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Two different approaches on a directed (and possibly weighted) network G are considered in order
to define the PageRank of each edge of G with the focus on its applications. It is shown that both
approaches are equivalent, even though it is clear that one approach has clear computational advan-
tages over the other. The usefulness of this concept in the context of applications is illustrated by
means of some examples within the area of cybersecurity and some simulations and examples within
the scope of subway networks. Published by AIP Publishing. https://doi.org/10.1063/1.5020127

The impressive success with which complex networks have
been used in different fields to model the interactions
between the components of a variety of complex systems
is well known.1–25 Classic PageRank algorithm26,27 con-
stitutes a theoretical approach which originally provides
a precise and quantitative measure of the relevance of a
webpage by assigning authoritative weights to each page.
Beyond its theoretical definition, this algorithm and its
subsequent extensions have proven their effectiveness and
versatility in a wide range of applications of all kinds
where the arrangement and ranking of different elements
is required.27–42 In recent years, new tools and develop-
ments related to this concept and its applications have
progressively emerged with the advances and new expan-
sions of complex networks theory.27–37 The aim of this
paper is to compare the definition of edge’s personal-
ized PageRank of a network obtained via the classical
PageRank algorithm with that obtained through the line
graph associated with this network, showing that both
approaches are equivalent. Several examples and simula-
tions drawn from the field of cybersecurity and subway
networks illustrate its usefulness in real applications.

I. INTRODUCTION

Line graphs have been studied for almost 90 years (the
first time this concept appears in the literature was in 193243).
During this time several problems related to them have drawn
people’s attention44–49 since, among other things, many prop-
erties and relationships in a network that depend only on
the adjacent edge-to-edge relationship are immediately trans-
ferred to its associated line graph as equivalent properties that
depend on the adjacent node relationship.

But surprisingly, when studying networks with a
huge number of nodes and edges, line graphs have only
been considered in a reduced number of studies and
applications.25,54,66–70 Particularly, in Ref. 54 it is shown that
the study of centrality in complex networks within the context
of urban design based on the primal graph representation gives
us similar results than the corresponding analysis made using

its associated line graph. In Ref. 25 different approaches to the
definition of the line graph associated to a multiplex network
were introduced and the potential utility of these approaches
was illustrated by means of some simulations and examples in
the context of subway networks.

The concept of line graph offers a good representation
of the network properties when it is appropriate to give more
importance to the edges of a network than to its nodes.
Some examples of this comes from urbanism, transport net-
works and urban traffic networks.25,50–54,61–65 But this concept
also has a particularly significant application in the field of
cybersecurity and intentional cyber-risk.34 In fact, line graphs
provide us with a natural way to define the concept of accessi-
bility of a link within a computer network.34 When computers
are connected to each other and to the Internet, the security
threats increase exponentially. In this regard, it is worth high-
lighting in a very significant way that in the early days of
this discipline there were not many methodologies to assess
risk. This is due, among other things, to the fact that, in order
to determine the probability of a specific server, network or
organization being attacked, it makes little sense to rely on
observing how often this type of event has occurred in the
past (its frequency in the past). Traditional methodologies
determine the amount and criticality of vulnerabilities. The
standpoint considered in Ref. 34 is based on firstly defining
what is considered by potential attackers to be the most valu-
able assets, locate them inside a network, and then calculate
what is the probability that attackers can choose to follow one
path on the network instead of another, or jump to a particular
server instead of another.

In this context, one of the main targets of this model is
to determine what types of attacks are most likely to occur,
leading to a model of cyber risk underpinned by the following
pillars: game theory, based on Nash’s analysis of equilibrium,
and complex network theory, which determines the physical
and logical structure where the game takes place.34 In order
to properly incorporate in the model the expected benefit of
the attacker, three factors must be considered: the expected
income (the cash equivalent value for the attacker), the esti-
mated cost or effort that the attacker must make to achieve his
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objective, and the risk for the attacker along with its potential
consequences. In this way, when focusing on the motivating
elements for the attacker, it is necessary to consider three
parameters in the model, called anonymity (easiness with
which the identity of the attacker is determined), accessibility
(easiness with which the attack can be carried out) and value
(the potential profitability of the attack).

