * € M}, namely, the family of vectors:

Fr={[¢") =S ba) | @ € M},

which is actually a frame too. We will also say that the frames F and F* are dual
to each other.
Using a couple of dual frames F and F*, we obtain some remarkable formulas:

1= [ wisdan = [ e,

and we get the following reconstruction formula (compare with Eq. (24)):

) = /M Fy(@)®) du(z), Vo) € H.

together with a similar formula for the dual frame transform.

The main observation regarding the use of frames in the context of quantum
tomography is that a relevant class of unitary representations of groups, the so
called square integrable, define frames. A square integrable representation m of a
locally compat group G on a Hilbert space H is an irreducible unitary representation
such that there exist vectors |¢),|¢) € H for which:

/G [, w9 Pduc(g) < oo.
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with pg the left-invariant Haar measure on G. Sometimes the function cy 4 (g) =
(¢, m(g)1) is called a coefficient of the representation and, with this terminology, the
representation is square integrable if there is a square integrable coefficient function
on G.

If a representation 7 is square integrable, the set of vectors for which the function
(|7 (g)|9) is in L2(G, ) define a dense linear subspace of H. Moreover if the group
G is unimodular, i.e., the left-invariant Haar measure is right-invariant, then the
function (p|mw(g)|v) is square integrable for all |¢b), |¢). More specifically we have
the following Theorem [18, Thm. 14.3.3] (see also [19], [3] for the non-unimodular
case) suited for the purposes of this paper.

Theorem 4.3. Let n: G — U(H) be a square integrable irreducible unitary rep-
resentation of the unimodular Lie group G, then the coefficient function cy .y =
(p, () is in L2(G, ug) for all |1), |¢) € H, and the orthogonality relations:

(74) /G(¢>1,7r(g)1/11><7r(g)¢2,1/)2>dug(g) =d g1, d2) (1, 12),

hold for all |ta), |ba), a = 1,2, where 0 < d < 400 is a positive real number called
the formal degree of the representation.

An immediate consequence of Thm. 4.3 is that, if G is a unimodular Lie group,
U: G — A a unitary representation of G, and py a state such that the unitary
representation Uy = m,, o U on the GNS Hilbert space H,, is square integrable,
then the family of vectors Up(g)|y) is a frame.

Proposition 4.2. Let U: G — A be a strongly continuous unitary representation
of the unimodular Lie group G on the C*-algebra A and py a pure fiducial state on
A. Consider the associated unitary representation Uy: G — U(H,,) of the group
G on the GNS Hilbert space H,, defined by the state po and assume that Uy is
square integrable with formal degree d. Then, given a vector |1)), the set of vectors
Fu,po = {|¥g) = Uo(9)|¥0) | g € G} defines a tight frame, whose dual frame is given

by Fir py = {109) = 1tz Uo(9)lt0) | g € G}

Proof. If the fiducial state py is pure, the GNS representation 7, is irreducible [32]
and, consequently, the unitary representation Uy = m,, o U is irreducible. Then,
because of Thm. 4.3, the orthogonality relations (74) imply:

/ |, 0o duclg) = / |, Un )0 duc(g) = d (ol P16,
G G

for all [¢) € H, and the set {|1),)} is a tight frame with frame constant d—||¢)o]|?.

A simple computation shows that in such case the frame map §: H — L?(G, ug)
is an isometry (note the the range of § is a closed subspace invariant under G,
hence because the representation Uy is irreducible it must be H), and the map S is
a multiple of the identity with scaling factor the frame constant. O

In what follows, in order to obtain simpler formulas, it will be assumed that the
vector |tbg) is unitary, that is, [|[¢o]| = 1.

