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Abstract

We prove existence and uniqueness of the branch of the so-called anomalous eternal
solutions in exponential self-similar form for the subcritical fast-diffusion equation with
a weighted reaction term

∂tu = ∆um + |x|σup,

posed in RN with N ≥ 3, where

0 < m < mc =
N − 2

N
, p > 1,

and the critical value for the weight

σ =
2(p− 1)

1−m
.

The branch of exponential self-similar solutions behaves similarly as the well-established
anomalous solutions to the pure fast diffusion equation, but without a finite time ex-
tinction or a finite time blow-up, and presenting instead a change of sign of both self-
similar exponents at m = ms = (N − 2)/(N + 2), leading to surprising qualitative
differences. In this sense, the reaction term we consider realizes a perfect equilibrium
in the competition between the fast diffusion and the reaction effects.
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1 Introduction

The goal of this paper is to establish the existence and uniqueness of eternal solutions in
exponential self-similar form for the fast diffusion equation with weighted reaction

∂tu = ∆um + |x|σup, (1.1)

posed in RN , with m < 1, p > 1, N ≥ 3 and the critical value of the exponent σ

σ =
2(p− 1)

1−m
. (1.2)

As we shall see in the paper, we construct a branch of self-similar solutions which are
analogous to the celebrated anomalous solutions introduced by [21, 27], for the subcritical
range of the fast diffusion

0 < m < mc :=
N − 2

N
, N ≥ 3, (1.3)

showing at the same time that such solutions do no longer exist in the complementary
range mc ≤ m < 1.

The main mathematical feature of Eq. (1.1) is the competition between the two effects
that appear in its formulation: a fast diffusion which, in the subcritical range (1.3), tends
to finite time extinction due to a loss of mass through infinity which is well explained in
[36, Section 5.5, p. 91], and a weighted reaction tending to add mass to the solution (and
thus compensate for the loss of mass explained above) and whose sharpest effect is in many
occasions the appearance of finite time blow-up. One of the most interesting outcomes of
the current work is that the value of σ in (1.2) leads to a perfect equilibrium between these
two effects: as we shall see, the solutions we construct to Eq. (1.1) do neither extinguish,
nor blow up in finite time.

The fast diffusion equation

ut = ∆um, 0 < m < 1 (1.4)

is by now a well studied equation and proved to be a very interesting object for research
due to a number of unexpected properties and effects. A rather complete monograph on
it [36] is available nowadays. In particular, unusual mathematical behaviors appear in the
so-called subcritical range 0 < m < mc, with mc introduced in (1.3). In this range, finite
time extinction takes place at least for integrable initial conditions, and it was a quest
for establishing the dynamics near the extinction time that led to the so-called special
solutions with anomalous exponents (or shortly anomalous solutions) noticed formally in
[21] and introduced rigorously by Peletier and Zhang [27]. These are solutions to Eq. (1.4)
in backward self-similar form

U(x, t) = (T − t)α(m)f(|x|(T − t)β(m)), with (1−m)α(m) = 2β(m) + 1, (1.5)

where T > 0 is the extinction time and the profile f satisfies the following decay rate

f(ξ) ∼ Cξ−(N−2)/m, as ξ → ∞ (1.6)
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The branch of self-similar exponents α(m) > 0 (and thus also β(m)) and the profile f
with behavior at infinity as in (1.6) are shown to be unique for a fixed m ∈ (0,mc) in
[27] or [36, Section 7.2]. These solutions were named anomalous since, in contrast with
other well-established self-similar solutions, their self-similar exponents are not explicit and
not obtained through an algebraic calculation, but through a dynamical system technique
(phase plane analysis) leading also to the existence and uniqueness of the profile. These
solutions proved to be of an utmost importance for the dynamics of the equation: it was
shown by Galaktionov and Peletier [7] that for any radially symmetric initial condition u0
with suitable regularity and decaying sufficiently fast (more precisely, such that u0(r) =
O(r−q) as r → ∞ for some q > 2/(1−m)), the unique solution to Eq. (1.4) having initial
condition u0 approaches the anomalous solution U(x, t) in (1.5) near the finite extinction
time. We can thus say that the special solutions in (1.5) describe the asymptotic behavior
of Eq. (1.4) for radial solutions. With respect to non-radial solutions, the problem of
the asymptotic behavior is more complicated, and it was established in [6] that, for the
particular case of another important exponent in the theory of fast diffusion, the Sobolev
exponent

ms =
N − 2

N + 2
∈ (0,mc), (1.7)

there are non-radial asymptotic profiles. Up to our knowledge, a full description of all
possible asymptotic profiles of Eq. (1.4) with non-radially symmetric data is still an open
problem for m ∈ (0,mc) with m ̸= ms. However, the only case when the anomalous
solution is explicit is exactly for m = ms (a case related to the Yamabe flow in Riemannian
geometry), with exponents

β(ms) = 0, α(ms) =
1

1−ms
=

N + 2

4
.

The second effect, competing with the fast diffusion in the dynamics of Eq. (1.1), is
the (weighted) reaction. The standard (homogeneous) reaction-diffusion equation

ut = ∆um + up, m > 0, p > 1 (1.8)

has been thoroughly investigated for the slow diffusion case m > 1. The main feature of
this equation is the blow-up in finite time of its solutions, that is, the existence of a time
T ∈ (0,∞) such that u(t) ∈ L∞(RN ) for t ∈ (0, T ) but u(T ) ̸∈ L∞(RN ). For m > 1, many
properties of solutions to Eq. (1.8) are known, including when finite time blow-up takes
place, blow-up rates and profiles [33]. In particular, a relevant fact is that there exists a
critical exponent known as the Fujita exponent

pF = m+
2

N
(1.9)

such that for m > 1 and any p ∈ (1, pF ), all the non-trivial solutions to Eq. (1.8) blow up
in finite time. Concerning the fast diffusion range m ∈ (0, 1) in Eq. (1.8), it is established
in [31, 23] that for mc < m < 1, the exponent pF > 1 given in (1.9) still plays the role of a
Fujita-type exponent in the sense described above: for 1 < p < pF any non-trivial solution
still blows up in finite time. Later on, Guo and Guo [9] studied the range p > pF when
global solutions may exist, establishing the required decay rate as |x| → ∞ of the initial
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condition in order for the solution to be global, and giving the large time behavior of these
global solutions. Maingé [22] extends the results related to the connection between the
decay rate as |x| → ∞ of the data u0 and finite time blow-up to the whole fast diffusion
range m ∈ (0, 1). Understanding the blow-up behavior of solutions when the reaction term
is weighted, that is, for equations such as

ut = ∆um + a(x)up, m > 1 (1.10)

was a problem addressed since long and studied (for suitable weights a(x), not necessarily
pure powers) in papers as [3, 2, 29, 30]. We quote here the paper by Suzuki [35] where
the pure power weight a(x) = |x|σ, σ > 0 is considered and both the Fujita-type exponent
and the second critical exponent related to blow-up (the critical decay of u0(x) as |x| → ∞
when p > pF splitting between blow-up solutions and global solutions) are given, we recall
here the first of them:

pF,σ = m+
2 + σ

N
. (1.11)

Besides their already discussed mathematical interest, reaction-diffusion equations such as
(1.10) with a spatially nonhomogeneous reaction term (and even in more general form) have
been obtained from transport models of electron temperature in confined plasma, see for
example [20] and references therein. Moreover, models involving reaction-diffusion equa-
tions with weights were also proposed in chemical systems in the presence of heterogeneous
catalysis [24, 25].

Recently, the authors started a long-term program of understanding and classifying the
blow-up profiles to equations such as Eq. (1.1) and a number of results related to the range
m > 1 have been obtained in a series of papers [13, 14, 15, 17]. In these papers, considering
always m > 1, the blow-up profiles in the form of backward self-similar solutions are
classified for reaction exponents p ∈ [1,m] and any σ > 0, and the results were sometimes
rather unexpected and strongly depending both on the relation betweenm and p and on the
magnitude of σ. In all these cases, the blow-up profiles are compactly supported, presenting
interfaces, but the behavior at x = 0 may vary and, what is most important, the blow-up
set varies with σ. In particular, a fact that should be emphasized is that, in many cases,
even x = 0 is a blow-up point, despite the fact that, formally, there is no reaction at all at
the origin. However, we have noticed that fast diffusion with weighted reaction has been
considered only very seldom. Qi [32] considers a reaction with a weight including also a
time dependence

ut = ∆um + ts|x|σup, m > mc, s ≥ 0, σ > −2

and proves that there exists a Fujita-type exponent with an explicit expression depending
on m, s and σ which reduces to pF,σ for s = 0. Later, localized weights a(x) with compact
support have been considered in Eq. (1.10) and analyzed in [1], noticing that the Fujita-
type exponents changes into pF = m+ 1.

After this discussion of the two effects present in Eq. (1.1) and of the precedents of the
problem, let us get closer to the main contributions of this paper.

Main results. The previous detailed discussion about precedents shows that we are
dealing in Eq. (1.1) with a competition between two terms generating typically two totally
opposite effects: on the one hand the diffusion tends to finite time extinction (that is, mass
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tending to zero), and on the other hand the reaction typically tends to finite time blow-
up (mass tending to infinity). It is thus an interesting question to find a combination of
exponents giving a perfect balance between them, leading to dynamics that do not either
vanish or blow up in finite time. This is achieved by restricting ourselves to the subcritical
range m ∈ (0,mc) and letting σ as in (1.2) and then obtaining that Eq. (1.1) has so-called
eternal solutions, that is, global solutions having an exponential dependence on the time
variable and which can be defined even for any t ∈ R (that is, also backward in time).
The terminology stems from Daskalopoulous and Sesum [5] where such solutions have been
constructed for the logarithmic diffusion equation in R2 (which in differential geometry is a
particular case of the Ricci flow), although they have been noticed previously for Eq. (1.4)
with exactly m = mc in [8]. More precisely, we are looking for self-similar solutions of the
following form

u(x, t) = eαtf(|x|e−βt), α, β ∈ R, (1.12)

for some suitable profile f solving the ordinary differential equation

(fm)′′(ξ) +
N − 1

ξ
(fm)′(ξ)− αf(ξ) + βξf ′(ξ) + ξσf(ξ)p = 0. (1.13)

Existence of such self-similar eternal solutions proved to be a very seldom phenomenon, due
to the fact that parabolic equations typically enjoy smoothing effects not allowing for the
time variable to move independently in both directions; however, they appear sometimes in
critical cases of exponents that split the general dynamics of the equations into two regimes,
such as for example m = mc for Eq. (1.4) or p = pc = 2N/(N + 1) for the parabolic p-
Laplacian equation [18] and more recently Laurençot and one of the authors constructed
eternal solutions for a fast diffusion equation involving gradient absorption [11].