The accessibility of nodes and edges for this kind
of network is calculated from the personalized PageRank
algorithm31,34 with a personalization vector suitable for mod-
ifying the PageRank vector.31,36,42,71 But one of the problems
that arises in this context is to relate the accessibility of the
edges of our network with that of the nodes. In the follow-
ing we will show that the accessibility of edges calculated
from the application of the classical PageRank algorithm with
a suitable personalization vector and the value obtained for
edge’s accessibility that follows from the use of the associated
line graph L(G) are equivalent. In this respect it is important to
highlight the computational advantages obtained in this con-
text when working with G instead of L(G). Moreover, as we
will see in Sec. VI, the use of a suitable personalization vector
will allow us to study other types of problems related to the
planning of the flow of passengers through the metro lines.

The structure of the paper is as follows: Section II is
devoted to introducing the basic concepts and notations that
will be used during the rest of the paper and to presenting
the problem that will be addressed in the following sections,
including an outline of the PageRank algorithm foundations.
Section III describes the most natural way to obtain the rank-
ing of the edges of a targeted network using the classic
PageRank of nodes. In Sec. IV, after defining the weighted
line graph associated to a directed and weighted line graph,
this definition is used to introduce a PageRank approxima-
tion of edges different from the one previously considered. In
Sec. V we prove that the two approaches contemplated are
equivalent. Section VI shows the application of this result to
the context of subway networks and Sec. VII is dedicated to
presenting the conclusions of this work, emphasizing the com-
putational advantages of one approach versus the other for
applications.

II. PRELIMINARIES AND NOTATION

Throughout this paper we consider a directed network
G = (X , E), where X = {1, . . . , n} is the set of vertices or
nodes and E ⊆ X × X is the set of edges. In the sequel we will
also consider a directed and weighted network, i.e., a directed
network G = (X , E) joint to a function w : E −→ [0, +∞)

in such a way that for each edge (i, j) ∈ E, the coefficient
w(i, j) is called weight of (i, j) ∈ E. If we have a directed net-
work G = (X , E) and this network does not have an associated
weight-function, then we will say that G is a non-weighted
network.

Given a directed and weighted network G = (X , E) such
that for each (i, j) ∈ E its weight is given by w(i, j), the
(weighted) adjacency matrix of G is the matrix A(G) = A =
(aij) ∈ Mn×n given by

aij =
{

w(i, j) if there exists an edge (i, j) ∈ E,
0 otherwise.

(1)

FIG. 1. Two edges have node 6 as destination but the frequency with which a
random walker will pass through the edge (3, 6) is much greater than that of
the edge (7, 6).

If G = (X , E) is a non-weighted directed graph, its adjacency
matrix is the matrix A(G) = A = (aij) ∈ Mn×n given by

aij =
{

1 if there exists an edge (i, j) ∈ E,
0 otherwise,

(2)

i.e., we interpret each directed non-weighted network as a
directed weighted network, by considering, for each (i, j) ∈ E,
w(i, j) = 1. A more detailed explanation about this notation
for directed and non-directed networks (weighted or not) may
be found in Ref. 1.

Now, given a directed (and possibly weighted) network
G = (X , E), how can we define the PageRank of each edge of
G?

It is possible to consider, a priori, two approaches to
solve this problem:

1. By obtaining the PageRank of each edge from the PageR-
ank of its nodes. In order to consider this approach it is
needed to find a formula to give us for the real access fre-
quency. In this respect it is not a good idea to consider the
PageRank of an edge as the PageRank corresponding to
its destination node (see Fig. 1).

2. By computing the PageRank (as usual) in a new auxiliary
network (line-graph of the network) in which each edge
of the original network be a node of this new auxiliary
network. In this way, each edge of the original network
is a node in the associated line-graph, and we will put an
edge between two nodes of the line-graph if the destina-
tion and origin nodes of the corresponding edges match
in the original network.

In the following sections, we will see how to compute the
PageRank of each edge from the PageRank of its nodes, how
to compute the edge’s PageRank by using the associated line
graph and finally we will demonstrate that both approaches
are equivalent.

Note that this problem was already considered in Ref. 34
but that work did not provide a conclusive demonstration of
the equivalence of both approaches.