We will end this summary by recalling the trace theorem for frames that states
that the range of the frame operator §(H) C L?(M,p) is a reproducing kernel
Hilbert space with kernel given by the function k(z,y) = (¥, ¥Y), z,y € M. This
implies that (compare with Eq. (25)):

B(y) = /M Ky 2)B(x) dp(z), VB € F(H) C LM, p).
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that in our particular setting becomes:
@) o) = [ Ko.g)0) duals). VB EFH) C LA(Gup).

with the function, K/(g’ g/) =d <U0(g),(/}07 UO(Q’MPO) =d <1/)0a U0(9_19/)1%>7 g, g/ € G7
called the reproducing kernel, which is L?(G, ug) on each argument. Note that an
immediate consequence of Eq. (75) is that:

(76) w(g.g) = /G w(g,g")e(g" ') duc(g”) -

From the previous expressions we will obtain the following formula for the trace of
a trace class operator A:

(77) TrA:/GH(A,g,g)duc(g),

where (A, g,9") = (Uo(g9)%0, AUs(g")%0). In particular if we choose A = |tpg) (1|,
9,9 € G, we get:

Tr ([hg) (bg]) = /G<¢0|U(g”)T\¢g><¢g'|U(g”)\wo>duc(g")

(78) - /G 55", 9)(d" a")dpc(d") = K(dg)

where we have used (76) to get the final formula.

We will apply now the previous results to the situation described in Sects. 4.2,
4.3. That is, because the states o we want to describe tomographically are the
states in the folium of pg, then we will consider the C*-algebra Ay = B(H,,) of all
bounded operators in H,, whose states are represented by density operators o.

The unimodular Lie group G is represented in the Hilbert space H,, by a irre-
ducible square integrable unitary representation U of formal degree d. Then we
may consider the map Up: G — Aj as a tomographic set and Dy: G — Aj,, defined
as Dy(g) = dUy(9), g € G, as the dual tomographic map. That these notions cor-
respond to the general scheme depicted in Sect. 3.1 is the content of the following
resuts.

Theorem 4.4. The pair Uy, Dy is a tomographic pair.

Proof. The assertion follows from the direct proof of the reconstruction formula
given in Thm. 4.5 below.

We observe that the set Uy = {Up(g) € Ao | g € G} separates states in the folium
of pg. Note that if this were not the case, there will be two states o, o’, such that
Tr(oU(g)) = Tr(c’U(g)) for all g € G, i.e., Tr((c — o')U(g)) = 0 for all g € G.
But the representation Uy is irreducible, then (o — o’) = 0.

Moreover, because the representation Uy is square integrable, the function
Xo(9) = Tr(eU(g)) is square integrable and the map Fy,(o)(g) = Tr(oUs(g))
maps states in square integrable functions. Finally, because of Eq. (75), the repro-
ducing property (25) of the kernel is verified. O

Then we will proof the reconstruction formula, the particular instance of the
general reconstruction equation, Sect. 3.1.2, Eq. (24), for density operators:

Theorem 4.5. Under the conditions stated previously, we have:

(19) o= /G Tr (oUs(9)) Dolg) duc(g) = d /G Tr (oUo(9))U(9) dpics(9)
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for all density operators o in H,,.

In order to proof this theorem, we will need the following extension of the trace
formula (77):

Proposition 4.3. Let A be a trace class operaton on H,,, then, under the condi-
tions stated previously, we have:

(0) Tr (A)L = d /G Uo(9)AUs(g) duci(g)

Proof. Notice that, because the group G is unimodular and the representation Uy
is square integrable, the operator

C- / Us(9)AUo(9) duci(g) ,
G

is well-defined and intertwines the representation Uy, i.e., CUy(g) = Uy(g)C, for
all g € G, then because Uy is irreducible C' is a scalar multiple of the identity, c1.
Then (¢, cltbg) = cd with |1p) unitary. Hence, because of (77), we get:

e = (un. | Vola)AU(o) (o)) = | r(A.g.0)dnc(s) = Te(A).

G
and the conclussion follows. O

Now we can prove Thm. 4.5 (the proof is inspired in the proof in [14, Appendix]).