Going back to our Eq. (1.1), we are able to obtain eternal solutions exactly for the
critical value of σ in (1.2). We state our main result below.

Theorem 1.1. Let N ≥ 3, m ∈ (0,mc), p > 1 and σ defined in (1.2). Then there exist
unique exponents α and β ∈ R such that

α =
2

m− 1
β (1.14)

and a unique profile (up to a rescaling) f such that

U(x, t) = eαtf(ξ), ξ = |x|e−βt

is a solution to Eq. (1.1) in the sense that the profile f(ξ) solves the ordinary differential
equation (1.13). The profile f satisfies

f(0) = 1, f ′(0) = 0, f(ξ) ∼ Cξ(2−N)/m, as ξ → ∞, (1.15)

and the signs of the self-similarity exponents change exactly at m = ms, independent
of p: α > 0 and β < 0 for m ∈ (0,ms), respectively α < 0 and β > 0 for m ∈ (ms,mc).
Moreover, U(t) ∈ L1(RN ) for any t > 0, and these solutions cease to exist for m ∈ [mc, 1).

By uniqueness of the profile up to a rescaling we mean that the self-similar profile is
unique modulo the rescaling which leaves invariant Eq. (1.13), that is

fλ(ξ) = λ2/(1−m)f(λξ), λ ∈ (0,∞). (1.16)
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Let us notice here that the behavior of the profile as ξ → ∞ in (1.15) is the same as
the decay (1.6) of the anomalous solutions for the fast diffusion equation (1.4), but the
dynamics is totally different: the solutions in Theorem 1.1 are global and eternal, they do
not either extinguish or blow up in finite time, as it is obvious from their form. This shows
that none of the two terms is dominant over the other one in Eq. (1.1).

Consequences of the change of signs at m = ms. A very interesting feature is the
change of sign of both exponents at m = ms. This is a significant difference with respect to
the anomalous solutions (1.5) to the standard fast diffusion equation, where only exponent
β(m) changes sign at m = ms, but α(m) > 0 for any m ∈ (0,mc). This change of sign also
brings some striking consequences for the qualitative behavior of the solutions, in various
aspects

• Rate of the exponential decay as t → ∞. On the one hand for m ∈ (mc,ms) we have
α < 0 and β > 0, thus for a fixed |x| = r ∈ (0,∞) we have ξ = |x|e−βt → 0 as t → ∞,
whence we get the asymptotic exponential decay

U(x, t) ∼ eαtf(0) = Aeαt, as t → ∞. (1.17)

On the other hand, for m ∈ (0,ms) we have α > 0, β < 0, hence ξ = |x|e−βt → 0 as t → ∞
and, taking into account the tail of the profiles as ξ → ∞ we get for any x ̸= 0 that

U(x, t) ∼ Ceαt(|x|e−βt)(2−N)/m = C|x|(2−N)/m exp

(
α+

N − 2

m
βt

)
= C|x|(2−N)/m exp

(
N(m−mc)β

m(m− 1)
t

) (1.18)

as t → ∞, which is again decreasing in t since the coefficient inside the last exponential is
negative. For fixed x ∈ RN \ {0}, in both cases the solutions decay exponentially as t → ∞
but with different rates.

• Form of the profiles: by (at least formally) evaluating (1.13) at ξ = 0 we deduce that
the profiles have a minimum point at the origin if α > 0 and a maximum point at the origin
if α < 0. Moreover, if α < 0 we cannot have minima at any ξ0 > 0: at such a minimum
point we would get from (1.13) that

(fm)′′(ξ0)− αf(ξ0) + ξσ0 f(ξ0)
p = 0

and a contradiction since all the terms above are positive, which proves that the profiles
are decreasing for ξ ∈ (0,∞). This leads to the following striking difference between the
geometry of the solutions given by (1.12): for α > 0, that is m ∈ (0,ms), the maximum
point of the solution moves towards x = 0 as t → ∞, leading to the formation of a boundary
layer near the origin, while for α < 0, that is m ∈ (ms,mc), solutions are just decreasing
at any t > 0.

• Evolution of the mass in opposite way. Since U(t) ∈ L1(RN ) for any t > 0, we can
define the mass of the solution at time t by M(t) = ∥U(t)∥L1(RN ). We can thus relate this
mass to the integral of the profile by the following calculation based on an obvious change
of variable:

M(t) =

∫
RN

eαtf(|x|e−βt) dx = e(α+Nβ)t

∫
RN

f(ξ) dξ,
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and we notice that

α+Nβ =

(
1 +

N(m− 1)

2

)
α =

N(m−mc)

2
α,

which is positive for α < 0 (that is, m ∈ (ms,mc)) and negative for α > 0 (that is,
m ∈ (0,ms)). We infer that for m ∈ (0,ms) solutions U in Theorem 1.1 lose mass as t > 0
increases (an effect showing that the fast diffusion is a bit stronger in this range) while for
m ∈ (ms,mc) solutions U in Theorem 1.1 gain mass as t > 0 increases (an effect showing
that the reaction is a bit stronger in this range).

• Explicit stationary solutions at m = ms. All the previous analysis shows that m = ms

is a kind of bifurcation between two regimes with different properties, and in the middle,
exactly at m = ms (and any p > 1) we have stationary solutions that will be made explicit
in Subsection 3.5. For now, we plot in Figure 1 the evolution of two self-similar eternal
solutions with respect to time, one from each range α > 0 and α < 0, showing the contrast
between their properties as explained above.
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Figure 1: Eternal solutions at different times. Experiment for N = 3, p = 2 and m = 0.1,
respectively m = 4/15

In a recent paper [16] the authors proved existence and uniqueness of eternal solutions
to Eq. (1.1) but with m > 1 and p < 1 and the same value (1.2) of σ. Despite the fact that
the equation is algebraically the same, the present problem is qualitatively very different:
in the range m > 1 we have slow diffusion instead of fast, and the fact that m > p in [16]
leads to compactly supported profiles (finite speed of propagation), while in the present
work we deal with infinite speed of propagation and thus profiles with tails as ξ → ∞.
Despite these differences, in some technical parts of some of the proofs we will borrow
analysis done in [16] in order to shorten the presentation. Let us stress here again that the
eternal solutions obtained in [16] have always α > 0 and β > 0.

As a final comment, we notice that exact self-similar solutions require that Eq. (1.1)
and its ordinary counterpart Eq. (1.13) be invariant to some rescalings such as (1.16),
thus they cannot exist for more general weights V (x) that are not spatially homogeneous
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instead of |x|σ. However, our self-similar profiles could be still useful for equations with
more general weights than |x|σ in the form of large time behavior profiles for (a part of)
their solutions. Such a situation has been met, for example, for the nonhomogeneous porous
medium equation where a density ϱ(x) appears in front of ∂tu, and where exact solutions
to the equation with a pure power density were asymptotic profiles as t → ∞ for general
solutions to equations with much more general densities, see for example [19].

Structure of the paper. We divide the present work into three sections, apart from the
Introduction. In Section 2 we construct an autonomous dynamical system associated to
Eq. (1.13) and study it locally, in a neighborhood of each of its critical points. The global
analysis of the phase plane is the subject of the longer Section 3, which is at its turn divided
into several subsections and will contain the proof of Theorem 1.1. Finally, in Section 4 we
gather several particular facts in order to complete the presentation: a number of explicit
or semi-explicit solutions to Eq. (1.13) and a self-map between radially symmetric solutions
to Eq. (1.1), generalizing a self-map for the fast diffusion equation (1.4).

2 The phase plane. Local analysis

In this section we transform Eq. (1.13) into an autonomous dynamical system and analyze
its behavior near the critical points. To this end, we have to fix one of the two possible
signs for the exponent α, and we will work with α > 0 (and thus β < 0) in order to use the
similarity in some technical steps with the proofs in [16]. With this convention, we consider
the same change of variable as in [16] (inspired in fact by the one used in [18]) by letting

X =
α

2m
ξ2f(ξ)1−m, Y = ξf ′(ξ)f−1(ξ),

d

dη
= ξ

d

dξ
, (2.1)

leading after straightforward calculations to the following autonomous dynamical system{
Ẋ = X(2 + (1−m)Y ),

Ẏ = −mY 2 − (N − 2)Y + 2X + (1−m)XY −KX(p−m)/(1−m),
(2.2)

where the derivative is taken with respect to the new independent variable η introduced in
(2.1) and which varies depending on the parameter

K =
1

m

(
2m

α

)(p−m)/(1−m)

. (2.3)

We notice that X ≥ 0, that the line X = 0 is invariant for the system (2.2) and Y might
take any real value. The critical points in the finite part of the phase plane are

P0 = (0, 0), P1 =

(
0,−N − 2

m

)
, P2 = (X(P2), Y (P2)),

where the critical point P2 only exists for m ∈ (0,mc) and has the coordinates

X(P2) =

[
2N(mc −m)

K(1−m)2

](1−m)/(p−m)

, Y (P2) = − 2

1−m
. (2.4)

From now on, we restrict ourselves to the subcritical range m ∈ (0,mc) and perform the
local analysis of the system near these points.
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2.1 Local analysis of the finite critical points

As we shall see in the sequel, the three finite critical points are the most important ones
for the analysis. We study them one by one below.