In order to raise the problem that we are going to address
properly, it is important to recall that the classic PageRank
algorithm was originally employed by Brin and Page26,27 to
develop Google as a search engine to order the webpages,
but in practice this web browser employs subtle modifications
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of this algorithm when ordering the webpages and, in fact, this
algorithm has been extended to different contexts,27,31,32,36,37

allowing to obtain new measures of centrality of complex net-
works based on this algorithm. Particularly important in our
context is the idea of biasing the PageRank vector using a
personalization vector, an idea already suggested in Ref. 27.
Let us briefly recall underlying idea behind the foundations of
this algorithm:

Random Walker hypothesis: If we move on the network
in a random way, we will pass more often through the more
accessible nodes. In order to mathematically model this idea,
we must consider a specific type of Markov chains: the ran-
dom paths in a network. In the context of applications, it
is needed to consider an extension of the classic PageR-
ank algorithm by considering a personalization vector and
a weighted network. The idea is essentially as follows: a
value q ∈ (0, 1) is fixed (traditionally in the case of Google
q = 0.85). This value is the probability that a random walker
does not change its trajectory jumping to other node of the
network not connected with the previous one, instead of mov-
ing to a node connected directly by an edge with the current
node. This value q is usually called damping factor. As we
will see in Sec. VI this jump may be interpreted as the cur-
rent random walker disappearing and a new random walker
appearing in another place (another node) of the network. In
the context of PageRank theory, this probability represents the
case in which an imaginary surfer who is randomly clicking
on links will eventually stop clicking. In addition a person-
alization vector v ∈ R

n is chosen, such that v ≥ 0 (i.e. each
coordinate of v is non-negative) and ‖v‖1 = ∑n

i=1 vi = 1. The
coordinate vi of this vector represents the probability that the
random walker, when jumping to a randomly chosen node
with probability 1 − q as described before, appears in the node
i. In the The classic PageRank is obtained by taking the vec-
tor v = 1

n (1, . . . , 1), but for other applications it makes sense
to consider other different personalization vectors. Once the
path has started from any randomly chosen node in the net-
work, for each 1 ≤ i ≤ n, the probability to go from node i to
node j is

ψij = q
aij∑
k aik

+ (1 − q)vj = qcij + (1 − q)vj. (3)

In other words, we move to a neighbor directly connected
by an edge with a probability q taking into account the
weight of the corresponding edge, and we jump to a ran-
domly chosen node with probability (1 − q), choosing the
corresponding node j with probability vj as is given in the
personalization vector. Now, if we repeat the process indefi-
nitely for t = 1, t = 2, . . ., for each t > 0 we will get a vector
pt = (pt(1), . . . , pt(n)), in such a way that each pt(j) give us
the probability to be in the node j in the instant t. Therefore

pt(j) =
n∑

i=1

pt−1(i)ψij. (4)

So, if we consider previous expression in matrix form, with
vectors pt written as row vectors, we have that pt = pt−1�,
where � = (ψij) and if we navigate through the network in a
random way, the frequency with which we pass through each

node of the network is given by the vector p ∈ R
n, where

p = lim
t→∞ pt = lim

t→∞ p0�
t. (5)

Without loss of generality, we will assume in the sequel that
the matrix A has a non-zero coefficient in each row (that is,
every node has an outgoing edge) and that every coordinate
of the vector v is positive. These conditions let us ensure that
the matrix � is positive and row-stochastic or, which is the
same thing, the sum of each row of the matrix� equals 1. The
existence of the previous limit is guaranteed by the fact that�
is positive and consequently, by using the Power Method, for
each 0 	= p0 ∈ R

n such that p0 ≥ 0, this limit exists and has
the same value in all the cases.74 In fact, this limit corresponds
to the unique (except normalizations) positive eigenvector
of � (corresponding to the eigenvalue 1, since � is row-
stochastic).74 Moreover, this vector is the one employed in
ordering webpages, following the next definition:

Definition II.1. If G = (X , E) is a directed and weighted
network with n nodes, q ∈ (0, 1) and v = (v1, . . . , vn) ∈ R

n is
such that v > 0 and ‖v‖1 = 1, then the PageRank vector of
G with damping factor q and personalization vector v is the
unique vector PR(G, q, v) = PR ∈ R

n such that

(i) PR ≥ 0 and ‖PR‖1 = 1.
(ii) PR is an eigenvector corresponding to the eigenvalue is 1

of the matrix � = (ψij) given by

ψij = q
aij∑
k aik

+ (1 − q)vj = qcij + (1 − q)vj, (6)

i.e., PR ·� = PR.