Proof. (Theorem 4.5) We will denote by o the r.h.s. of Eq. (79), that is:

(1) o' =d /G Tr (0 Us(9)) U (9) ' dpics(9)

If we multiply the previous Eq. (81) on the left by a trace class operator A and we
apply the trace formula Eq. (80) to the r.h.s. we get:

/G Tr (6Uo(9))AUs(9) dpuc(g) =

(82) = /G /G Uo(g")aUo(9)U(g") AU (9) dpc(g)duc(g’) -

Then, using Fubini’s theorem and the trace formula again on the r.h.s. of (82), we
get:

(83) /G Tr (o Us(9)) Ao (9) duc(g) = /G Tr (Us(g') T A)Uo(g')odpic (g

Then, using the previous equation (83), we get:

(84) Tr(Ao') = / Tr (AU (¢") )T (Uo(g")o)dpa(y’) .
G

where we have used the circularity of the trace Tr (AUy(g')t) = Tr (Up(g')TA) (note

that AUy(g) is a trace-class operator). Expanding the traces inside the r.h.s. of

Eq. (84), integrating with respect to ¢’, and using the identities (78) and (80), we

obtain:
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= [ AT 103) g e ) D)) =
= [ wnla ([ vala) )00 100t e (a)) ol hancto (s =
= [ A n(a" )ty )duc(a)dnc(s”) =

1
= g/GH(g",g)H(AU,g,g”)duc(g)duc(g")

= %/C;H(Aa,g,g)duc(g) = %TY(AUV

Where in the fourth step, we have used the identities (80) and (78) to compute
Ja U(g) bg) (g |Uo(g')dpue(g'), and the identities (76) and (77) in the last two
steps. Then we conclude that:

Tr (Ac’) = Tr (Ao),
for all trace class operators A, but Hilbert-Schmidt operators are contained in the

ideal of trace-class operators, and density operators are Hilbert-Schmidt operators,
then the last identity can be written as:

<A7 0_/> - <A7 U> )
for all A Hilbert-Schmidt operators, and we conclude that o’ = . O

5. Examples and applications.
5.1. Compact and finite groups.

5.1.1. Compact groups. Compact groups, being unimodular (the left and right Haar
measures coincide), are particularly well suited to provide tomographic descriptions
of quantum states by applying the theory developed in Sec. 4. Moreover any
irreducible representation is finite-dimensional and square integrable.

Then, if Uy is an irreducible representation of the compact Lie group G on the
finite-dimensional Hilbert space Ho of dimension n, the orthogonality relations (74)
become:

89 [ 0Tl Un(a)on valdnals) = 1lon. o). v,

with pe the normalized Haar measure on the group, that is, fG dpc(g) = 1. We
will use the representation U as the tomographic set on the C*-algebra B(H)
(which is finite-dimensional). States are density operators o, that is, normalized,
Hermitean non-negative operators. The sampling function, or smeared character of
the representation Uy, associated with the state o will be x,(g) = Tr (6Up(g)) and
it defines a tomographic set. If we define D(g) = nU(g)!, we will have that the
kernel function x will be given by:

k(g,9") =nTr (Uo(g7'g")),

amd the reconstruction formula for density operators o on Hg becomes:

(36) o=n /G xe (9)U(9) dpa(g)



QUANTUM RADON TRANSFORM 27

Tomograms were defined, recall formula (71), as W, (X,€) = Tr (o(X1 — &)).
The spectral measure associated with the operator £ is singular and concentrated
on the (finite) spectrum o(€) of the operator &, ie., Eg = >y, ) Pad(N = A),
with Py the orthogonal projector onto the eigenspace of the eigenvalue A. Then, it
is easy to check that the operator 6(X1 — &) becomes:

(87) S(XL—§) = Y dxab,
A€o (§)

with dx x =1, if X = A, and zero otherwise. Let us summarize these results as the
following corollary:

Corollary 5.1. Let G be a compact connected Lie group and (A,U) a unitary
representation of G on a C*—algebra A. Let po be a fiducial state such that the
unitary representation Uy(g) = mp, (U(g)) of G on the GNS Hilbert space Ho defined
by po is irreducbie. Let n be the dimension of Hy. Then, given a density operator
o on Hy, its tomograms are given by:

(88) Wo(X,8) = Y oxaTr(oPy), Vee g,
A€o (€)

and the state can be reconstructed from its tomograms by means of
(39) o= n [ W, (X ) Unexp( 1)) A(t,) X ddDE).

with dQX(§) the Lebesgue measure on the Lie algebra g, and A(t,£) the Jacobian of
the restriction of the exponential map to the unit sphere on g.

