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Abstract: A low-cost intensity-based polymer optical fiber (POF) sensor for fuel level 

measurements in paramotoring and powered paragliding is presented, exploiting the 

advantages of the optical fiber sensing technology. Experimental results demonstrate that 

the best option can be performed by stripping the fiber at the desired discrete points to 

measure the fuel level as well as with a gauge-shape fiber bending. The prototype has a 

good linearity, better than 4% full scale (F.S.), and sensitivity around 0.5 V per bend are 

obtained. Hysteresis due to residual fluid at the sensing points is found to be less than  

9% F.S. 
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1. Introduction  

Most of the basic principles and techniques for fiber-optic sensors (FOS) have been known for more 

than 40 years, but industrial applications are currently growing fostered by increasing diffusion of  

low-cost telecommunication components. Optical-fibre development to date has concentrated mostly 

on their use in telecommunications and data transfer systems, thus the principal stimulus for optical 

fibre sensors technology has been to provide a basic component set and also to facilitate specialist 

technologies through which slightly different versions of optical fibers can be fabricated purely for the 

sensing community. The number of fiber-optic sensors products can be expected to continue growing 
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tremendously in the years to come as rapid progress continues to be made in the related optoelectronics 

and communications fields. 

Fiber-optic sensors exhibit a set of very attractive characteristics, including immunity to 

electromagnetic interference, small-sized capability, resistance to hostile environments that may 

comprise hazardous chemicals or of any other kind, geometric versatility, ruggedness, sensor 

multiplexing and distributed sensing over a single fiber. On the other hand, their main disadvantages 

are sometimes their high cost (compared to other technologies), the unfamiliarity of the end user 

together with unexplored fields of application. There are numerous realizations of fiber-optic sensors 

but one extensively investigated transducing mechanism in optical sensing applications is the intensity 

modulation of the propagating light. Approaching simple configurations, intensity sensors modulate 

the optical power loss as the physical magnitude changes, thus providing the measurement as an 

optical intensity modulation signal thus facilitating their final commercialization and market spread. 

Intensity-based fiber-optic sensors have been demonstrated in literature to be very reliable, simple in 

concept, easily made selective to a specific measurand, easily integrated in optical networks by means 

of different multiplexing techniques, and a cost-effective sensing approach for a wide range of 

applications, and these are still increasing compared, for instance, to interferometric solutions [1]. 

On the other hand, industry frequently needs to measure fuel levels in tanks such as public-transport 

systems or service stations and any other large containers which implies exposure to harsh or highly 

flammable environments, as in the case of petroleum derivatives. Different methods such as mechanical, 

capacitive, inductive, ultrasonic [2], acoustic [3] or optical can be implemented. Typically, mechanical 

and ultrasonic methods are used to detect the level of solid materials that are in the form of dusts 

whereas capacitive and optical methods give better results in detecting fluid levels. Traditionally, in the 

case of gasoline stations, a common measurement method is to plunge a measuring rod into the 

underground tank to determine the fuel level. This rudimentary method tends to be slow and 

inefficient. In the automotive industry the fuel level is measured by a float connected to a variable 

resistance indicating the level of the liquid inside the tank. The main disadvantage of this system is that 

an electrical current must be introduced into the flammable (or simply conducting) liquid. In particular, 

if a flammable environment is a critical concern for industrial sensor applications, the optical solution 

is one of the best candidates to provide an intrinsically safe fuel level measurement scenario thanks to 

the passive nature of the light and dielectric properties of the fiber. 

Fiber-optic sensor solutions have attractive properties for liquid-level measurements in practice. 

Moreover, submersion or flooding can be monitored by detecting radiation losses in bends and 

reflective intensity variations because of surrounding material changes. These applications can be 

carried out in oil tanks, containers, bio-mass boilers in condominiums, flood areas and underground [4,5], 

or even in lead-acid batteries [6]. At the same time, it should be outlined that in the optical sensing 

field, fiber-optic sensors can be constructed using polymer optical fibers (POFs) or silica-based 

versions, both singlemode (SMF) and multimode (MMF), but POFs have large numerical apertures, 

simple alignment to optical devices, high coupling efficiency, more flexibility, and lower cost. These 

are some reasons why new POF-based sensors have appeared and are still appearing, most of them 

based on optical power intensity detection. However, for remote monitoring over long distances, POFs 

have inherent disadvantages such as high attenuation losses and incompatibility with commercialized  

silica-based optical fibers. 
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In fact, optical fiber sensors for liquid level measurement have been extensively studied. Most 

liquid-level optical sensors are discrete or point-level sensors. In some cases, the sensor is a sensitive 

element which is submerged slightly in the liquid to indicate its presence, this element can be a  

non-fiber specific attached head such as a prism [7,8] or a reflective configuration based on fragile 

tilted fiber-optic [9], both based on total internal reflection (TIR). In those reflective configurations, 

multipoint measurements are based on using a new single receiving fiber for each measuring point, 

meaning a complex reception unit with wider area and weight [10]. Using these multiple receiving fibers, 

the multipoint approach is also used in some U bend configurations [6] or coupler configurations [11]. 