Lemma 2.1 (Local analysis near P0). The critical point P0 is a saddle point. There exists
a unique orbit going out of it into the phase plane, and the profiles contained in it satisfy
f(0) = A > 0, f ′(0) = 0.

Proof. The proof is completely identical to the proof of Lemma 2.1 in [16]. We give a
sketch for the sake of completeness. It is straightforward to check that the linearization of
the system (2.2) in a neighborhood of P0 has a matrix with eigenvalues λ1 = 2, λ2 = 2−N
and corresponding eigenvectors e1 = (1, 2/N), e2 = (0, 1), being thus a saddle point. We
are interested in the orbit going out of P0 tangent to e1, which contains profiles satisfying
X/Y ∼ N/2. By replacing X, Y by their expressions in (2.1) and integrating, we readily
get the claimed behavior of the profiles.

For the critical point P1 we already notice an important difference with respect to the
analysis performed in [16].

Lemma 2.2 (Local analysis near P1). The critical point P1 is also a saddle point for
m ∈ (0,mc). There exists a unique orbit entering it and coming from the positive part of
the phase plane. This orbit contains profiles such that

f(ξ) ∼ Cξ−(N−2)/m, as ξ → ∞, C > 0 free constant. (2.5)

Proof. The linearization of the system (2.2) near P1 has the matrix

M(P1) =

(
mN−N+2

m 0
mN−N+2

m N − 2

)
,

with eigenvalues λ1 = (mN − N + 2)/m < 0, λ2 = N − 2 > 0, thus is a saddle point for
m < mc. The unique orbit entering P1 has X → 0, Y ∼ −(N−2)/m, and the latter implies

f ′(ξ)

f(ξ)
∼ −N − 2

mξ
,

which gives (2.5) by direct integration. We recall now the definition of X in (2.1) to infer
that on this orbit entering P1 we have

X(ξ) ∼ Cξ(mN−N+2)/m, X(ξ) → 0,

which, together with the fact that mN −N + 2 = N(m−mc) < 0, shows that the limit in
the local behavior is taken as ξ → ∞ and the proof is complete.

We are finally left with the most interesting critical point, which is completely new with
respect to the case m > 1, p < 1 analyzed in [16] and whose analysis is more involved.
Recall here the Sobolev exponent ms defined in (1.7).
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Lemma 2.3 (Local analysis near P2). The type of the critical point P2 depends on the
value of m as follows:

(i) For m ∈ [ms,mc), the critical point P2 is either an unstable node or an unstable
focus, depending on the value of the parameter K ∈ (0,∞) defined in (2.3).

(ii) For m ∈ (0,ms), the critical point P2 can be: an unstable node, an unstable focus, a
center, a stable focus and a stable node, all them in dependence of the parameter K ∈ (0,∞).

In both cases, the orbits going out of P2 (respectively entering P2) contain profiles having
the following limit behavior

f(ξ) ∼
[
2m

α
X(P2)

]1/(1−m)

ξ−2/(1−m), (2.6)

taken as ξ → 0 if the orbit goes out (profiles with a vertical asymptote at ξ = 0) or as
ξ → ∞ if the orbit enters P2 (profiles with a different tail at infinity).

Proof. The linearization of the system (2.2) near P2 has the matrix

M(P2) =

(
0 (1−m)X(P2)

−K(p−m)
1−m X(P2)

(p−1)/(1−m) (N+2)(m−ms)
1−m + (1−m)X(P2)

)
,

where we recall that X(P2) depends on the parameter K and is defined in (2.4). Letting

L := (m− 1)2X(P2) + (N + 2)(m−ms),

we find that the eigenvalues of the matrix M(P2) are

λ1,2 =
1

2(1−m)

[
L±

√
L2 − 8N(p−m)(mc −m)

]
. (2.7)

Let us consider first m ∈ [ms,mc). In this case, taking into account (2.4), we find that
L > 0 for any K > 0, thus the two eigenvalues in (2.7) are either real and positive or
complex conjugated with positive real part (equal to L). It follows that the critical point
P2 is always unstable: either an unstable node or an unstable focus. Going now to the
range m ∈ (0,ms), we notice that L might change sign in dependence on the parameter K
and this introduces a big difference in the analysis. Indeed, noticing in (2.4) that X(P2)
depends on K in a decreasing way, with X(P2) → ∞ as K → 0 and X(P2) → 0 as K → ∞,
we get that

• for K > 0 sufficiently small, X(P2) is big and L > 0, in fact L → ∞ as K → 0, thus
the eigenvalues in (2.7) are both real positive numbers. We get an unstable node.

• there exists a value of K for which L = L∗ =
√
8N(p−m)(mc −m) > 0. Above

this value of K the critical point P2 becomes an unstable focus, as λ1, λ2 become complex
numbers with positive real parts.

• there exists a value of K, call it K∗, for which L = 0, hence λ1,2 become purely
imaginary complex numbers. This means that the critical point P2 can be either a center
or a focus for this precise instance of K.

• for K > K∗ but sufficiently close to K∗, X(P2) continues to decrease as K increases
and we have L < 0, thus for such values of K the eigenvalues in (2.7) are complex with
negative real part, which means that P2 is a stable focus.
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• finally, in some cases it is possible that L = −L∗ for some value of K, and if this
happens, for higher values of K we obtain L2 > 8N(p−m)(mc −m) and we get two real,
negative eigenvalues in (2.7). In this case P2 is a stable node. This final case is possible
only if there exists some value of K ∈ (0,∞) such that

L = −L∗ = −
√

8N(p−m)(mc −m) > (N + 2)(m−ms),

which after taking squares and performing easy calculations leads to the following condition
on m, N and p

(m− 1)2(N − 2)2 − 8Np(mc −m) ≥ 0.

However, in the subsequent analysis the difference between nodes and foci will not be
relevant. Finally, the orbits either entering or going out of P2 have X → X(P2) and
Y → Y (P2), the former of these together with the expression of X in (2.1) leading directly
to the local behavior (2.6). Such behavior can be taken either as ξ → 0 (on orbits going
out of P2) or as ξ → ∞ (on orbits entering P2), but the intermediate case of a limit
ξ → ξ0 for some ξ0 ∈ (0,∞) is discarded easily by a contradiction with the fact that
Y (ξ) → −2/(1−m).

This change of the character of P2 from an unstable point into a stable point will be the
decisive feature allowing for the existence of good orbits and thus profiles with behavior as
in (1.15) for m ∈ (0,ms) (in our framework with exponent α > 0), while the fact that this
point does not change for m ∈ (ms,mc) will be an obstacle for existence.

2.2 Critical points at infinity

This analysis follows closely the corresponding one performed for the case m > 1 and p < 1
in [16], thus at some points we will skip some technical steps and refer to this previous work.
The sign of m+p−2 makes a difference, as it follows below. We pass to the Poincaré sphere
by following the theory in [28, Section 3.10] and introducing the new variables (X,Y ,W )
such that

X =
X

W
, Y =

Y

W

and recall that the critical points at infinity of the system (2.2) lie on the equator of the

sphere, that is, they are points (X,Y , 0) with X
2
+Y

2
= 1. Let now P (X,Y ), Q(X,Y ) be

the right-hand sides of the two equations of the system (2.2). The difference with respect
to the sign of m+ p− 2 leads to the following three cases:

• if m+ p > 2, that is (p−m)/(1−m) > 2, then the highest order term in the expressions
of P (X,Y ), Q(X,Y ) is X(p−m)/(1−m). We can thus let

P ∗(X,Y ,W ) = W (p−m)/(1−m)P

(
X

W
,
Y

W

)
, Q∗(X,Y ,W ) = W (p−m)/(1−m)Q

(
X

W
,
Y

W

)
and follow the theory in [28, Section 3.10] to get that the critical points at infinity are given
by the zeros of the expression obtained by letting W = 0 in the following calculation

[XQ∗(X,Y ,W )− Y P ∗(X,Y ,W )]
∣∣∣
W=0

= −KX
(p+1−2m)/(1−m)

,
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where the detailed calculations are given in [16, Section 5]. We thus get two critical points
at infinity that on the Poincaré sphere have coordinates Q2 = (0, 1, 0), Q3 = (0,−1, 0).

• if m+p < 2, that is (p−m)/(1−m) < 2, then the highest order terms in the expressions
of P (X,Y ), Q(X,Y ) are all quadratic. We can thus set

P ∗(X,Y ,W ) = W 2P

(
X

W
,
Y

W

)
, Q∗(X,Y ,W ) = W 2Q

(
X

W
,
Y

W

)
(2.8)

and follow the theory in [28, Section 3.10] to get that the critical points at infinity are given
by the zeros of the expression obtained by letting W = 0 in the following calculation

[XQ∗(X,Y ,W )− Y P ∗(X,Y ,W )]
∣∣∣
W=0

= −XY (Y − (1−m)X),

where the detailed calculations are given in [16, Section 2.2]. We thus obtain, apart from
the critical points Q2, Q3 identified in the previous case, two new critical points at infinity

Q1 = (1, 0, 0), Q4 =

(
1√

1 + (1−m)2
,

1−m√
1 + (1−m)2

, 0

)
. (2.9)

• if m+ p = 2, that is (p−m)/(1−m) = 2, we set again (2.8), but in this case one more
term contributes to the critical points of infinity, since we have

[XQ∗(X,Y ,W )− Y P ∗(X,Y ,W )]
∣∣∣
W=0

= −X
[
Y

2 − (1−m)XY +KX
2
]
,

where the detailed calculations are given in [16, Section 3.1]. Checking for the zeros of the
right-hand side of the previous calculation and letting Y = λX, we obtain, apart from the
critical points Q2 and Q3, two more critical points

Q1 =

(
1√

1 + y21
,

y1√
1 + y21

, 0

)
, Q4 =

(
1√

1 + y22
,

y2√
1 + y22

, 0

)
, (2.10)

where

y1,2 =
(1−m)±

√
(m− 1)2 − 4K

2
, (2.11)

are obtained as the roots of the equation λ2+(m−1)λ+K = 0, provided K ≤ (m−1)2/4.
All the details are given in [16, Section 3.1].