For each node i ∈ X = {1, . . . n} the PageRank of the node i
is the value PR(G, q, v, i) = PR(i), the ith coordinate of the
vector PR.

Note that in the above definition each coordinate PR(i)
of the PageRank vector is interpreted as the frequency with
which a random walker passes through the node i when it is
randomly moving through the network, by taking q (at each
step) as the probability to follow the network structure through
the edges connected to the current node, and by taking the
distribution given by the vector v if it jumps unexpectedly to
another node of the network. It is important to consider ran-
dom walks with positive jumping factor q < 1, since if q = 1
the matrix � would be non-negative (instead of positive) and,
as it is known, for guaranteeing the Power Method operates
correctly it is necessary that the adjacency matrix of G be irre-
ducible and primitive,42,71 although in practice most of the real
networks failure to satisfy this property.

III. EDGE’S PAGERANK VIA CLASSIC PAGERANK

Intuitively, if we have a directed and weighted network
G = (X , E), the frequency with which we use each edge
(i, j) ∈ E is related to the PageRank of the nodes i and j, since
each time a random walker pass through the edge (i, j), this
random walker also pass through the nodes i and j. In fact, to
understand in depth the relationship between PR(i), PR(j) and
the frequency of use of each edge (i, j), it is necessary to imag-
ine the random walker as a random walker in a two-layered
network9–11 without random jumps (i.e., always following the
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structure of the network) as explained below.36 If we have a
mono-layer network G = (X , E), the PageRank of this net-
work with damping factor q and personalization vector v can
be understood as the frequency in which we pass through the
nodes of a two-layered multiplex network built as follows:

1. The top layer is a copy of the original network G.
2. The lower layer is a complete network in which all the

nodes of G are connected between them in such a way
that the weight of each edge (i, j) is w(i, j) = vj. This layer
is used to model the random jumps made by the walker
when its movements does not follow the structure of the
network.

In this biplex network we consider the following random
walker:

1. In each step, we start by choosing the layer where the
random walker is going to make the movement. With
probability q the random walker will be in the top layer
(i.e., the original structure of the layer G) and with prob-
ability 1 − q the random walker will be in the lower layer
(underworld).

Now, if we fix a node i ∈ X and PR(i) is the PageRank in the
network G, then it is immediate that

PR(i) =
n∑

j=1

qPR(i)cij +
n∑

j=1

[(1 − q)vjPR(i)]. (7)

What is really interesting in this expression is that the sum-
mands of the first sum compute the frequency with which the
random walker pass through the edge (i, j) in the top layer
(the layer corresponding to the structure of G), while the sum-
mands of the second sum show us the frequency with which
the random walker pass through the edge (i, j) considered as
an edge of the lower. Therefore, if we want to compute the fre-
quency with which the random walker in the original network
G pass through the edge (i, j) ∈ E actually is

qPR(i)cij, (8)

and, therefore, normalizing so that the sum of all frequencies
be equal to 1, considering all edges (i, j) ∈ E only in the top
layer, we have the following definition:

Definition III.1. Given a directed and weighted network
G = (X , E), α ∈ [0, 1] and v ∈ Rn, v ≥ 0 such that ‖v‖1 = 1,
for each (i, j) ∈ E we call PageRank of the edge (i, j) with
jumping factor q and personalization vector v to the value

PR[G, q, v, (i, j)] = PR(i, j) = cijPR(i). (9)

IV. EDGE’S PAGERANK VIA LINE GRAPH

In this section, in order to obtain the definition of the
PageRank of edges in a natural way we consider a new auxil-
iary network in which the nodes are the edges of the original
network with the appropriate weights: the line-graph L(G)
of a weighted and directed network. Line graphs have been
widely studied in scientific literature44,49,62,66,67 showing its
usefulness in different contexts (see, for example, Refs. 25,
46, 47, 51, 52, and 55–61). To employ this mathematical tool
in our context, it is necessary to define the line-graph L(G) of a

FIG. 2. Line graph of a weighted and directed network, including the weights
and the normalized weights of the new edges.