5.1.2. Spin Tomography: the case of the SU(2) group. The compact group SU(2) is
the group that underlies the description of the states of a particle with spin 1/2, (see
for instance [26, Chap. 5], 21, Chap. 11]). It also provides the background for the
Jordan-Schwinger map that makes it so relevant in quantum optics and in quantum
information theory. The states of a particle with spin 1/2 may be represented using
the so called Bloch’s sphere, Fig. 6. e.g., density states can be parametrized as:

A S.

Pure states

Y
N

FIGURE 6. Bloch’s sphere representing states of a particle with spin 1/2.

(90) _ 1 /14rcost sin @ e~
P=35\ sinfei® 1—rcosh)’
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with 0 <r <1,0< 60 <7mand 0 < ¢ < 27 The states in the surface, i.e., the
states with r = 1, are the pure states of the system.

The SU(2) group is a compact Lie group, hence given an irreducible representa-
tion of the group, its tomograms are given by (88) and we can reconstruct a given
state p by using the reconstruction equation (89). The irreducible representations
of the group SU(2) are finite-dimensional of dimension 25 + 1 where j is a half-
integer. The irreducible representation of dimension 2, defines the group itself as
the set of 2 x 2 unitary matrices U of determinant 1 acting on C? by standard
matrix multiplication. The elements of the group U can be written in terms of the
exponential of the elements of its Lie algebra su(2) as

(91) O

where the generators corresponding to the spin along the axis x,y, z are:
(92) S, = =04, a=uz79,z

and 04, a = x,y, z, are the Pauli matrices:

O A i B )

The tomograms of a state p will be:

(94) Wy (X, 82,5y,52) = Tr(pé(X]l — %Uw - %yay - %Zaz)).

Then using Eq. (87) and taking into account that the eigenvalues of the operator
S=s5-0=s5,0,+ 840, + 5,0, are A = %|s|/2, with eigenvectors:
(95)

1 —8y +1 1 _
"U+> - ( Szj’ 25y> and |’U_> - - (Sz S|> 7
2fs[(s] —s.) \ sz I8 21s|([s] — 5.) \Sx + isy

the tomogram W, (X, s;, sy, s.) can be written as:

1 1
(96)  Wy(X, 50, 5,52) = (X = Ssl(vslploy) +5(X + S sl(o-lplo-),

and therefore, we finally get:
1 1
W,(X, Sz, Sy, 8:) = B <(1+ s |rcos0) +s1n9(| | cos ¢ + — s smqﬁ)) (X §|s|)

5 (1 fgroone) =m0 cme + fing) )6 4 5.

5.1.3. Finite groups. Finite groups are particular instances of compact groups where
the previous analysis becomes particularly simple albeit interesting on itself.

Let (U, H) be an irreducible unitary representations of the finite group G of order
|G| on the finite-dimensional Hilbert space H, n = dim(#). Let e;, i = 1,...,n, be
a given orthonormal basis on such space. We will denote by U;;(g) the elements of
the unitary matrix associated to U(g), g € G, in the previous basis, i.e.,

(97) Uij(g) = (ei, U(g)e;) -

Schur’s orthogonality relations is the form that the orthogonality relations for
square integrable representations (74) take in the case of finite groups, and they
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assert that given two unitary irreducible representations U(®) and U®) of dimensions
ng and nyp, respectively7 then:

(98) ST U ()R (9) = Gapdindys -

geG

IGI

Therefore, if we choose as the dual tomographic map the Hermitean conjugate of
the n-dimensional irreducible representattion U(g), D(g) =nU(g)", we will get:

(99) ‘G‘ Z D’L_j - 52/6 )

geG

from which the biorthogonality condition for the pair U, D, is easily derived. Hence,
if o is a density operator, the reconstruction formula (24) becomes a particular
instance of (79):