We perform the local analysis of the system (2.2) in a neighborhood of these points
below.

Lemma 2.4 (Local analysis near Q2 and Q3). The critical point Q2 = (0, 1, 0) is an
unstable node and the critical point Q3 = (0,−1, 0) is a stable node. The orbits either
going out of Q2 or entering Q3 contain profiles having a change of sign at some finite point
ξ0 ∈ [0,∞) with the local behavior near Q2,

f(ξ) ∼ C(ξ − ξ0)
1/m, as ξ → ξ0, ξ > ξ0,

respectively the local behavior near Q3

f(ξ) ∼ C(ξ0 − ξ)1/m, as ξ → ξ0, ξ < ξ0.

12



Formal proof. We give here a more formal proof, which allows us to understand how the
local behavior comes out. We know that when approaching the points Q2 and Q3, by the
definition of the coordinates on the Poincaré sphere, we have Y → ±∞ and Y/X → ±∞.
Thus, we go to the system (2.2) and estimate the first order approximation of dY/dX by
neglecting the lower order terms (under the previous assumptions) and maintaining only
the dominating (or possibly dominating) ones in P (X,Y ), Q(X,Y ) to get

dY

dX
∼ −mY 2 +KX(p−m)/(1−m)

(1−m)XY
,

and we infer by integration that the trajectories of the system satisfy

Y 2 +
2K

m+ p
X(p−m)/(1−m) ∼ CX−2m/(1−m), C ∈ R free constant (2.12)

in a neighborhood of the points Q2 and Q3. Since Y 2 → ∞, (2.12) forces X → 0 on the
orbits when approaching Q2 and Q3 and we finally get the approximation

Y ∼ CX−m/(1−m), C ∈ R free constant, (2.13)

where C > 0 for the orbits going out of Q2 and C < 0 for the orbits entering Q3. Putting
(2.13) in terms of profiles by using the definitions of X and Y in (2.1), we get

(fm−1f ′)(ξ) ∼ Cξ−(m+1)/(1−m),

which by integration leads to

f(ξ) ∼
(
C1 + Cξ−2m/(1−m)

)1/m
. (2.14)

It remains to show that the local behavior in (2.14) is taken as ξ → ξ0 ∈ (0,∞) for Q3 and
ξ → ξ0 ∈ [0,∞) for Q2. This follows from the definition of X and the fact that X → 0 in
a neighborhood of Q2 or Q3, which means

X(ξ) = ξ2f(ξ)1−m = ξ2
(
C1 + Cξ−2m/(1−m)

)(1−m)/m
=
(
C + C1ξ

2m/(1−m)
)(1−m)/m

→ 0,

which does not allow taking a limit as ξ → ∞. It is then obvious that the limit ξ → 0 is
not allowed on the orbits entering Q3, while it can be allowed along trajectories going out
of Q2. Finally, the behavior in (2.14) as ξ → ξ0 ∈ (0,∞) is equivalent to the one in the
statement of the Lemma, following an easy discussion on the signs of the constants that is
given in detail at the end of [16, Lemma 2.4]. A fully rigorous proof can be done by using
the theory in [28, Theorem 2, Section 3.10] in line with the proof of [16, Lemma 2.4].

For the critical points Q1 and Q4 introduced in (2.9) or (2.10), which only exist if
m+ p ≤ 2, the situation is different with respect to [16], but as we shall see, they are not
very important for the subsequent analysis of the phase plane.

Lemma 2.5. The critical point Q1 on the Poincaré sphere is a saddle-node according to
the theory in [28, Section 2.11] and there is a unique orbit entering this point and coming
from the finite part of the phase plane. The critical point Q4 is a stable node. The orbits
entering both Q1 and Q4 and coming from the finite part of the phase plane contain profiles
having a vertical asymptote at some finite point ξ0 ∈ (0,∞), in the sense f(ξ) → ∞ as
ξ → ξ0.
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Proof. Let us restrict ourselves first to exponents such that m+p < 2. The local analysis of
both points can be performed, according to [28, Theorem 2, Section 3.10], on the following
system (also obtained in [16, Lemma 2.3]){

ẏ = 2w(1−m)/(2−m−p) + (1−m)y −Nyw(1−m)/(2−m−p) − y2 −Kw,

ẇ = −(2−m− p)yw − 2(2−m−p)
1−m w1+(1−m)/(2−m−p),

(2.15)

where y = Y/X, z = 1/X and w = z(2−m−p)/(1−m). More precisely, the critical point Q1

is topologically equivalent to the critical point (y, w) = (0, 0) and the critical point Q4 is
topologically equivalent to the critical point (y, w) = (1−m, 0) in the system (2.15). The
linearization of the system (2.15) near the point (y, w) = (1 −m, 0) equivalent to Q4 has
the matrix

M(Q4) =

(
−(1−m) −K

0 (1−m)(m+ p− 2)

)
,

with two negative eigenvalues λ1 = −(1 −m) and λ2 = (1 −m)(m + p − 2), thus Q4 is a
stable node. The orbits entering Q4 are characterized by the fact that Y/X ∼ 1−m in a
neighborhood of Q4, which leads after an integration to

f(ξ) ∼
(
C − (m− 1)2

2
ξ2
)1/(m−1)

, C > 0 free constant, (2.16)

presenting a vertical asymptote as ξ → ξ0 for some ξ0 ∈ (0,∞) (which can be made explicit
in terms of the constant C > 0) since m− 1 < 0. The linearization of the system (2.15) in
a neighborhood of the origin has the matrix

M(Q1) =

(
1−m −K

0 0

)
,

with eigenvalues λ1 = 1 − m > 0 and λ2 = 0. We thus have an unstable manifold and
center manifolds (that may not be unique). The analysis of the center manifolds (following
[28, Section 2.12]) show that their equation and direction of the flow over them are given
by the following

y(w) =
K

1−m
w + o(w), ẇ = −K(2−m− p)

1−m
w2 + o(w2),

thus all the orbits tangent to some center manifold enter Q1. We thus deduce from [28,
Theorem 1, Section 2.11] that the critical point Q1 is a saddle-node, where the ”saddle
sector” takes the orbits approaching Q1 from the interior of the phase plane, while the
”node sector” contains only orbits going out of Q1 on the boundary of the Poincaré sphere.
It thus follows that there is a unique orbit entering Q1 from the interior of the phase plane,
with

y ∼ K

1−m
w =

K

1−m
z(2−m−p)/(1−m)

in a neighborhood of it, which writes equivalently

Y ∼ K

1−m
X(p−1)/(1−m)
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and in terms of profiles gives after substitution with the definitions in (2.1) and integration

f(ξ) ∼
(
D − K

2
ξ2(p−1)/(1−m)

)1/(1−p)

, D > 0 free constant,

which produces a vertical asymptote at some finite ξ0 ∈ (0,∞), since 1 − p < 0. More
details about the calculations are given in [16, Lemma 2.3].

For the remaining case m + p = 2, where the critical points Q1 and Q4 are defined in
(2.10), the analysis is very similar, since on orbits near both of them we have Y/X ∼ y1
or Y/X ∼ y2, with y1, y2 > 0 defined in (2.11), which readily lead to a similar vertical
asymptotes as the one obtained in (2.16). We omit here the details, that are similar to the
ones in [16, Section 3.1].

Remark. Profiles with a vertical asymptote at some finite positive point have been also
noticed in the study of Eq. (1.8) (that is, for σ = 0) with p > m > 1, see for example
Figure 5.1 in [33, p.214].

3 Global analysis. Proof of Theorem 1.1

In this section we deduce how the trajectories go inside the phase plane associated to the
system (2.2) and we prove Theorem 1.1. Let us notice that the result of Theorem 1.1
is equivalent to the existence and uniqueness of a saddle-saddle connection between P0

and P1. We will prove this next, and the main tool in the proof will be an argument of
monotonicity. We divide the steps of the proof into several subsections.

3.1 Orbits for K > 0 small

The first preparatory step deals with the configuration of the phase plane for very small
K > 0 (that is, X(P2) very large).

Lemma 3.1. Let N ≥ 3, m ∈ (0,mc) and p > 1 be fixed and let σ as in (1.2). Then there
exists K1 > 0 (depending on m, N and p) such that, for any K ∈ (0,K1), the unique orbit
entering the saddle point P1 in the phase plane associated to the system (2.2) comes from
the critical point P2.

Proof. Let us consider the line passing through P2

l : Y = (1−m)(X −X(P2)) + Y (P2).

The direction of the flow of the system (2.2) over the line l is given by the sign of the
expression

F (X) = −[m(m− 1)2X(P2) + (N + 2)(m−ms)]X

+
2N(mc −m)

(m− 1)2

[
X

X(P2)

](p−m)/(1−m)

+
1

(m− 1)2
A(X(P2)),

(3.1)

where

A(X(P2)) = m(m− 1)4X(P2)
2 + (m− 1)2(N + 2)(m−ms)X(P2)− 2N(mc −m)

15



and we recall that X(P2) is defined (in terms of K) in (2.4). Taking derivatives of F (X)
gives, after straighforward calculations, that

F ′′(X) =
2N(mc −m)(p−m)(p− 1)

(m− 1)4
X(m+p−2)/(1−m)X(P2)

(m−p)/(m−1) > 0, (3.2)

for any X > 0, since 0 < m < mc and p > 1 > m, and

F ′(X(P2)) = −m(m− 1)2X(P2)− (N + 2)(m−ms)−
2N(mc −m)(p−m)

(m− 1)3X(P2)

≈ −m(m− 1)2X(P2) < 0,

(3.3)

provided K > 0 is sufficiently small (which is equivalent to take X(P2) sufficiently large).
We infer from (3.2) and (3.3) that F ′(X) < 0 for any X ∈ (0, X(P2)). Since it is easy
to check that F (X(P2)) = 0, it follows that F (X) > 0 for any X ∈ (0, X(P2)). The
intersection of the line l with the Y axis is reached at

Y0 = Y (P2)− (1−m)X(P2) < −N − 2

m
, for X(P2) large,

hence the critical point P1 lies on the same side as the origin with respect to the line l. The
orbit entering P1 cannot cross the line l from right to left due to the fact that F (X) > 0.
On the other hand, considering the isocline Ẏ = 0 of the system (2.2), that is, the curve

C : −mY 2 − (N − 2)Y + 2X + (1−m)XY −KX(p−m)/(1−m) = 0,

we notice that the curve C connects P2 and P1 and splits the half-plane {Y < −2/(1−m)}
into two regions that we plot in Figure 2 below, which gives a ”visual proof” of this Lemma:

• one region (I) enclosed by the curve C, the line Y = −2/(1−m) = Y (P2) and the Y
axis, in which Ẋ < 0, Ẏ > 0, hence dY/dX < 0 along the trajectories in this region.