directed and weighted network G. There are some alternatives
in the literature employed to define this concept,44,45,47,55,56

but we think that the following is the most appropriate alterna-
tive for the problem we are studying: since the weight of each
edge is related to the frequency of use of that edge (this idea is
inspired by the concept of accessibility in intentional complex
networks34,35) and bearing in mind that each edge of L(G) is
identified with a path of length 2 in the original network G,
the weight of each edge [(i, j), (j, k)] of L(G) will necessarily
be related to the frequency of use of the path (i, j) → (j, k),
i.e., it will be related to the product of the frequencies of use
of the edges (i, j) and (j, k) (see Fig. 2). Following this idea
we can give the next definition:

Definition IV.1. If G = (X , E) is a directed and weighted
network, the directed and weighted line-graph of G is the
network L(G) = (E, Ẽ), where

Ẽ = {[(i, j), (j, k)]; (i, j), (j, k) ∈ E} (10)

and where the weight for each edge [(i, j), (j, k)] ∈ Ẽ of L(G)
is given by the weighting function w̃ : Ẽ −→ [0, +∞) whose
expression is

w̃[(i, j), (j, k)] = aijajk . (11)

It is important to highlight that if G = (X , E) is a directed
and non-weighted network, the concept of line-graph L(G)
as weighted network (with all the weights equal to 1) coin-
cides with the classical concept we can find, for example,
in Ref. 67. Now we have defined the concept of line-graph
L(G) of a directed and weighted network G, the concept of
PageRank in L(G) arises in a natural way and it makes perfect
sense to consider the frequency with which a random walker
passes through the corresponding edges, as it is shown by the
following definition:

Definition IV.2. If G = (X , E) is a directed and weighted
network with n nodes and m edges, q ∈ (0, 1) and
u = (u1, . . . , um) ∈ R

m such that u > 0 and ‖u‖1 = 1, then we
call PageRank vector of the directed and weighted line-graph
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FIG. 3. Geographical map of the Madrid underground.72

L(G) with damping factor q and personalization vector u to
the unique vector LPR(G, q, u) = LPR ∈ R

m such that

• LPR ≥ 0 and ‖LPR‖1 = 1.
• LPR is an eigenvector (associated to the eigenvalue 1) of

the matrix � = (φi→j,k→l) given by

φi→j,k→l = q
bi→j,k→l∑

(α→β) bi→j,α→β

+ (1 − q)uk→l, (12)

i.e., LPR ·� = LPR. Here B = (bi→j,k→l) denotes the
weighted adjacency matrix of L(G).

For each node (i, j) ∈ E the PageRank of the edge (i, j) is the
value LPR[G, q, u, (i, j)] = LPR(i, j) i.e., the (i, j)th coordinate
of the vector LPR.

The following lemma will allow us to demonstrate the
main theorem included in the following section and provides

a more compact expression of the coefficients of the matrix�
in terms of the coefficients cij from Sec. III.

Lemma IV.3. Let � be the matrix as in Definition IV.2.
For every pair of edges i → j, k → l ∈ E, we have the follow-
ing equality:

φi→j,k→l = qδjkckl + (1 − q)uk→l, (13)

where δjk is the Kronecker delta.
Proof. Due to the way the line graph is constructed, we

have that bi→j,k→l 	= 0 only if j = k. Therefore if j 	= k the
result follows immediately.

Let us analyze the case j = k. We have

bi→k,k→l∑
β bi→k,k→β

= aik · akl∑
β aik · akβ

= akl∑
β akβ

= ckl.
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From this equality the demonstration of the lemma is easily
obtained. �

V. CLASSIC PAGERANK VS LINE-GRAPH’S
PAGERANK

In this section, we show the relationship between the two
values of the corresponding PageRank obtained for the same
edge (i, j) ∈ E in the two previous sections. In other words,
we give a solution for the following problem:

Problem. Given a directed and weighted network G =
(X , E) with n nodes and m edges, q ∈ (0, 1), and given the
personalization vectors v ∈ R

n and u ∈ R
m, if we choose

(i, j) ∈ E, what is the relationship between PR[G, q, v, (i, j)]
and LPR[G, q, u, (i, j)]?