Other level sensors are based on serial U bend configurations but using cladding removed and  

core-polished bends, but these are more fragile configurations in the long term [12]. Some 

configurations are based on rod-type or U bend sections all along the same fiber, but with the jacket 

completely removed from the fiber [13], being less robust to undesirable wetting of liquids with high 

surface tension. Other sensors use fibers with clad and unclad zones [14] related to a specific code that 

are not easily automated for manufacture and they also need complex reception schemes, e.g., an 

optical decoding system, being difficult to develop portable devices in that case [15]. Intrusive 

schemes based on Fiber Bragg Grating (FBG) and Long Period Fiber Grating (LPG) sensors with mm 

resolution have also been reported [16], but they are fragile and non cost-effective technologies. On the 

other hand, optical solutions for liquid-level detection allowing continuous measurements have also 

been reported [17,18]. Nevertheless, in the solution proposed in [18] objective lenses need to be used 

as the light launched inside the tank tends to scatter and spread.  

In this paper a U shaped bend configuration with only the jacket removed at discrete measuring 

points and flexibility to be placed on those non-symmetric points where the users need to know the 

liquid level will be proposed. A single fiber will be used to address and collect information for all 

sensing points [19]. 

Figure 1. Real application scenario. 

 
 

Paramotoring and powered paragliding are very recent sports which are seeing a growing demand 

for users’ entertainment. Some pictures of the real application scenario are shown in Figure 1. A possible 
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classification depending on basic features is given in Table 1. At the same time both sports are 

continuously increasing the demand of new and more sophisticated flight instrumental, but usually 

lack of real fuel level measurement, and estimations of the latter have to be done by relating the tank 

volume and the fuel consumption by mental arithmetic. Some exceptions can be found [20,21], but 

fuel probes work on the principle of changing capacitance and with specific housing to reach 

intrinsically safe sensors. Taking advantage of the aforementioned polymer optical fiber properties, in 

this work a compact POF intensity-based sensor for fuel level monitoring is developed thus providing 

a more significant safe flying scenario. The device provides all the advantages of POF sensors with 

tolerable impact in the total cost considering the last model that are available in the market. It is 

estimated a total overprice in the final product to the end users of less than 1%.  

Table 1. Paramotoring classification and basic features. 

Range Paramotoring basic features 

 
Weight 

(kg) 

Cylinder 
capacity  

(cc) 

Power 
(HP/rpm) 

Pilot max. 
weight 

(kg) 

Propeler 
length 
(cm) 

Fuel tank 
(L) 

Low-end <23 <100 15/9,200 70 90 5 L 
Mid-range 25 125 22/10,000 120 115 9–13.5 L 
High-end >26 >130 29/10,000 200 125 13.5 L 

2. Sensor Description 

The POF sensor described in this section is an intrinsic, quasi-distributed and intrusive  

fiber-optic measuring device for discrete-monitoring of fuel levels. The measuring points are 

distributed along the fiber length depending on specific requirements, and built on a cylindrical tube 

vertically positioned in a tank [19]. The principle of operation of the sensor is based on radiation losses 

in bends of optical fibers depending on the reflection coefficient at the boundary between two different 

media, at the measuring points where the fiber-optic sensor is located. The reflectance depends on the 

change in the refractive index of the surrounding medium. For the same incident angle the reflection 

coefficient is decreasing when the measuring point is immersed into a liquid having a higher refractive 

index. Finally, this reflection coefficient tends to zero as the refractive index of the surrounding 

medium approaches the fiber core refractive index. This implies that the received power at the output 

fiber end tends to decrease considering air (no-liquid), water or fuel, respectively. 

For manufacturing the sensor, a low-cost commercial step-index PMMA (polymethylmethacrylate) 

POF of 980/1,000/2,200 µm core/cladding/jacket diameters, respectively, was used, with core and 

cladding refractive indices of nco = 1.492 and ncl = 1.417, respectively, and numerical aperture of 0.47. 