• one region (II) lying below the line Y = −2/(1 − m) = Y (P2) and in the exterior
of the curve C, in which Ẋ < 0, Ẏ < 0, hence dY/dX > 0 along the trajectories in this
region.

It readily follows from these signs of dY/dX along the trajectories that the orbit entering
P1 comes through the second, exterior region. Moreover, the direction of the flow of the
system (2.2) on the part of the curve C which lies in the half-plane {Y < −2/(1−m)} is
given by the sign of the expression

G(X,Y ) = X[2 + (1−m)Y ]2 − K(p−m)

1−m
[2 + (1−m)Y ]X(p−m)/(1−m) > 0,

since 2 + (1 − m)Y < 0 in the half-plane where we work. Taking into account that the
normal direction to the curve C is given by

n(X,Y ) =

(
2 + (1−m)Y − K(p−m)

1−m
X(p−1)/(1−m),−2mY − (N − 2) + (1−m)X

)
whose X-component is obviously negative in the region where 2+ (1−m)Y < 0, it follows
that no orbit can cross the part of the curve C which lies in the half-plane {Y < −2/(1−m)}
from region (I) into region (II) above. We then conclude from this analysis that for such
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sufficiently small values of K for which F (X) > 0 in (3.1), the orbit entering P1 has to
lie completely in the region limited by the part of the curve C contained in the half-plane
{Y < −2/(1 −m)}, the line l and the Y axis, as shown in Figure 2. Since in this region
(which is a part of region (II)) the componentsX and Y are monotonic along any trajectory,
the orbit entering P1 must come from the only critical point lying on the boundary of this
region, which is P2.

Y

X

P2

P1

I

II

Figure 2: The orbit connecting P2 to P1 for K > 0 small

3.2 Monotonicity with respect to K > 0

For the easiness of the rest of the analysis, we perform a further change of variable that
transforms the system (2.2) into a new one. Let us set

X = X(P2)U, Y =
cV − 2

1−m
, η = dη, (3.4)

where

c =

√
2N(mc −m)

m
, d =

1−m√
2mN(mc −m)

.

We thus obtain a new system in variables (U, V ) introduced in (3.4){
U̇ = CmUV,

V̇ = −V 2 − CsV + 1 + CKUV − U (p−m)/(1−m),
(3.5)
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where the derivatives are taken with respect to the new independent variables η and

Cm =
1−m

m
, Cs =

(N + 2)(ms −m)√
2mN(mc −m)

,

CK =
(1−m)2(p−1)/(p−m)

[2N(mc −m)](m+p−2)/2(p−m)
√
mK(1−m)/(p−m)

.

(3.6)

Let us notice that in the system (3.5) the critical points in the plane become

P0 =

(
0,

−Cs +
√

C2
s + 4

2

)
, P1 =

(
0,

−Cs −
√

C2
s + 4

2

)
, P2 = (1, 0)

and an important feature of this system is the fact that Cs changes sign (if moving m)
at m = ms, a fact that will become essential later. Let us introduce also the following
notation: l0(K) be the (unique) orbit going out of the saddle point P0 and l1(K) be the
(unique) orbit entering the saddle point P1. We are now interested in the change of the
direction of the orbits l0(K) and l1(K) with respect to the parameter K > 0. We have the
following

Lemma 3.2 (Monotonicity lemma). Let K1, K2 > 0 such that K1 < K2. Then the orbit
l0(K1) ”stays above” the orbit l0(K2) in the half-plane {V > 0}, before the first intersection
with the U axis, and the orbit l1(K1) ”stays above” the orbit l0(K2) inside the half-plane
{V < 0}, after the last intersection with the U axis. Here ”stays above” means that, if for
a fixed U0 > 0 we let V1, V2 be the coordinates of the point on the orbits l0(K1), l0(K2)
(respectively l1(K1), l1(K2)) having U = U0, then V1 > V2 while V1 > 0 on the orbits
l0(Ki), i = 1, 2 (respectively V1 > V2 while V2 < 0 for the orbits l1(Ki), i = 1, 2).

Proof. We will redo the local analysis of the critical points P0 and P1 in our new system
(3.5) looking for the eigenvectors tangent to the orbits l0(K), l1(K) in a neighborhood of
these points. In order to simplify the writing, let us consider a generic point P = (0, b) for
some b ∈ R. The linearization of the system (3.5) near the point P = (0, b) has the matrix

M(0, b) =

(
Cmb 0
Ckb −Cs − 2b

)
,

with eigenvalues and corresponding eigenvectors

λ1 = Cmb, e1 =

(
Csm+ b(m+ 1)

mbCK
, 1

)
, λ2 = −Cs − 2b, e2 = (0, 1). (3.7)

By particularizing b as the V -coordinate of the critical points P0, respectively P1 and
recalling the local analysis performed in Lemmas 2.1 and 2.2, noticing that b > 0 for P0 and
b < 0 for P1, we conclude that the orbits l0(K), respectively l1(K) go out of P0, respectively
enter P1 tangent to the eigenvector e1 in (3.7). Moreover, in a neighborhood of these saddle
points we get from the formulas of the V -components of them that Cs = (1− b2)/b, thus

mCs + b(m+ 1) =
m+ b2

b
(3.8)
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We now look at the dependence on K of the orbits locally, in sufficiently small neighbor-
hoods of P0, respectively P1. Taking into account (3.8) we have

dV

dU
∼ mbCK

mCs + b(m+ 1)
=

C(m,N, p)b2m

m+ b2
1

K(p−m)/(1−m)
,

where C(m,N, p) > 0 is the constant appearing in the formula of CK in (3.6). We thus
infer the desired local monotonicity with respect to K in a local neighborhood of the points.
Moreover, along the trajectories we have

dV

dU
=

CKUV − U (p−m)/(1−m) − V 2 − CsV + 1

CmUV
=

CK

Cm
− U (p−m)/(1−m) + V 2 + CsV − 1

CmUV

and this varies in a decreasing way with respect to K > 0. By the comparison theorem, we
infer that the orbits l0(K), l1(K) remain ordered for different values of K at least while
the sign of V does not change, as claimed.

The statement of Lemma 3.2 cannot be extended further without any restrictions.
Indeed, Lemma 3.1 shows that the orbits l1(K) with K ∈ (0,K1) all meet at the critical
point P2, despite being ordered before arriving (in the backward sense of their directions)
to P2. The next lemma shows that this is the only possible case of intersection over the U
axis

Lemma 3.3 (Strict monotonicity outside P2). Two orbits l1(K1) and l1(K2) with K1 < K2

cannot intersect at points (U, 0) with U > 1. The same result is valid also for two orbits
l0(K1) and l0(K2).

Proof. Since K1 < K2 it follows obviously from (3.6) that CK1 > CK2 . Fix now U > 1
and estimate the distance between the V -components of the two orbits (already ordered
by Lemma 3.2 before reaching V = 0):

d(V1 − V2)

dU
=

CK1UV1 − U (p−m)/(1−m) − V 2
1 − CsV1 + 1

CmUV1

− CK2UV2 − U (p−m)/(1−m) − V 2
2 − CsV2 + 1

CmUV2

=
1

Cm

[
(CK1 − CK2) +

1− U (p−m)/(1−m)

U

(
1

V1
− 1

V2

)]

− 1

Cm

V1 − V2

U
.

Assume now for contradiction that two orbits, either l1(K1) and l1(K2), or l0(K1) and
l0(K2), intersect at some point (U, 0) with U > 1. Take then a small neighborhood of this
intersection point (U, 0) still included in the half-plane {U > 1}. Before the intersection,
we know from Lemma 3.2 that the orbits are still ordered and V1 > V2 for the same value
of U . Since U > 1 in the neighborhood we have chosen, it follows that

1− U (p−m)/(1−m)

U

(
1

V1
− 1

V2

)
> 0
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before the intersection of the two orbits. Moreover, since K1 < K2 we have CK1 −CK2 > 0.
Letting V1, V2 tend to 0, we get from the previous equality that in the limit

d(V1 − V2)

dU
→ CK1 − CK2

Cm
> 0

and a contradiction, as the latter says that the distance between the orbits increases instead
of tending to zero (as it should happen at an intersection point). This argument is valid
for both families of orbits l0 and l1.

Noticing further that the direction of the flow of the system (3.5) over the U axis is
given by the sign of 1 − U (p−m)/(1−m), we readily infer that no orbit can cross the U axis
from {V > 0} to {V < 0} at some point (U, 0) with U < 1. This remark together with
Lemmas 3.2 and 3.3 allow us to introduce the following functions of K. Let U0(K) be the
coordinate of the first intersection point of the orbit l0(K) with the U axis (after going
out of P0) and U1(K) be the last intersection point of the orbit l1(K) (before entering
P1), with the convention that U0(K) = +∞ if l0(K) enters one of the critical points Q1

or Q4 at infinity without crossing the U axis. We have just proved that, if K1 > 0 is
the highest parameter for which the orbit l1(K) comes directly from P2, then U1(K) is a
strictly increasing function for K > K1, and U0(K) is a strictly decreasing function when
1 < U0(K) < ∞. Moreover, both functions are continuous with respect to K (when taking
finite values), as it follows from the continuity with respect to the parameter.