The answer to this problem is given by the following
theorem:

Theorem V.1. If G = (X , E) is a directed and weighted
network with n nodes and m edges, q ∈ (0, 1), v ∈ R

n is a per-
sonalization vector and ũ ∈ R

m is the personalization vector
given by

ũi→j = vi cij. (14)

Then, for every edge (i, j), we have

PR[G, q, v, (i, j)] = LPR[G, q, ũ, (i, j)], (15)

Proof. So, given a personalization vector v ∈ R
n, let us

define two auxiliary matrices P ∈ Mn×m and S ∈ Mm×n which
will used throughout the proof. The rows of P will be indexed
by nodes of G and the columns of P by edges of G. The
opposite happens for S.

The coefficient pj,k→l is defined as

pj,k→l =
{

ckl if j = k,
0 otherwise.

(16)

that is, pj,k→l = δjkckl.
On the other hand, sk→l,j is defined as

sk→l,j =
{

q + (1 − q)vj if l = j,
(1 − q)vj otherwise.

(17)

that is, sk→l,j = qδlj + (1 − q)vj.
Now from P and S we construct a block matrix T ∈

M(n+m)×(n+m) as follows:

T =
(

0 P
S 0

)
. (18)

Next, we are going to show that

T2 =
(

0 P
S 0

)
·
(

0 P
S 0

)
=

(
PS 0
0 SP

)
=

(
� 0
0 �

)
,

where � is the matrix whose positive eigenvector is
PR = PR(G, q, v) (constructed like in Definition II.1) and� is
the matrix whose positive eigenvector is LPR = LPR(G, q, ũ)
(constructed like in Definition IV.2), with ũ computed from v
as in Eq. (14).

Let us start by showing that PS = �. Consider the
coefficient

(PS)ij =
∑
k→l

pi,k→lsk→l,j =
∑
k→l

δikcklsk→l,j

=
∑

l

cilsi→l,j =
∑

l

cil[qδlj + (1 − q)vj]

= qcij + (1 − q)vj

∑
l

cil

= qcij + (1 − q)vj = ψij.

On the other hand, let us show that SP = �. Consider the
coefficient

(SP)i→j,k→l =
∑
β

si→j,βpβk→l =
∑
β

si→j,βδβkckl

= si→j,kckl = [qδjk + (1 − q)vk]ckl

= qδjkckl + (1 − q)vkckl

= qδjkckl + (1 − q)ũk→l = φi→j,k→l,

where last equality derives from Lemma IV.3.
Now consider the vector y = (PR | LPR) ∈ R

n+m which
is, by the equality we have just proven for T2, a positive
eigenvector of this matrix associated to the eigenvalue 1. As
the matrix T is row-stochastic, y is also an eigenvector of T
associated to the eigenvalue 1, therefore, we have

(PR | LPR) = (PR | LPR) · T = (PR | LPR)

(
0 P
S 0

)

= (LPR · S | PR · P)

and in particular LPR = PR · P. Now if we consider coeffi-
cient i → j we have

LPR(i → j) = (PR · P)i→j =
∑

k

PR(k)pk,i→j

=
∑

k

PR(k)δkicij = PR(i)cij,

which is precisely the definition of PR[G, q, v, (i, j)] which
appears in Definition III.1. This concludes the proof. �

Remark V.2. Last theorem shows that the two
approaches studied in the two previous sections are essen-
tially equivalent. More precisely, it allows to compute the
PageRank in L(G) (i.e., the edges’ PageRank) from the
PageRank in G (from the nodes’ PageRank) and vise versa.
Obviously this result allows us to calculate the PageRank
of the edges of a directed and weighted network from the
PageRank of its nodes, with the consequent computational
advantages, as we will see in Sec. VI.

Remark V.3. Notice that, in our previous result, ũ can be
obtained from v by product with the matrix P which appears
in the proof, specifically ũ = v · P. We could considered the
reciprocal problem to the one solved in the theorem, that is,
given a personalization vector u ∈ R

m, is it possible to find
a personalization vector ṽ ∈ R

n such that PR[G, q, ṽ, (i, j)] =
LPR[G, q, u, (i, j)] for every edge?

Let us consider the linear mapping π : R
n → R

m asso-
ciated to the matrix P, that is π(v) = v · P. Because of the
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TABLE I. Ranking of the 15-top stations according to its PageRank during
the morning traffic.