Restrictions imposed by the fuel tanks (typically up to 12 litres of fuel capacity and with specific 

shapes and access valves, see Figure 1 and Table 1) used in this industrial sector led us to evaluate 

different sensing prototypes vertically positioned inside the tank in order to test the most suitable 

option for this application, such as the type of bending (non-bend, twist- or gauge-shape). These 

different probes were prepared in order to investigate the sensing capabilities for several interfaces, 

i.e., air, water and fuel, although being the latter the fluid of interest. It should be noted that refractive 

indices of these fluids are nair = 1, nwater = 1.33, and nfuel = 1.42, respectively. 
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The block diagram of the liquid level detection sensor is illustrated in Figure 2(a). A low-cost LED 

(IF-E96) operating at λ = 650 nm was employed to launch optical power to the POF-based sensing 

probe. At the reception stage a photodiode (IF-D91) was used thus obtaining an output voltage signal 

directly related to the level of the fluid in combination with an optoelectronic unit working as a  

liquid-level transducer. Finally an array of warning LEDs was implemented for full-time visual 

inspection by pilots. Commercial discrete electronic components were used for this control and 

monitoring stage. 

Figure 2. (a) Block diagram of the fuel level measuring system; (b) Photograph of a 

gauge-shaped POF-based fiber-optic sensor prototype for fuel level measurements;  

(c) Block diagram of the twist-shape POF fiber-optic sensor prototype. 

(a) (b) 

 
(c) 

The gauge-shaped sensing probe, illustrated in Figure 2(b), was fixed to a metallic stick providing 

more robustness to the sensor, with bending radius ~15 mm and the jacket only removed at the 

measuring points. This bending radius comes from a trade-off between sensitivity of the sensor and 

1. Optical source

2. POF sensor

3. Fuel tank

4. Photodetector
5. Control electronics

+  monitoring
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radiation loss. As the bending radius decreases the detected optical power also decreases. Moreover, 

the high losses due to tight bends would reduce the number of measuring points that could be employed 

in the same fiber, for the proposed multilevel fuel level sensor. From ray tracing simulations [22], it is 

observed that in a POF fiber with a cladding thickness of 10 µm and a 9 mm bend radius, 4 dB 

radiation losses are obtained. In this design bend radius is increased up to 15 mm for having less losses 

per bend, allowing more measuring points in the same output full range. Figure 2(c) depicts a block 

diagram of the twist-shaped POF fiber-optic sensor prototype as well as some photographs of the 

sensing heads.  

Figure 3. Relative optical power detected for different fluids and sensing probes as a 

function of the level of fluid. (a) Non-bended fiber sensing prototype; (b) Gauge-shaped 

fiber sensing prototype; (c) Twist-shaped fiber sensing prototype. 

 
(a)

 
(b) 

 
(c)

3. Experimental Results and Discussion 

Experimental results are given in the following figures. A fuel tank of 6 L of capacity has been used 

for the experiments. The sensing points have been accordingly placed in height for measuring the fuel 

level in 0.5 L steps. This gives a total number of 12 sensing points within the fuel level full-scale (F.S.) 

analyzed. Figure 3(a) shows the relative optical power detected at reception versus fluid level  

(in L) for several sensing probes manufactured with different shapes. An average factor of Avg = 4 for 
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each fluid at each fluid level condition has been applied. Time interval between each measurement was 

10 seconds. As expected, as the refractive index of the external fluid increases and reaches values 

closer to that of the fiber (nco = 1.492), the reflection coefficient tends to zero and light is radiated 

outside the fiber. Consequently, less power is detected at reception. This fact can be seen comparing 

the experimental curves when the sensing probe is immersed into fuel compared to the other cases. 

Additionally, attending to the probe manufacturing best results in terms of sensitivity are obtained 

when applying a twist-shaped fiber (i.e., full-turns of spire in the fiber). Linear regression coefficients 

concerning fuel level measurements were found to be r = 0.998 and r = 0.9928 for twist- and  

gauge-shaped sensing prototypes, respectively. It should be noted that no partial removal of core 

technique by polishing has been applied, although expecting a sensitivity enhancement [11] but being 

more fragile. The changes of the optical power signal detected at reception, proportional to the position 

and level of the liquid, were not a limiting factor for the application considered. Furthermore, standard 

deviation of measurements applying this technique tends to be higher. This fact can be seen as an error 

source dramatically limiting control electronics unit performance. For each probe curves of positive 

and negative fuel volume gradient were similar but did not overlap. In other words, the hysteresis of 

the sensing probes was small but observable. Nevertheless, it has been proposed for the prototypes to 

strip the fiber only at the desired measuring points thus its contribution can be minimized. The 

hysteresis was found to be less than 10% for all cases. 