3.3 Orbits for K > 0 large and final argument when m ∈ (0,ms)

The next step is to study the other extremal configuration of the phase plane, for K > 0
very large. Let us restrict ourselves for this study to the range m ∈ (0,ms), which makes
an important difference with respect to other ranges of m, as it follows from Lemma 2.3.
Indeed, the critical point P2 is the one that drives the whole picture of the phase plane, and
the fact that it changes as indicated in Lemma 2.3 for m ∈ (0,ms) will become a decisive
fact in this section. Knowing that K → ∞ implies CK → 0, we begin from the analysis of
the limit system obtained by just letting CK = 0{

U̇ = CmUV,

V̇ = −V 2 − CsV + 1− U (p−m)/(1−m),
(3.9)

Lemma 3.4. The dynamical system (3.9) does not have limit cycles.

Proof. We use Dulac’s Criteria [28, Theorem 2, Section 3.9] taking a generic function Ua,
with a to be determined later, as ”integrating factor”. We compute the divergence of the
vector field obtained by multiplying the vector field of the system (3.9) by Ua to get

∂

∂U
(CmUa+1V ) +

∂

∂V

(
−UaV 2 − CsU

aV + Ua − Ua+(p−m)/(1−m)
)

= (a+ 1)CmUaV − 2UaV − CsU
a = −CsU

a < 0,

by choosing a such that a = (2 − Cm)/Cm and taking into account that Cs > 0 for
m ∈ (0,ms). Since the divergence has always the same sign, Dulac’s Criteria concludes the
proof.
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We easily notice that the critical points P0, P1 and P2 and the critical points at infinity
remain the same and have similar local analysis in the system (3.9) as the analysis we
did in Section 2. In particular, we can consider l1(∞) to be the unique orbit entering the
saddle point P1 in the limit system (3.9). We infer from Lemma 3.4, the local analysis of
the points and the Poincaré-Bendixon’s theory [28, Section 3.7] that the orbit l1(∞) must
come from a critical point among Q2 or P0. We next show that the latter is impossible.

Lemma 3.5. There cannot be a trajectory connecting P0 and P1 in the system (3.9).

Proof. Assume for contradiction that there exists such a connection, which means that
l0(∞) = l1(∞), where l0(∞) denotes the orbit going out of P0 in the system (3.9). Let
U0(∞) be the U -coordinate of the first point at which l0(∞) crosses the U axis. Since it
is obvious that U0(∞) < ∞ (as the orbit l0(∞) goes to P1), we deduce by monotonicity
and continuity with respect to the parameter CK in the system (3.5) that for K very large
1 < U1(K) < U0(K) < ∞. Here it is essential that for K very large, the point P2 is stable.
It thus follows, for such K sufficiently large, that the orbit l1(K) must go out of a limit
cycle which lies in the region limited by the orbit l0(K) and the V axis, since it cannot go
out of P2 and the orbit l0(K) becomes a barrier for l1(K) that cannot be crossed. We next
prove that this scenario is impossible using again Dulac’s Criteria, with exactly the same
multiplying function Ua, a = (2−Cm)/Cm as in the proof of Lemma 3.4. In this case, the
divergence of the vector field obtained from the one of the system (3.5) multiplied by Ua

is obtained from the previous one by adding the influence of the term with CK , namely

−CsU
a + CkU

a+1 = CKUa

(
U − Cs

CK

)
, (3.10)

which for K > 0 sufficiently large is negative in the whole strip {0 < U < 2U0(∞)}
(recalling that Cs > 0 for any m ∈ (0,ms)). This implies that there are no limit cycles
included in the strip {0 < U < 2U0(∞)} and it is obvious that a bigger limit cycle must
cross l0(K), which is a contradiction. We conclude that the connection P0-P1 is impossible
in the limit system (3.9).

We thus conclude as an outcome of Lemma 3.4, Lemma 3.5 and the local analysis near
P2 done in Lemma 2.3 that the orbit l1(∞) in the limit system (3.9) goes out of Q2, while
the orbit l0(∞) must stay inside the region limited by the V axis and the orbit l1(∞) and
thus enter the (stable point) P2. We are now in a position to prove that the same holds
true for the system (3.5) with K very large.

Lemma 3.6. There exists K0 > 0 sufficiently large such that for any K ∈ (K0,∞), the
orbit l0(K) enters the critical point P2 and U0(K) < U1(K) for K ∈ (K0,∞).

Proof. From the previous discussion and the continuity with respect to the parameter CK

in the system (3.5) near CK = 0, we get that for K sufficiently large the orbit l1(K) also
goes out of Q2, since Q2 is an unstable node. The orbit l0(K) cannot cross the orbit l1(K)
and thus must remain forever in the region limited by the V axis and the orbit l1(K),
which immediately implies U0(K) < U1(K). Moreover, by the same consideration of non-
existence of limit cycles in big strips obtained in the proof of Lemma 3.5, the fact that for
K large P2 is a stable node or focus and the Poincaré-Bendixon’s theory we further deduce
that l0(K) enters P2, as stated.
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At this point, before ending the proof of Theorem 1.1, let us plot in Figure 3 the
extremal configurations of the phase plane associated to the system (3.5), that is, first for
K > 0 sufficiently small and then for K ∈ (K0,∞) as proved in Lemma 3.6.

U

V

P2

P1

P0

P2

P1

P0

(a) K > 0 small
V

U

P2

P1

P0

P2

P1

P0

(b) K > 0 large

Figure 3: Trajectories in the phase space for K > 0 small and K > 0 large. Numerical
experiment for N = 3, m = 0.1, p = 2 and K = 0.5, respectively K = 10

We are now in a position to complete the proof of Theorem 1.1 for any m ∈ (0,ms) and
any p > 1.

Proof of Theorem 1.1 for 0 < m < ms. With the previous notation, introduce the follow-
ing function

g(K) := U0(K)− U1(K),

with the convention that we allow g(K) = ∞ if U0(K) = ∞. On the one hand, we have just
proved in Lemma 3.6 that g(K) < 0 for any K ∈ (K0,∞). On the other hand, Lemma 3.1
gives that U1(K) = 1 for any K ∈ (0,K1) and thus, by considerations of flow, U0(K) > 1
for K ∈ (0,K1) and g(K) > 0 in this interval. It is obvious that g is a continuous function
at least while g(K) < ∞, by a standard continuity argument with respect to the parameter,
and Lemmas 3.2 and 3.3 give that g is a strictly decreasing function once g(K) < ∞. It thus
follows by Bolzano’s theorem that there exists a unique value of K > 0 for which g(K) = 0,
meaning that U0(K) = U1(K) and, since this is fulfilled at some point U0(K) > 1, thus not
a critical point, we infer that the two orbits should coincide, realizing a unique connection
between P0 and P1, as claimed.

We show in Figure 4 the outcome of numerical experiments confirming the reversed
monotonicity of the values U0(K) and U1(K) proved in Lemmas 3.2 and 3.3 for different
shooting parameters K and the formation of the critical orbit connecting P0 and P1.
Remark. Apart from the anomalous eternal solution obtained as the unique connection
P0-P1, we infer from Lemma 3.6 that there exist infinitely many orbits connecting P0 to
the critical point P2 (for K ∈ (K0,∞) at least). These orbits contain profiles such that
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V

U

P1

P0

K=0.8
K=1
K=1.0374
K=1.5
K=2

Figure 4: Several orbits from P0 and entering P1 for different values of K. Experiment for
N = 3, m = 0.1 and p = 2

f(0) = A > 0, f ′(0) = 0 and

f(ξ) ∼ Cξ−2/(1−m), as ξ → ∞.

These profiles give rise to solutions that are not integrable as |x| → ∞, but they are
”eternal” analogous for Eq. (1.1) to the pseudo-Barenblatt profiles for the subcritical fast
diffusion (1.4) whose relevance for the large time behavior of the subcritical fast diffusion
equation has been emphasized in the well-known paper [4].

3.4 Proof of Theorem 1.1 for m ∈ (ms,mc)

The plan of this section is to prove that, on the one hand, there are no connections P0-P1

and corresponding profiles with α > 0 and, on the other hand, by changing the signs of the
self-similar exponents we obtain a unique good anomalous solution with α < 0, as stated
in Theorem 1.1. We begin with the first goal.

Lemma 3.7. Fix N ≥ 3, m ∈ (ms,mc) and p > 1. Then there is no connection between
the saddle points P0 and P1 in the system (3.5).

Proof. The fundamental difference with respect to the case m ∈ (0,ms) is that, for m ∈
(ms,mc), the point P2 is always an unstable node or focus, for any K > 0. Assume for
contradiction that there exists an orbit connecting P0 to P1 (that is, l0(K) = l1(K)) for
some K > 0. Take then K ′ > K and closer to K. By monotonicity, the orbits l0(K

′) and
l1(K

′) cross the U axis in the order U0(K
′) < U0(K) = U1(K) < U1(K

′). Moreover, when
m ∈ (ms,mc) we infer from (3.6) that Cs < 0, hence the same proof of non-existence of
limit cycles in large strips done with the aid of Dulac’s Criteria in the proof of Lemma 3.5
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gives that there are no limit cycles at all, in the whole plane. Indeed, the outcome of (3.10)
is now

CKUa

(
U − Cs

CK

)
> 0, for any U > 0.

It thus follows that the orbit l1(K
′) comes from the unstable node Q2 at infinity and the

orbit l0(K
′) must remain forever in the region limited by the V axis and by the orbit l1(K

′).
But this is a contradiction to the Poincaré-Bendixon theory [28, Section 3.7], since l1(K

′)
cannot either end in a limit cycle (there is none) or at P2, which is now an unstable point.