100 o= Xo g Xa
(100) i 2;; =Gl ZG

In the case of finite groups, the tomogram of the state p can be obtained by using
the discrete version of formula (66) (see also [36]). Let us transform U(g) into a
diagonal matrix d, by means of the unitary matrix Vj:

(101) Ulg) = Vyd, V),  dy = diag [e“’l(g), . ,ew"(g)] :
then, compute the smeared character of U(g):
(102)  xo(9) = Tr(oVydyV)) = Tr(d, Vo V,) = Z ') (VieV,) .

m=1

Therefore, the tomograms of the state o are given by:
(103) Wo(m;g) = (VioVy)

These tomograms define a stochastic vector, ie.,

mm ’

ZW mig) =Y (VioV,), = Tr(o)=1,
m=1

and they are non-negative:
0<W,(m;g) <1, m=1,...,n, Vg € G,

since the density matrix o is positive semi-definite. Thus, we have shown that
the smeared characters can be obtained as a Discrete Fourier Transform of the
tomograms (103):

(104) Xo(g) = Y W, (m;g),

m=1

and we obtain the following inverse Radon transform for quantum tomography on

finite groups:
oSS W i g)U )

geG m=1
Let us consider now a subgroup H C G of a finite or compact Lie group G. The
restriction of the representation U to the subgroup H, sometimes denoted by U | H
and called the subduced representation of U to H, will be, in general, reducible
even if U is irreducible.
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Let us suppose that the state p satisfies the following orthogonality relations:
(105) Tr(aU(g)) =0, g€ G\ H,

that is, the inner products with the unitary operators corresponding to the elements
of G not in the subgroup H vanish. Therefore, in this case, we have similar formulas
to (100) and (86) even if the representation U | H is reducible:

(106) o= fa Y xel)U9)

geH

in the finite case, and

(107) o= n/H Xo(9)U (9)dp(g)

in the compact situation.

Such states will be said to be adapted states to the subgroup H. These states have
interesting properties because they share the same symmetry than the subgroup
H. For example, they can be used to get the Clebsch—Gordan decomposition of a
unitary reducible representation of a finite or compact Lie group (see the numerical
algorithm presented in [37]).

5.1.4. The regular representation. Another instance that can be treated similarly
is when we consider the regular representation of a finite group. The regular rep-
resentation of the locally compact group G is the unitary representation obtained
from the action of the group G on itself, in the Hilbert space of square integrable
functions on the group, H = L%(G, uc), where ug denotes the left(right)-invariant
Haar measure by left(right) translations.

The left regular representation U;“?(h) is defined as follows:

(108) (UL () (9) = (h™tg), ¥ € L*(G,pe),

and the right regular representation is defined analogously.
If G is finite, it is clear that L?(G) is isometrically isomorphic with the group
algebra C[G]:

(109) H=C6] = {la) =" aylg) |ay € C},

geG

with inner product (o, 3) = Z @y/3,. The action of the group is given by:
geG

(110) U (h)|a) = an-1glg) = > aglhg),
geG g'eG

then, we can interpret the left regular representation U, as

(111) U (h)lg) = |hg),  Vg,h €G.
From the orthogonality relation satisfied by the regular representation:
(112) Tr(U;(9)'UL(g)) = nby-1,
the character of the representation is easily computed:
reg _ _ n g=e,
(113) X" (g) = nd, {0 otherwise ,

with n = dim H = |G|. In that case, the reconstruction formula is given by eq. (106).
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For compact groups, we have similar results, however the character x"¢9 is now
a Dirac delta distribution:

(114) X"“(g) =4d(9), g€Ga,

and the theorem of Harish—Chandra (see [4]) allows to extend the result in eq. (113)
to semisimple Lie groups, in which case, the reconstruction formula is again Eq.
(107) with n = 1.

5.2. Tomography with the Weyl-Heisenberg group. Another example, often
discussed in applications because of its obvious experimental and historial origins,
iss the Weyl-Heisenberg group which, contrary to the examples discussed in the
previous section, is a nilpotent non-compact group.