Table 2. Statistics of the experimental data in fuel level measurements at 650 nm. 

 Fuel level measurement 

 Linearity a Sensitivity σ b 
Averaged optical 
power received c 

Hysteresis 

No-bend 0.9981 −0.07 dB/level ±0.05 dBm −18.8 dBm <11% F.S. 
Gauge 0.9928 −0.22 dB/level ±0.13 dBm −30.6 dBm <8% F.S. 

Full-turn twist 0.998 −0.47 dB/level ±0.38 dBm −50.1 dBm <9% F.S. 
a Given by the linear regression coefficient, fuel level full-scale (F.S.); b Maximum standard 
deviation in measurements, fuel level full-scale (F.S.); c Measured at half-capacity, i.e., 3 L. 

Focusing on experimental results on fuel level, Figure 4 shows the received optical power at 

reception stage for different sensing probes. Four measurements per fuel level have been carried out. 

From the experimental data, best sensitivity and highest linearity is obtained for a twist-shaped fiber 

configuration. On the contrary, less optical power is detected (this is due to the nature of the fiber 

bending shape) and larger standard deviation (variance) of measurements is achieved. Table 2 resumes 

all measurements statistics. Nevertheless the gauge-shape fiber sensing prototype was finally 

implemented. Key factor of decision was the low level of the optical signal detected for the case of a 

spire of fiber (i.e., twist-shaped). Nevertheless this fact could be easily overcome by launching more 

optical power (i.e., using a high-power LED or laser diode) thus increasing the final deployment cost 

of this optical solution. Other solution could be to use a high-sensitive optical receiver but not leading 

to a cost-effective solution. And simplest and lowest cost solution as possible was considered to be the 

primary target for a final market spread. It should be noted that same set-up but employing a LED 

operating at λ = 850 nm was also tested. Same sensing probe operating conditions and averaging were 

also applied. Results are depicted in Figure 5 and summarized in Table 3. Despite the sensitivity 
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enhancement, results showed a worse sensor linear response, and similar hysteresis was achieved. 

Results also showed that the optical power detected at reception decreased around a mean value of 

−3.9 dB despite the better photodiode performance at 850 nm. This is due to the dramatically higher 

POF losses at 850 nm [23], although POF length for the experiment was less than one meter. 

Nevertheless the limiting factor was the standard deviation (σ) which makes indistinguishable the fuel 

level analysis from 0.5 to 2 L, a range of prime importance in such scenario. 

Figure 4. Optical power detected at reception versus fuel level for different sensing probes 

at 650 nm. (a) Non-bended fiber sensing prototype; (b) Gauge-shaped fiber sensing 

prototype; (c) Twist-shape fiber sensing prototype. 

 
(a)

 
(b) 

 
(c)

From the above discussion, the best option is performed by simply stripping the fiber at the desired 

discrete multi-points with a gauge-shape bending, see Figure 2(b). Thanks to the POF flexibility the 

fiber is placed inside the tank through the input fuel valve. By means of a simple relation, and taking 

into account the tank geometry, the quantity of fuel (L) can be directly related to its height inside the 

tank, see Table 4. Consequently, at those points, the fiber was stripped and gauge-shape bended 

achieving the discrete points where the fuel level is being measured. Table 4 also shows the threshold 

voltage criteria implemented at the control electronics unit to discriminate the fuel level inside the 

tank. Level threshold criteria takes into account users’ requirements, for instance, 2 L of fuel usually 

correspond to 40 minutes of remaining flight time, although depending on flight conditions. The 
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calibration curve of the prototype versus fuel level is represented in Figure 6. Linear regression curve 

of the output voltage versus fuel level is also represented in solid line. Six warning areas have been 

configured, as users’ request, and are illustrated within color regions of Figure 6. Nevertheless, 

scalability of the sensor system (both the POF-based prototype and the optoelectronics unit) would 

permit the increase of warning regions as desired. In addition, the control electronics stage has been 

designed to permit a recalibration of the threshold voltages shown in Table 3, due to the usage of 

different fluids, the usage of fuels with slightly different refractive indices, or undesirable power losses 

from the optical fiber system (e.g., thermal aging from the optical source), although a previous 

calibration performance should be required.  