N. Station PRi

1 Puerta del Sur 0.010539
2 Las Suertes 0.008506
3 La Poveda 0.008500
4 Reyes Católicos 0.008175
5 La Peseta 0.008088
6 Las Musas 0.008078
7 Arroyo Culebro 0.007996
8 Conservatorio 0.007996
9 Parque de los Estados 0.007996
10 Alonso de Mendoza 0.007994
11 Fuenlabrada Central 0.007994
12 Getafe Central 0.007992
13 Parque Europa 0.007992
14 Hospital de Fuenlabrada 0.007988
15 Juan de la Cierva 0.007988

properties of the matrix P, the map π is injective. If we start
from a personalization vector u ∈ R

m which is in the image
of π , i.e., it is a linear combination of the rows of P, then
we can answer previous question in the positive. Just take
ṽ ∈ R

n as the unique vector such that π(ṽ) = w. The equality
between PR[G, q, ṽ, (i, j)] and LPR[G, q, u, (i, j)] follows from
the theorem in this section. Note also that ṽ can be easily
computed from u in the following way:

ṽi =
∑

k

ui→k . (19)

VI. APPLICATIONS FOR PREDICTING HUMAN
MOBILITY IN SUBWAY NETWORKS

As an application of the results obtained in the previous
section, we are going to analyze human mobility in the Madrid
Metro System72 (see Fig. 3) in order to locate the segments
with the highest passenger flow on a standard working day,
distinguishing between the morning and the afternoon time
periods. In this regard, it is important to point out that the
entire Madrid metro line covers a total of 301 stations with
26 interchanges, 13 lines, 294 km of network and through
which 584 845 945 passengers circulated in 2016,72 making
it the ninth largest metro network in the world behind Shang-
hai, Beijing, London, Guangzhou, New York, Moscow, Seoul
and Tokyo.73 According to figures in the Metro de Madrid
report, each of the more than 2.5 million daily passengers
that Metro de Madrid has a 15-kilometre journey per day
(counting the round trip), a journey in which they spend
approximately 40 min on average (20 min and 7.5 km on each
of the two routes).72 This information is supplemented by the
average distance between stations, which reaches a length of
108 485 m.72 The average speed of the trains is 30 km per
hour, which, in addition to placing it within the parameters
of the most competitive meters in the world, allows us to
estimate the damping factor for our personalized PageRank
applied to this context. Taking into account the above data,
the average number of stations traveled by a passenger is
11. So, in this context, we can deduce the damping factor

TABLE II. Ranking of the 15-top stations according to its PageRank during
the after-work traffic.

N. Station PRi

1 Vodafone Sol 0.018731
2 Alonso Martinez 0.017056
3 Ópera 0.014599
4 Avenida de América 0.014358
5 Cuatro Caminos 0.012598
6 San Bernardo 0.012205
7 Príncipe Pío 0.011990
8 Diego de León 0.011968
9 Gran Vía 0.011834
10 Príncipe de Vergara 0.011823
11 Bilbao 0.011793
12 Arguelles 0.011751
13 Callao 0.011648
14 Goya 0.011644
15 Nuevos Ministerios 0.011497

corresponding to this situation, as follows:

11 = E(
) =
∞∑

k=0

k · P(
 = k) =
∞∑

k=1

k · (1 − q) · qk

= (1 − q) · q
∞∑

k=1

k · qk−1 = q

1 − q
.

So in this context the damping factor is q = 11
12 = 0.91.

As explained above, this value is the probability that
a random walker does not change its trajectory jumping to
other node of this network not connected with the previous
one, instead of moving to a node connected directly by an
edge with the current node. In our context, this jump may be
interpreted as the current passenger disappearing (that is, the
traveler gets off at that station) and a new passenger appearing
in another node (another station) of the network.

To complete our model we are going to consider two per-
sonalization vectors, one for the morning and the other for the
afternoon. In this regard, taking into account the geographical,
economic and social aspects related to the service provided
by the Madrid Metro System, we have divided all the metro
stations into four types:

1. Stations located in urban areas with many residents, dor-
mitory districts, surrounding suburbs, or nearby periph-
eral cities.

2. Stations located in the vicinity of the main work centers.
3. Transit stations.
4. Stations belonging simultaneously to the first two types.

In order to obtain the personalization vector for the morn-
ing, we assume that 80 percent of passengers enter the system
through a type 1 and 4 station, and the remaining 20 percent
enter through a type 2 and 3 station. On the other hand, in
order to obtain the personalization vector for the afternoon, we
assume that 80 percent of passengers enter the system through
a station of types 2 and 4 and the remaining 20 percent enter
through a station of types 1 and 3. The results obtained are
reflected in Tables I–IV in which the corresponding PageRank
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TABLE III. Ranking of the 15-top segments according to its PageRank
during the morning traffic.