Let us now prove the existence of such a connection but with exponents α < 0 and
β > 0 as claimed in Theorem 1.1. To this end, we have to adapt our systems (2.2) and
then (3.5) to the case α < 0. Let us thus start from changing the ansatz of the form of the
solutions by letting now

u(x, t) = e−αtf(|x|eβt), α > 0,

obtaining thus after straightforward calculations the same equation as (1.13) but with the
signs in front of the terms involving α and β changed. By doing exactly the same change
of variable (2.1), this translates into a change of sign in two terms from the equation for
Ẏ , more precisely{

Ẋ = X(2− (m− 1)Y ),

Ẏ = −mY 2 − (N − 2)Y − 2X − (1−m)XY −KX(m−p)/(m−1),
(3.11)

and furthermore, with the same change of variable (3.4) we get the system{
U̇ = CmUV,

V̇ = −V 2 − CsV + 1− CKUV − U (p−m)/(1−m),
(3.12)

with the same values for its coefficients as in (3.6). Notice that the only difference of (3.12)
with respect to (3.5) is a change of the sign of the term involving CK . Let us set now
V = −V and a new independent variable η∗ = −η in the system (3.12). It is immediate to
see that, in variables (U, V ) and taking derivatives with respect to η∗, we obtain exactly
the same system (3.5) with the only change that Cs = −Cs. A careful inspection of the
proofs in Subsections 3.2 and 3.3 shows that in fact the precise values of the coefficients
Cm, Cs, CK and the power (p − m)/(1 − m) of U are completely irrelevant, the analysis
of the dynamical system is completely independent provided that the coefficients satisfy
the conditions Cm > 0, Cs > 0, CK = AK−(p−m)/(1−m) with A > 0, and the power of U
any number larger than one. Thus, since the analysis in Subsection 3.1 is anyway valid for
every m ∈ (0,mc), we can repeat step by step the analysis with our new set of coefficients
Cm, Cs, CK and the new power (p−m)/(1−m) with m ∈ (ms,mc) exactly along the same
lines as the analysis done before, the only change being that

Cs = −Cs =
(N + 2)(m−ms)√

2mN(mc −m)
> 0, since m ∈ (ms,mc).

This concludes the existence of a good anomalous solution with α < 0 when m ∈ (ms,mc).
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Remark. The importance of the fact that Cs > 0 is illustrated also by the following
calculation. The eigenvalues (either real or complex) of the linearization near the point
P2 = (1, 0) in the system (3.5) (and similarly (3.12) with Cs = −Cs) are

λ1,2 =
m(CK − Cs)±

√
m2(CK − Cs)2 − 4m(p−m)

2m
,

thus it is essential to have Cs > 0 in order for the term CK − Cs to change sign with
K ∈ (0,∞), allowing thus the change of the critical point P2 from unstable to stable, which
was fundamental in the proofs.

3.5 The explicit case m = ms. Stationary solutions

We are left with the case m = ms, for which the analysis performed in Subsections 3.3 and
3.4 together with the expected continuity of the exponents α with respect to m give us
the idea that we have to look for stationary solutions, that is, with α = β = 0. With this
ansatz and recalling that m = ms, we readily get that Cs = CK = 0 in the system (3.5).
We then find that this system becomes integrable by letting

dV

dU
=

1− V 2 − U (p−m)/(1−m)

CmUV
,

and getting by direct integration (and putting the integration constant to zero) the explicit
curve

V 2 = 1− 2m

m+ p
U (p−m)/(1−m), (3.13)

which is indeed an orbit connecting the critical points P0 = (0, 1) and P1 = (0,−1) (since
Cs = 0). Let us further notice that the monotonicity arguments in Subsection 3.2 remain
valid form = ms, leading to the uniqueness of the orbit given in (3.13). With this, Theorem
1.1 is fully proved in this case.

However, despite the fact that the curve (3.13) cannot be easily integrated in terms of
profiles, we can still obtain explicit formulas for the stationary solutions contained in the
orbit (3.13), which are exactly equal to their profile since α = β = 0.

Proposition 3.8. The stationary solutions contained in the orbit (3.13) have the explicit
form

u(x) =

[
(N2 − 4)(p+ms)D

(1 +D|x|L)2

]1/(p−ms)

, L =
(N + 2)p− (N − 2)

2
, D > 0 free constant.

(3.14)

Proof. It is easy to check directly from (3.14) that, since L > 1, u(0) > 0, u′(0) = 0 and
u(x) has the expected decay

u(x) ∼ C|x|−(N+2) = C|x|−(N−2)/ms , as |x| → ∞,

hence the functions (3.14) belong to the orbit (3.13) for any D > 0. However, it is rather
instructive to be fair with the reader and explain in the next lines how we actually got to
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the expression in (3.14), since it cannot be done directly from Eq. (1.13) in an obvious
way. Thus, we use the following transformation

w(r) = r2/(1−m)u(r), y = ln r, r = |x|, (3.15)

which is a particular case of the more general change of variable introduced in [16, Section
6] to obtain the following equation

0 = (wm)yy −
2mN(mc −m)

(m− 1)2
wm + wp, (3.16)

which is the stationary counterpart of a general Fisher-type equation studied in [34, 10].
Here and in the next lines, the subscripts indicate derivatives with respect to the variable
y. We can then multiply by (wm)y in (3.16) and integrate to obtain

1

2
[(wm)y]

2 − mN(mc −m)

(m− 1)2
(wm)2 +

m

p+m
wp+m = C. (3.17)

Since
w(r) ∼ r2/(1−m)+(2−N)/m = rN(m−mc)/m(1−m) → 0, as r → ∞

and
(wm)y ∼ rN(m−mc)/(1−m) → 0, as r → ∞,

we infer that C = 0 in (3.17). We further introduce a new function by setting

g(y) =
(m− 1)2

2N(p+m)(mc −m)
w(y)p−m,

and (3.17) writes in term of g as the following easy to integrate differential equation

gy = ±Lg
√
1− g, L =

p−ms

1−ms

√
2N(mc −ms)

ms
=

2(p−ms)

1−ms
.

We obtain by integration that

g(y) =
1[

cosh
(
−L

2 (C + y)
)]2 , C ∈ R free constant. (3.18)

Starting from (3.18) and undoing the transformation in (3.15) we reach after some straight-
forward calculations the expression (3.14).

Remark. This stationary behavior for m = ms expresses once more the perfect balance
between the fast diffusion and the weighted reaction in Eq. (1.1). We recall here that
the fast diffusion equation Eq. (1.4) also has explicit solutions for m = ms, related to the
geometrical Yamabe problem, but these solutions present finite time extinction [36, Section
7.2]. We raise an open problem connected to these solutions at the end of the present
paper.
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3.6 Non-existence for m ∈ [mc, 1)

Let us consider now m ≥ mc. This part is now easy by the well-established theory. Indeed,
if m > mc we can reformulate the problem by letting σ > 0 free and expressing p in terms
of σ from (1.2) as a ”critical value” to get

p(σ) = 1 +
σ(1−m)

2
.

Thus, recalling the value of the Fujita-type exponent pF,σ in (1.11) we get

pF,σ − p(σ) =
σ + 2

2

(
2

N
+m− 1

)
=

σ + 2

2
(m−mc) > 0,

whence 1 < p(σ) < pF,σ for any σ > 0 and m ∈ (mc, 1). Thus there cannot exist any
”eternal” solution to (1.1), as all the solutions to Eq. (1.1) blow up in finite time according
to [32]. For m = mc, we do the following transformation in radial variables (with r = |x|)

y = ln r, w(y, t) = r2/(1−m)u(r, t),

which is a particular case of the general transformation introduced in [16, Section 6], leading
in our case to the following equation

wt = (wm)yy +
2m

m− 1
(wm)y + wp, (3.19)

and the eternal self-similar solutions to Eq. (1.1) are mapped into traveling wave solutions
to Eq. (3.19), as shown in [16, Section 6]. But Eq. (3.19) is a particular case of the more
general equation

wt = a(wm)yy + b(wm)y + kwp, (3.20)

which is analyzed in [26]. In particular, it is shown there that Eq. (3.20) does not admit
any traveling waves if a > 0, p > 1 and k > 0, which is exactly our case (with k = 1,
a = 1 and p > 1). Thus there are no eternal self-similar solutions to Eq. (1.1) for m = mc,
completing the analysis. The non-existence for the critical case m = mc can be also seen
from the phase plane: indeed, since the critical point P2 disappears for m = mc, an orbit
connecting P0 to P1 would lead to a contradiction with the Poincaré-Bendixon Theorem.

4 Some explicit connections in the phase plane and self-maps

In this final section we gather several facts that complete the study of Eq. (1.1), such as
explicit or semi-explicit solutions (identified as explicit orbits in the phase plane), and a
self-map of the equation. Most of these explicit solutions or trajectories of the phase plane
are obtained when m+ p = 2.