Quantum state tomography, as discussed in the introduction, recall Eq. (7),
relies on the fact that the position and momentum operators Q, P, which satisfy
the canonical commutation relation® [Q, P] = i1, determine a realization of the Lie
algebra of the Weyl-Heisenberg group (see for instance [34] and references therein).

Let (V,w) be a symplectic, 2n-dimensional real vector space, i.e., w is a non-
degenerate skew-symmetric form on V', and consider the (2n+ 1)-dimensional Weyl-
Heisenberg group W, which is the central extension by the group U(1) of the Abelian
group V with respect to the 2—cocycle defined by w, that is, the Weyl-Heisenberg
group W, is the set of pairs g = (v,u) € V x U(1), v € V, u = €% € C, with the
following composition rule:

(115) gog = (vyu)o (Vi) = (v+ v uu ez*VV)),

The Haar measure in W, is given by the product measure of the standard Haar
measure on V, i.e., the Lebesgue measure associated to the volume form w?", and
the biinvariant Haar measure on the group U(1), that is, ds/2w.

The irreducible unitary representations of the Weyl-Heisenberg group W,, may be
constructed from a Weyl system on the symplectic space (V,w), that is, consider a
strongly continuous map W that associates to any vector v € V' a unitary operator
W (v) acting on a Hilbert space H and satisfying:

(116) W)W (V') =W(v+v)exp (;w(v,v')) ,

from which we get the Weyl exponentiated form of the canonical commutation
relations:

(117) W)W (') =WHE)YW(v)exp (iw(v,v')).

Von Neumann theorem [21] shows that it is always possible to realize the Hilbert
space H as the space of square integrable functions with support in £ where £ is any
Lagrangian subspace of V, i.e., £ is a maximal isotropic subspace of V. The choice
of a Lagrangian subspace induces the corresponding polarization, V = L& L*, thus,
any vector v € V, has the form v = (u,v) € L& L*.

The unitary operators W (v) realizing the elements of the group are the usual
displacement operators: (D(mu,v)1)(x) = e**(x + v), and a unitary irreducible
representation is provided by the expression:

(118) Ug) = U v,e™) = D(p,v)e™

2In physical applications there is a dimensional constant 7 on the formula, that will be taken
to be 1 in what follows.
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or, even more explicitly,
(U(p,v,e®))(x) = e e y(x +v),
for any function ¢ € L?(L,d"v). Such representation is square integrable. In fact,

for any v € L?(L,d"v) the map (x,v) — 1(x + v)1(x) is measurable and, as it
can be checked easily:

/ﬁ dnz /L & (G T D)) = [l

Then, the map (v, u, e%*) — (U(v, , €)1, 1), satisfies:
1

o d"vd"uds |(U(v, p, e, ) > =
Y8 Wi

:% Ozﬂds/ﬁd"u/*d”u
:/Ld”u/*d”,u /ﬁd"@e—i“'xmzp(x)
= [aw [ e et = il

and the representation is square integrable with virtual degree d = 1.

The self-adjoint operators Q, P associated to the previous irreducible represen-
tation that provide the representation of the Lie algebra tv,, of the Weyl-Heisenberg
group W, described in Eq. (59) are given by the so called standard canonical
quantization:

2

/ d"z e e X y(x + v)h(x)
c

2

(QU)(x) =xp(x),  (PY)(x) = —i%ﬁ ,
and
(119) U(exp(t€)) = Ul(tu, tv, eist) _ oistl oit(nQ+vP) 7

where £ € v, denotes a generic element on the Lie algebra of the Weyl-Heisenberg
group, that is, £ = (u, v, s). The Lie algebra of the Abelian group V is identified
with V itself (and the exponential map is the identity) and the Lie algebra of U(1)
is identified with R with exponential map exp(s) = €*. In (119), with a slight
abuse of notation, we have indicated by p, v the coordinates py, vk, of the elements
of the Lie algebra (i.e., vectors on the linear space V) u, v respectively, so that
pQ+vP =30 Qi + viPy.
According with Thm. 4.2, Eq. (71), we obtain the tomogram for the state o:

Wo(X;€) = Tr(o 6(X1 - (©,8))),

for all £ = (p,v,s) € o, and X € R, that again, using the more convenient
notation u, v for the coordinates of the elements on the Lie algebra and relabelling
the variable X — s as X, we get the well-known expression:

Wo(X;p,v) =Tr(e6(X1 - uQ —vP)),
that was discussed in the Introduction, Eq. (7).
Finally, the reconstruction formula, Eq. (79), for the state o reads as

1

120 = —
(120) =5l

Xo (v, 8) U, v, ) d"pd v ds,
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but then, because of Eq. (73), we get:

oo

1 . .
— d"u d"Vds/ AdX W, (X — 5,1, v) U(p, v, €)1 X
2 W

(121) o

— 00

Wa (X, p, v) X1=1Q=YP) g x qny dm .

R2n+1

If we compare this equation with (2) we see that are similar only except that the
role of the probability density f(g,p) is played now by the density operator o and
the role of classical position and momentum ¢ and p is played by the operators Q
and P.

5.3. Tomograms of an ensemble of quantum harmonic oscillators. As an
application of the quantum Radon transform we will exhibit the tomograms of pure
states of an ensemble of quantum harmonic oscillators described by the Hamiltonian
operator:

n n
1
(122) H= ,;,1 wkazak + 3 ,;,1 Wi,

with ay, a;rc standard creation and annihilation operators satisfying the canonical

commutation relations:
(123) [akaaz/] = 616]6’7 [akaak’] = [a-};’a’z/] =0.

Let p be the pure state corresponding to the system in which each particle has
momentum k;, ¢ =1,...,n:

(124) p:|1k:17~--alkn><1k1>~-~71kn|~
Recall that the annihilation and creation operators act on the ground state |0, ..., 0)
as:
J
(125) afl0,...,0)=10,...,1,...,0),  a;[0,...,0) =0.

The tomogram of the state p associated to the representation of the Weyl-Heisenberg
group W,, discussed in the previous section, is given by:

(126) Wp(X.1.1) = Te(pS(X1 — yQ — 1P))
Introducing holomorphic variables w; = £ ’;%V" , we get:
Wo(X,w,@w) = Tr(pé(Xfﬁwawwﬂ))

= (Ola; - and(X —wW-a—w-alal - aJ{|0>
i OoeikXefk2\w\2/2
2 J_ o
—ik(W-at+w-a’
. 1 ... n w DR .
(127) (Olay -+ a, e~ @ atwal) ot qt0)dk

From the canonical commutation relations (123) we get [aﬁ,a}] = nazflékﬁ
therefore:

(128) <O|ake_ik“’ia;:(0|(ak—ikzwi6kj), e~ Wi o110) = (af — ikw0k;)|0).
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Hence, using this result and the Baker-Campbell-Hausdorff formula repeatedly, we
get:

1 R
(129) W,(X, w,®) = 7/ eFX KW /a(1 k200, )2) - (1 — k2w, |?)dk

2w
1 d2 d2n _ 2
:7) <1+a1 —l—an)e u;i'ﬁ,

71'(“2 + 2 dXx?2 dxzn
where
n
a1 = Z |wi1|2 = |’U}|2 = 271(“’2 + V2)7
=1
n n
ay = > fw, Plwi,|? =272 () (g, +v5)
i1,42>11 i1, 42>11
n
Qp_1 = Z |wi1 |2 e |win|2 = 27(7171)2 (:U’fl + Vi21) e (’u?n + ViQn)a
i1, 12 >01,..., i1,92>91,...,
1> >0 1> >
(130) an = wi? - Jwn | = 27" (uf 7)< (up + )
Thus, using the Hermite polynomials:
2 d™ 2
we finally obtain:
1 (03] X
132) W,o(X,u,v) = — |1+ H
(132) Wo(X,p.v) m(pu? + v?) I Vi +v?
Qo X __x?
+ e wnitr? |
(/“"2 +V2)n 2n \/lm
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