N. Segment PR(i,j)

1 Valdecarros → Las Suertes 0.004590
2 Arganda del Rey → La Poveda 0.004587
3 Hospital Infanta Sofia → Reyes Católicos 0.004440
4 La Fortuna → La Peseta 0.004400
5 Estadio Olímpico → Las Musas 0.004395
6 Villaverde Alto → San Cristobal 0.004329
7 Las Suertes → La Gavia 0.004253
8 Las Suertes → Valdecarros 0.004253
9 La Poveda → Arganda del Rey 0.004250
10 La Poveda → Rivas Vaciamadrid 0.004250
11 Las Rosas → Avenida de Guadalajara 0.004235
12 Paco de Lucía → Mirasierra 0.004183
13 Pitis → Lacoma 0.004163
14 Reyes Católicos → Baunatal 0.004088
15 Reyes Católicos → Hospital Infanta Sofia 0.004088

of the segments has been obtained, using the result of the pre-
vious section, from that corresponding to the stations. As can
be seen, the rankings collected in these tables coincide with
the geographical, sociological and economic aspects related
to the service provided by the Madrid Metro Madrid System.
So, for instance, the station listed first in Table I is “Puerta
del Sur,” which is the bottleneck of line 12, which is a cir-
cular line that runs through several dormitory municipalities
in the south of Madrid, while “Las suertes” and “La poveda”
are two of the main header metro stations on lines 1 and 9
(respectively) that cover important population centers. More-
over, the first stations in Table II (“Vodafone Sol,” “Alonso
Martinez,” “Ópera,”. . . ) correspond to important work areas
located in the center of Madrid and surroundings, and the first
segments of Tables III and IV correspond, respectively, to the
metro segments in which there is a greater flow of passengers
in morning and afternoon time, appearing in the top places, in
the first case, segments close to important passenger residency
areas and centers (Valdecarros → Las Suertes, Arganda del
Rey → La Poveda,. . . ), while in the second case, the respec-
tive segments (Antón Martín → Atocha, Antón Martín →
Tirso de Molina,. . . ) are located close to the most important
workplaces.

VII. CONCLUSIONS AND FUTURE WORKS

From a definition of the concept of line graph of a
directed and weighted network, we have demonstrated the
equivalence between two different approaches to the person-
alized PageRank of a directed and weighted network. This
result allows us to calculate the PageRank of the edges of
a directed and weighted network from the PageRank of its
nodes, with the consequent computational advantages, as it is
easier to compute the personalized edges’ PageRank from this
result without the need to compute it on the corresponding line
graph. The usefulness of this result in the area of cybersecu-
rity and intentional cyber-risk is related to the computation of
edge accessibility, one of the three basic parameters underpin-
ning intentional risk.34 Also, by means of some simulations on

TABLE IV. Ranking of the 15-top segments according to its PageRank
during the after-work traffic.

N. Segment PR(i,j)

1 Antón Martín → Atocha 0.003843
2 Antón Martín → Tirso de Molina 0.003843
3 Atocha → Antón Martín 0.003802
4 Atocha → Atocha Renfe 0.003802
5 Embajadores → Lavapiés 0.003785
6 Embajadores → Palos de la Frontera 0.003785
7 Palos de la Frontera → Delicias 0.003700
8 Palos de la Frontera → Embajadores 0.003700
9 Banco de España → Retiro 0.003652
10 Banco de España → Sevilla 0.003652
11 Tirso de Molina → Antón Martín 0.003631
12 Tirso de Molina → Vodafone Sol 0.003631
13 Lavapiés → Embajadores 0.003604
14 Lavapiés → Vodafone Sol 0.003604
15 Sevilla → Banco de España 0.003543

a real subway network, we show how to use a personalization
vector suitable for biasing the PageRank with the aim of deter-
mining the segments with highest passenger flows in a subway
network depending on the time zone under consideration.

A natural future task will be to study this equivalence for
the different mathematical models for the line graph of a mul-
tiplex network25 incorporating stations, sections and subway
lines as differentiated elements into the study and simulations
of passenger flows.
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