Figure 5. Optical power detected at reception versus fuel level for a gauge-shaped fiber 

sensing probe operating at 850 nm. 

 

Table 3. Statistics of the experimental data in fuel level measurement for gauge-shaped 

fiber sensing probe at 650 nm and 850 nm, respectively. 

 Fuel level measurement 

 Linearity a Sensitivity σ b 
Averaged optical 
power received c 

Hysteresis 

λ = 650 nm 0.9928 −0.22 dB/level ±0.13 dBm −30.6 dBm <8% F.S. 
λ = 850 nm 0.9751 −0.29 dB/level ±0.19 dBm −34.5 dBm <9% F.S. 
a Given by the linear regression coefficient, fuel level full-scale (F.S.); b Maximum standard 
deviation in measurements, fuel level full-scale (F.S.); c Measured at half-capacity, i.e., 3 L. 

Table 4. Volume of fuel (in L), V(L), and corresponding heights (in cm), H(cm), inside the 

tank. Decision criteria (threshold voltage) implemented at the control electronics unit. 

 Fuel level fiber-optic intensity-based discrete-point sensor performance 
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Figure 6. Calibration curve of the sensor prototype versus fuel level. Linear regression of 

the output voltage from the signal conditioning stage is represented in solid line. 

 

It should be mentioned that although temperature has been proven to change the optical power 

transmitted through the fiber, in the field of paramotoring and paragliding, fuel tanks are placed 

separately enough thus the motor heating source does not affect the fuel tank and, consequently, the 

sensor head. Minimum flight turbulences, horizontal courses and soft turns are the most usual flight 

conditions in this transport media and so variations in the fuel level measurements due to these 

circumstances can also be considered negligible in the performance of the sensor head. Anyway, in 

determined extreme cases (for instance, hard turns) the fuel could reach another height in which a 

sensing head is located. This fact can be considered as a residual fuel that remains on the surface of the 

fiber bend but from the experimental trials performed at laboratory, a recovery time of 5 minutes is 

estimated in order to return to the measurement of real fuel volume. Additionally, although extreme 

altitudes up to 5,400 m have been achieved, most flying recreational free-time activities are done 

below 150 m above ground level. This altitude corresponds to an environmental temperature decrease 

of less than 1 °C according to the International Standard Atmosphere (ISA). Although no real-field 

tests have been carried out, variations of the optical power detected due to this fact can be estimated to 

be negligible and adequately compensated for by the implemented control electronics. 

4. Conclusions 

In this paper, a POF-based fiber-optic sensor for fuel level discrete-monitoring applied to 

paramotoring and powered paragliding is presented. The optical sensing solution described performs 

an intrinsic, quasi-distributed and intrusive fiber-optic measuring device. The measuring points are 

distributed along the fiber length and built on a cylindrical tube vertically positioned in a tank. The 

principle of operation of the sensor is based on radiation losses in bends of optical fibers depending on 

the reflection coefficient at the boundary between two different media. The sensor system has been 

successfully demonstrated in the laboratory for three different surrounding media, and experimental 

results of three different prototypes are presented and discussed. A gauge-shaped fiber solution has 
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been selected following previous discussion and calibration curve output voltage versus fuel level has 

been obtained, showing a non-linearity error of less than 4% F.S.; with sensitivities of 0.5 V per bend. 

Hysteresis due to residual fluid at the sensing points is found to be less than 9% F.S. This fuel level 

POF sensing solution is inexpensive with a very simple fabrication process, providing considerable 

cost savings from other fuel level sensors in the same field. 

In addition, the control electronics, acting as a fuel-level transducer, provide a checking alternative 

to pilots by means of a hand-held visual electronic display compared to the traditional non-automatic 

visual inspections. Given that the optical fiber is the only part of the measuring device introduced into 

the tank- that is, only light and plastic interacts with the liquid- the method is safe, without electrical 

sparks that could cause a fire or a tank explosion. 

Acknowledgements 

This work has been supported by Spanish CICyT project TEC2009-14718-C03-03 from the Spanish 

Ministry of Science, and by project FACTOTEM-II-CM: S2009/ESP-1781 of Comunidad Autónoma 

de Madrid. Authors want to thank Engineer Juan José Viera for his technical support in doing some of 

the measurements and helpful suggestions. 

References and Notes 

1. López-Higuera, J.M. Handbook of Optical Fibre Sensing Technology; John Wiley & Sons Inc.: 

New York, NY, USA, 2002. 

