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Abstract 

Empirical verification of multiple states in drylands is scarce, impeding the design of indicators 

to anticipate the onset of desertification. Remote sensing-derived indicators of ecosystem states 

are gaining new ground due to the possibilities they bring to be applied inexpensively over 

large areas. Remotely sensed albedo has been often used to monitor drylands due to its close 

relationship with ecosystem status and climate. Here we used a space-for-time-substitution 

approach to evaluate whether albedo (averaged from 2000 to 2016) can identify multiple 

ecosystem states in African drylands spanning from the Saharan desert to tropical Africa. By 

using latent class analysis we found that albedo showed two states (low and high; the cut-off 

level was 0.22 at the shortwave band). Potential analysis revealed that albedo exhibited an 

abrupt and discontinuous increase with increased aridity (1 – [precipitation/potential 

evapotranspiration]). The two albedo states co-occurred along aridity values ranging from 0.72 

to 0.78, during which vegetation cover exhibited a rapid, continuous decrease from ~90% to 

~50%. At aridity values of 0.75, the low-albedo state started to exhibit less attraction than the 

high-albedo state. Low-albedo areas beyond this aridity value were considered as vulnerable 

regions where abrupt shifts in albedo may occur if aridity increases, as forecasted by current 

climate change models. Our findings indicate that remotely sensed albedo can identify two 

ecosystem states in African drylands. They support the suitability of albedo indices to inform 

us about discontinuous responses to aridity experienced by drylands, which can be linked to 

the onset of land degradation. 

Keywords: albedo, multiple states, climate change, remote sensing, dryland degradation. 
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1. Introduction 

Drylands are defined as regions with an aridity index (AI, i.e., the ratio of mean annual 

precipitation to mean annual potential evapotranspiration) below 0.65 (UNEP, 1992). 

Desertification, defined as land degradation in arid (0.05 ≤ AI < 0.2), semi-arid (0.2 ≤ AI < 0.5) 

and dry sub-humid (0.5 ≤ AI < 0.65) areas resulting from various factors, including climatic 

variations and human activities (UNEP, 1992), is a serious environmental issue in drylands 

worldwide. It is estimated that 10-20% of dryland ecosystems are already degraded, and its 

consequences are currently affecting 250 million people living mostly in developing countries 

(Reynolds et al., 2007). These numbers are likely to increase in the next decades because of 

projected increases in aridity (a fundamental driver of desertification (D’Odorico et al., 2013)) 

resulting from climate change (Huang et al., 2016), and forecasted population growth up to ~4 

billion by 2050 (van der Esch et al., 2017). Furthermore, desertification also can influence areas 

located even thousands of kilometers away due to dust storms generated in desertified drylands 

(Millennium Ecosystem Assessment, 2005), and is a global environmental and socio-

economical issue of the greatest importance, as highlighted by the UN Convention to Combat 

Desertification (Low, 2013). 

The process of dryland desertification has often been studied using the theoretical 

framework of critical transitions (Scheffer et al., 2001). According to this theory, drylands 

exhibit two states (non-degraded vs. degraded) and the transition between them, triggered by 

disturbances such as increased aridity and grazing pressure, is abrupt and sudden, rather than 

gradual and continuous (Scheffer et al., 2001; D´Odorico et al., 2013). Multiple theoretical 

studies have further suggested the existence of multiple states and of abrupt, non-linear, shifts 
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between them in drylands (Van de Koppel et al., 1997; Scheffer et al., 2001, 2009; Von 

Hardenberg et al., 2001; Rietkerk et al., 2004; Kéfi et al., 2007a; Corrado et al., 2014). 

Transitions between perennial and annual grasses and between forests, savannahs and treeless 

states have been found in savannahs (Lohmann et al., 2012) and tropical and subtropical areas 

(Staver et al., 2011; Hirota et al., 2011), respectively. Empirical studies in real dryland 

ecosystems are also identifying multiple states. Miller et al. (2011) found empirical evidence 

for three states (biocrust, grass-bare and annualized-bare) in a semiarid grassland ecosystem 

using an inventory data set from 72 plots on the Colorado Plateau, USA. Combining field data 

and high-resolution images obtained from Google Earth®, Berdugo et al. (2017a) revealed the 

presence of two ecosystem multifunctionality (assessed by multiple soil variables related to 

carbon, nitrogen and phosphorus cycles) states in global drylands that co-occur near the 

boundary between arid and semi-arid zones (i.e. AI value ~0.2). As shifts between multiple 

states in drylands are often unannounced and difficult to reverse once they occur, it is 

imperative to understand the process triggering these shifts and to develop “early warning” 

indicators that could announce the transition before it occurs (Kéfi et al., 2014; Scheffer et al., 

2009). 