Explicit good orbits connecting P0 to P1. Let us consider m, p such that m+ p = 2.
We construct below some explicit saddle-saddle connections in the phase plane associated
to the system (2.2). Let us start with a rotation such that the eigenvector tangent to the
orbit l0(K) going out of P0 is mapped on the Y -axis. That is done by introducing

W := −Y +
2

N
X
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and obtain a new, equivalent system{
Ẋ = (m− 1)XW − 2(m−1)

N X2 + 2X,

Ẇ = mW 2 − (N − 2)W − (N+2)(m−ms)
N XW + KN2+2N(m−mc)

N2 X2.
(4.1)

The idea is to look for explicit solutions of the system (4.1) in the particular form

X = aW 1/2 + bW, a, b to be determined (4.2)

and show that for suitable choices of a and b, the orbits in (4.2) describe saddle-saddle
connections between P0 and P1, thus containing good profiles. To this end, the main idea
is to calculate the direction of the flow of the system (4.1) on the curves of the form (4.2)
and ask it to be identically zero. These calculations are rather tedious and have been
done with the aid of a symbolic calculation program. We get that the flow is given by the
following expression (depending on W )

F (W ) = − 1

2N2

(
A1W

2 +A2W
3/2 +A3W +A4W

1/2
)
, (4.3)

where Ai, i = 1, 4, are explicit expressions depending on m, N , K, a and b (recall that we
have m + p = 2) whose expressions will be introduced one by one below. We require all
these four coefficients to be zero and obtain some values for a and b. We start with A4:

A4 = (−KN2 − 2mN + 2N − 4)a3 +N2(N + 2)a = 0,

from where we deduce the value of a by letting

a =

√
N2(N + 2)

KN2 + 2N(m−mc)
, provided K >

2(mc −m)

N
. (4.4)

We go now to the coefficient A3, which writes

A3 = a2[−4b(KN2 + 2N(m−mc)) +N(mN −N − 2m+ 6)] + 2N3b

and equate A3 = 0 in terms of b, after substituting a2 by its expression in (4.4), to get

b =
N(mN2 −N2 + 4N − 4m+ 12)

2(KN3 + 4KN2 + 2N2m− 2N2 + 8mN − 4N + 16)
. (4.5)

We further go to the expression of A1 to find out the precise value of K. We have

A1 = −2b3(KN2 + 2N(m−mc)) + 2b2N(mN −N + 4)− 2N2b = 0,

from which, after substituting b from (4.5) we obtain the precise value of the parameter K
for which the orbits exist

K =
[N(N + 8)(m− 1) + 4(m+ 1)][N2(m− 1)− 4(m+ 1)]

4N2(N + 4)2
(4.6)

and then the value of b after replacing this value of K in (4.5)

b =
2N(N + 4)

mN2 −N2 + 8mN − 4N + 4m+ 20
. (4.7)
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It is easy to check that K > 0 in (4.6) for any m ∈ (0,mc), as both factors in the numerator
of its formula are negative in this range. Moreover, the compatibility condition given in
(4.4) to insure the existence of a becomes

2(mc −m)

N
−K = −(N + 2)(mN −N − 2m+ 6)[m(N2 + 8N + 4)−N2 − 4N + 20]

4N2(N + 4)2
< 0,

which is fulfilled if either m < m1 or m > m2, where

m1 =
N − 6

N − 2
, m2 =

N2 + 4N − 20

N2 + 8N + 4
. (4.8)

Let us notice that m2 < ms and that m1 > 0 if and only if N ≥ 7. We are now left with
the second coefficient A2 in (4.3), which after replacing K, b and a with their expressions
in (4.6), (4.7) and (4.4) respectively, gives

A2 =
N2[(N2 + 8N + 4)m2 − (2N2 − 16)m+ (N − 2)(N − 6)]

(N2 + 8N + 4)m−N2 − 4N + 20
= 0.

Defining
f(m) = (N2 + 8N + 4)m2 − (2N2 − 16)m+ (N − 2)(N − 6), (4.9)

we readily find that f(m1) < 0, f(m2) < 0 and f(ms) < 0, thus we infer that m1, m2 and
ms belong to the interval (m3,m4) of its roots, which are given by

m3 =
N2 − 8− 4

√
2N2 − 4N + 1

N2 + 8N + 4
, m4 =

N2 − 8 + 4
√
2N2 − 4N + 1

N2 + 8N + 4
. (4.10)

Let us further notice (by easy calculations that we omit) that m3 > 0 if and only if N > 6
and that m2 < mc for every N . Moreover, we remark that

N − 2

m
− a2

b2
= − f(m)

m(mN −N − 2m+ 6)
= 0,

provided m = m3 or m = m4, where f(m) is defined in (4.9). The latter shows that the
orbit we constructed in the phase plane enters the critical point P1.

Putting everything together, the construction is done through the following process:
pick any dimension N ≥ 7 and then let m = m3 ∈ (0,ms) given by (4.10), K > 0 given
by (4.6), p = 2−m3, b given by (4.7) and a given by (4.4). With these choices, we get an
explicit good connection P0-P1 for any such dimension N ≥ 7 given by (4.2). We can also
notice along the same lines that if we choose m = m4 ∈ (ms,mc) we get a good connection
in the phase plane obtained for the case α < 0 and described in Subsection 3.4.

Other explicit profiles that are not contained in a connection P0-P1. Apart from
the saddle-saddle connections P0-P1 constructed above, we can give some more examples
of orbits and profiles connecting the critical points in the phase plane associated to the
system (2.2).

• There exists an explicit solution to (1.4)

f(ξ) = Cξ−2/(1−m), C =

[
2mN(mc −m)

(m− 1)2

]1/(p−m)

, (4.11)
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which is represented in the phase plane by the critical point P2 itself. Independent of α and
β, this gives rise to a stationary solution u(x, t) = C|x|−2/(1−m), which presents a vertical
asymptote at the origin. Such a solution is an analogous for Eq. (1.1) to the separate
variable solution U(x, t;T ) to the standard fast diffusion equation Eq. (1.4) in [36, Section
5.2.1, p.80], with the noticeable difference that our solution is stationary and the solution
to Eq. (1.4) extinguishes in finite time. This is another illustration of the perfect balance
between diffusion and reaction in our equation. A rather similar stationary solution exists
for the homogeneous case σ = 0 with p = 1 and m < 1 as a limit case of the more general
stationary solutions for p > m

u(x, t) = C|x|2/(m−p), p >
m(N − 2)

N
,

given in [33, Section V.2.2, p.212].
• Letting again m + p = 2, one can look for orbits that are straight lines of the form

Y = aX + b in the phase plane. The direction of the flow of the system (2.2) on such a line
is given by

G(X) = (−a2−am+a−K)X2− [ab(m+1)+aN+b(m−1)−2]X−b(bm+N−2) (4.12)

and we wish to have G(X) ≡ 0. From the last term we deduce that either b = 0 or
b = −(N − 2)/m. On the one hand, if b = 0, we infer from equating to zero the other
coefficients in (4.12) that a = 2/N and K = 2(mc − m)/N > 0, thus we get a line
Y = 2X/N . By replacing X, Y from (2.1) and an easy integration, we obtain the family
of explicit profiles

f(ξ) =

[
C − α(1−m)

2mN
ξ2
]−1/(1−m)

, C > 0 free constant, (4.13)

presenting a vertical asymptote and belonging to a straight line connecting P0 to the critical
point at infinity Q4 in the phase plane. On the other hand, if b = −(N − 2)/m, we infer
from equating to zero the other coefficients in (4.12) that

a =
N(m−mc)

2m−N + 2
, K =

2N(mc −m)m2

(2m−N + 2)2

which are both positive if m < mc and N ≥ 3. We thus get a line Y = aX + b that
starts from P1, passes through P2 and then ends at Q4. We obtain thus by integration the
following explicit family of profiles

f(ξ) = ξ−2/(1−m)

[
(1−m)α

2(N − 2− 2m)
+DξN(mc−m)/m

]−2/(1−m)

, D ∈ R free constant,

(4.14)
where for D = 0 we recall the stationary solution given in (4.11), with D > 0 we get profiles
having a vertical asymptote at ξ = 0 and good tail behavior as ξ → ∞ (the line connecting
P2-P1) and with D < 0 we get a profile with two vertical asymptotes (the line connecting
P2-Q4). Such a family of profiles with two vertical asymptotes has been also obtained for
Eq. (1.1) with σ = 0 and p > m+2/N but presenting finite time blow-up, see for example
[33, Figure 5.1,p. 214].
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A self-map of Eq. (1.1). It is straightforward to check that, fixing m ∈ (0,mc) and p > 1,
we can obtain exactly the same phase plane associated to the system (3.5) by equating Cs

and CK for different values of N and K, namely

N =
2(N − 2− 2m)

N(mc −m)
, K = K [2mN(mc −m)](2−p−m)/(1−m) . (4.15)

We then infer that the change of self-similar exponents from one solution to the other is
given by

α = α [2mN(mc −m)](m+p−2)/(p−m) , β = β [2mN(mc −m)](m+p−2)/(p−m) ,

while from equating the variables of the phase plane system we readily get the following
changes for the dependent and the independent variables:

ξ = ξ−N(mc−m)/2m, f(ξ) =

[
2m

N(mc −m)

]2/(p−m)

ξ(N−2)/mf(ξ). (4.16)

It is easy to check that, due to the change of dimension in (4.15), the self-map given in (4.16)
matches the interval m ∈ (0,ms) into m ∈ (ms,mc) (in fact, the value of m is the same, but
as the dimension changes, also the critical exponents mc and ms change according to (1.3)
and (1.7)) and it is an inversion, mapping the anomalous solutions between themselves.

Let us finally notice that the self-map to Eq. (1.1) constructed in (4.15)-(4.16) is a
generalization of an interesting self-map for the fast diffusion equation (1.4) obtained as
a particular case of the more general self-maps constructed in [12, Section 2.1] (taking
γ = γ̃ = 0 in the notation of the quoted reference) but that seems to have remained
unnoticed: for the fast diffusion equation the change of dimension is exactly the same as in
(4.15), while the changes of independent variable and function are perfectly similar to the
ones in (4.16) except for the constant in front of the right-hand side of the change from f to
f . A similar self-map for the porous medium equation or the fast diffusion equation with
m > mc has been introduced in [18, Section 3], the algebraic (symbolic) formulas being
essentially the same ones as for the range m ∈ (0,mc).

An open problem. Related to the solutions in Proposition 3.8 and the idea of using in
the proof a transformation to a generalized Fisher-type equation analyzed in the short note
[10], it is there shown that, in the ”neighbor case” of letting wq with q < m instead of wm

in the reaction part of (3.17), the stationary solutions act as a separatrix between blow-up
and extinction, in the sense that any solution with suitably regular initial condition u0(x)
lying entirely below the stationary solution vanishes in finite time and any solution with
suitably regular initial condition u0(x) lying entirely above the stationary solution blows
up in finite time. This allows us to raise the following question, which we believe that is
very interesting: is it true, that the anomalous eternal solutions constructed in Theorem
1.1 for any m ∈ (0,mc) (or at least, the stationary ones for the explicit case m = ms)
also separate for our equation Eq. (1.1) between solutions that vanish in finite time and
solutions that blow up in finite time?
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