2. Chern, E.J.; Djordjevic, B.B. Nonintrusive ultrasonic low-liquid-level sensor. Mat. Eval. 1990, 

48, 481–485. 

3. Shannon, K.; Li, X.; Wang, Z.; Cheeke, J.D.N. Mode conversion and the path of acoustic in a 

partially water-filled aluminum tube. Ultrasonics 1999, 37, 303–307. 

4. Sohn, K.R. Liquid sensors using refractive intensity at the end-face of a glass fiber connected to 

fiber-Bragg grating. Sens. Actuat. A Phys. 2010, 158, 193–197. 

5. Kuang, K.S.C.; Quek, S.T.; Maalej, M. Remote flood monitoring system based on plastic optical 

fibres and wireless motes. Sens. Actuat. A Phys. 2008, 147, 449–455. 

6. Cao-Paz, A.M.; Marcos-Acevedo, J.; del Río-Vázquez, A.; Martínez-Peñalver, C.;  

Lago-Ferreiro, A.; Nogueiras-Meléndez, A.A.; Doval-Gandoy, J. A multi-point sensor based on 

optical fiber for the measurement of electrolyte density in lead-acid batteries. Sensors 2010, 10, 

2587–2608. 

7. Raatikainen, P.; Kassamakov, I.; Kakanakov, R.; Luukkala, M. Fiber-optic liquid-level sensor. 

Sens. Actuat. A Phys. 1997, 58, 93–97. 

8. Richmond, R.D. Optical Point Level Sensor with Lens. European Patent 0,670,478, 1995. 

9. Bottacini, M.; Burani, N.; Foroni, M.; Poli, F.; Selleri, S. All-plastic optical-fiber level sensor. 

Microw. Opt. Technol. Lett. 2005, 46, 520–522. 

10. Yang, C.; Chen, S.; Yang, G. Fiber optical liquid level sensor under cryogenic environment.  

Sens. Actuat. A Phys. 2001, 94, 69–75. 

11. Montero, D.S.; Vázquez, C.; Möllers, I.; Arrue, J.; Jäger, D. A self-referencing intensity based 

polymer optical fiber sensor for liquid detection. Sensors 2009, 9, 6446–6455. 



Sensors 2012, 12 6197 

 

 

12. Lomer, M.; Arrue, J.; Jauregui, C.; Aiestaran, P.; Zubia, J.; López-Higuera, J.M. Lateral polishing 

of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor.  

Sens. Actuat. A Phys. 2007, 137, 68–73. 

13. Henning, W. Rod-Like Aparatus for Determining the Existing Level of Liquids in Containers, 

Channels, or the Like. US Patent 4,482,602, 1984. 

14. Betta, G.; Pietrosanto, A.; Scaglione, A. A gray-code based fiber optics liquid level sensor.  

IEEE Trans. Instr. Meas. 1998, 27, 174–178. 

15. Gouzman, M.; Luryi, S.; Semyonov, O. Fiber-optic sensor for measuring level of fluid.  

US Patent 2004/0021100 A1, 2004. 

16. Wang, J.N.; Tang, J.L. Feasibility of fiber Bragg grating and long-period fiber grating sensors 

under different environmental conditions. Sensors 2010, 10, 10105–10127. 

17. Morris, J.A.; Pollock, C.R. A digital fiber-optic liquid level sensor. J. Lightwave Technol. 1987,  

LT-5, 920–925. 

18. Vázquez, C.; Gonzalo, A.B.; Vargas, S.; Montalvo, J. Multi-sensor system using plastic optical 

fibers for intrinsically safe level measurements. Sens. Actuat. A Phys. 2004, 116, 22–32. 

19. Montero, D.S.; Vázquez, C. Sistema de medición del nivel de combustible en ultraligeros. 

Spanish Patent 2,339,205, 2011. 

20. Homepage of Paramotor. Available online: http://www.paramotor.home.pl (accessed on 7 May 

2012). 

21. Homepage of NAC-INTERCOM. Available online: http://www.nac-inter.com (accessed on 7 May 

2012). 

22. Arrue, J.; Zubia, J.; Fuster, G.; Kalymnios, D. Light power behaviour when bending plastic 

optical fibres. IEE Proc. Optoelect. 1998, 145, 313–318. 

23. Ziemann, O.; Krauser, J.; Zamzow, P.E.; Daum, W. POF Handbook: Optical Short Range 

Transmission Systems, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