During the last decades, increasing research efforts have been devoted to the development 

and calibration of remote sensing-based indicators of desertification processes (e.g., Fensholt 

and Rasmussen, 2011; Liu et al., 2016; Karnieli et al., 2014; Robinove et al., 1980). Dryland 

degradation can increase the magnitude of albedo (defined as the ratio of the amount of 

electromagnetic radiation reflected by a body to the amount incident upon it) due to reductions 

in soil moisture and vegetation cover and to associated increases in soil erosion (Tripathy et al., 
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1996; Robinove et al., 1980; Karnieli et al., 2014; Cierniewski et al., 2014). In addition, land 

surface albedo is a primary factor controlling the surface energy budget. The classic 

biogeophysical albedo-rainfall feedback proposed by Charney et al. (1975) has also been 

considered to be a plausible mechanism to explain the presence of multiple states in dryland 

ecosystems (see Scheffer et al., 2001). Thus, albedo may have the potential to reveal multiple 

states in drylands. 

Despite the fact that albedo has been widely used to monitor ecosystem functioning and 

desertification (Tripathy et al., 1996; Robinove et al., 1980; Karnieli et al., 2014), to our 

knowledge no study has evaluated whether remotely sensed albedo can reveal the presence of 

multiple states in drylands. We aimed to do so along the aridity gradient defined by the 

transition between the Saharan desert and the wet climate of tropical Africa (Buontempo et al., 

2010). Our study aims to: (i) assess whether remotely sensed albedo can reveal the presence of 

multiple states; (ii) compare the performance of albedo and vegetation cover to identify the 

presence of multiple states, as vegetation cover is a key factor determining ecosystem 

functioning in drylands worldwide (Gaitán et al., 2014; Soliveres et al., 2014) that is commonly 

used when assessing whether multiple states are present in terrestrial ecosystems (Hirota et al., 

2011; Scheffer et al., 2012; Berdugo et al., 2017a); and (iii) identify vulnerable areas where 

critical transitions may occur if aridity increases, as forecasted by current climate change 

models (Huang et al., 2016). 

2. Materials and methods 

2.1. Study area 
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We limited our study area to the climatic gradient existing between the Saharan desert and the 

wet climate of tropical Africa, which shows a wide natural aridity gradient (Fig. 1a). We 

retained for our analyses the arid, semi-arid and dry sub-humid areas within this region (Fig. 

1b), as those have been acknowledge as critical areas where desertification can occur (UNEP 

1992). Climate change and human activities are two major drivers of ecosystem change and 

land degradation in drylands (D´Odorico et al., 2013). To explore how ecosystems in our study 

area change in response to aridity, we masked out areas occupied by agricultural/urban uses 

and water bodies in any year during 2000-2015 by employing CCI land cover products (with a 

resolution of 300 m) from the European Space Agency (ESA) 

(http://maps.elie.ucl.ac.be/CCI/viewer/, Fig. 1c). We also removed areas with high grazer 

density, i.e., >15 TLU (Tropical Livestock Units, an indicator used to standardize different 

livestock types and sizes (FAO, 2012), Fig. 1d), in accordance with the grazer (i.e., cattle, 

buffalo, sheep and goat) density values calculated by Petz et al. (2014). Furthermore, and to 

avoid variations in albedo resulting from topographical differences, we also removed the pixels 

with slope value > 5º according to the SRTM (Shuttle Radar Topography Mission) 250 m 

Digital Elevation Data (http://gisweb.ciat.cgiar.org/TRMM/SRTM_Resampled_250m/, Fig. 

1e). According to the climate dataset from WorldClim Version2 (Fick & Hijmansn, 2017), mean 

annual precipitation and temperature (for 1970-2000) in our study area vary between 79 and 

1693 mm, and between 19.5 and 30.8 ºC, respectively (Fig. S1a, b). 

While the focus of our study was to explore whether drylands exhibited multiple states along 

an aridity gradient, we acknowledge that rainfed crops and livestock, two main land uses in our 

http://gisweb.ciat.cgiar.org/TRMM/SRTM_Resampled_250m/


 

 

This article is protected by copyright. All rights reserved. 

study area, can largely impact albedo signals. Therefore, we also re-analyzed our data by 

unmasking them (see Section 3.1 for further details). 

2.2. Remotely sensed albedo 

The actual albedo is determined by both atmospheric states and land surface reflective 

properties (Lucht et al., 2000; Wang et al., 2017). However, the white-sky (WSA) albedo is 

related purely to the properties of the land surface and is not affected by atmospheric conditions 

(Strahler et al., 1999). Zhao et al. (2018) have reported that WSA correlates with ecosystem 

multifunctionality, which has been found to exhibit two states and abrupt and discontinuous 

changes along aridity gradients in global drylands (Berdugo et al., 2017a). WSA (bi-

hemispherical reflectance) is defined as albedo under the condition that the direct component 

is absent and the diffuse component is isotropic and thus is independent of solar zenith angle. 

Therefore, we employed the WSA derived from MODIS MCD43B3 BRDF/Albedo Model 

Parameters Product (Collection 5; NASA LP DAAC, 2002). The white-sky albedo products are 

produced by RossThick-LiSparse-Reciprocal (Ross-Li) BRDF models based on multiple 

cloud-cleared land surface reflectance data over 16 days from both Aqua and Terra Satellites 

(Lucht et al., 2000). Both narrow and broad albedo bands are provided every eight days since 

the year of 2000 with 1000 m resolution by MCD43B3 (Schaaf et al., 2002; Gao et al., 2005). 

Considering the marked difference in the reflectance of vegetation in the visible and near-

infrared spectral regions (Lucht et al., 2000), we used shortwave white-sky (SHO; 0.3-5.0 µm), 

visible white-sky (VIS; 0.3-0.7 µm) and near-infrared white-sky (NIR; 0.7-5.0 µm) albedos. 

The quality of MCD43B3 WSA is indicated by the MCD43B2 BRDF_Albedo_Quality 

product with a flag of 0 (good quality data), 1 (useful data) and 255 (missing data). To avoid 
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using data with poor quality, pixels with a flag of 255 were excluded. Missing data are usually 

due to the effect of clouds (Liu et al., 2009). This is not a severe issue in drylands, which are 

characterized by low precipitation and cloud cover. Finally, we obtained the average (Fig. S2b-

d) values for the three white-sky albedo types for 17 years (2000-2016) by using Google Earth 

Engine (Gorelick, 2012). We did this averaging process because of the uncertainty of the 

remotely sensed products used. Most of the pixels used in the study area had a low percentage 

of missing data during the 17-yr period studied (see Fig. S3). Because albedo is strongly 

seasonal in areas with a monsoonal climate such as that we studied, we also conducted separate 

analyses for dry (October to March) and wet (April-September) season (see Section 3.1 for 

further details). 

2.3. Estimating vegetation cover and aridity values 

The cover of perennial vegetation cover (in %) was calculated from the yearly Terra MODIS 

Vegetation Continuous Fields (VCF) product, MOD44B (Collection 51; NASA LP DAAC, 

2011). This product provides information on the cover of three components of vegetation at the 

end of the rainy season or during the growing season (Hansen et al., 2002; DeFries et al., 1998) 

with a global resolution: trees, non-tree vegetation and bare ground areas. The production 

algorithm is a linear model regression tree that employs Landsat Geocover data and surface 

reflectance of MODIS as inputs (Collection 51; NASA LP DAAC, 2011). Each pixel has a 

resolution of 250 m and three percent values which represent cover of the three components 

(NASA LP DAAC, 2011). The average vegetation cover (sum of the tree and non-tree 

vegetation cover) for 16 years (2000-2015) was calculated by using Google Earth Engine 

(Gorelick, 2012), and then resampled to a resolution of 1000 m to match that of the land surface 
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albedo product used in this study. Vegetation in the study area is dominated by broadleaved 

trees, shrubs, grasses (Fig. S1d), and its cover, estimated from satellite, ranges from 0.4 to 99% 

(Fig. S1c). 

The aridity index (AI) is often used to classify drylands, and to characterize their degree 

of dryness (UNEP, 1992; Middleton and Thomas, 1997, Millennium Ecosystem Assessment, 

2005). We used aridity index values from Deblauwe et al. (2016). These were averaged for the 

period 2000-2014, with a resolution of 0.05° (~5.5 km at the equator). To facilitate interpreting 

our results, we measured aridity level using 1 - AI (Delgado-Baquerizo et al., 2013); thus this 

metric increases with increasing aridity constraints. Aridity values within our study area vary 

between 0.35 and 0.95. 

2.4. Analyzing multiple states using albedo data 

To avoid the uncertainty resulting from the dissimilar number of pixels present in the different 

aridity categories throughout the study area, we randomly selected 3000 pixels, with a 

minimum distance of 1 km far from each other, for arid, semi-arid and dry sub-humid areas. 

Then aridity (1 - AI) and the three white-sky albedo types were extracted for these 9000 pixels. 

All these geoprocessing steps were executed using ArcGIS 10.2 (ESRI Inc., Redlands, CA, 

USA). 

2.4.1. Latent class analysis 

We used latent class analysis to test whether land surface albedo showed multiple modes in the 

study area. This approach can fit the data to single/multiple frequency distributions and has 

been commonly employed by studies evaluating multiple states in real ecosystems (Scheffer et 

al., 2012; Berdugo et al., 2017a; Hirota et al., 2011). To do so, we used the gmdistribution.fit 
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function in Matlab R2009a (MathWorks Inc., Natick, Massachusetts, USA). This function uses 

an expectation-maximization algorithm to search the best fit for a certain number of normal 

distributions. We compared the Bayesian Information Criterion (BIC) obtained from the fits of 

the models with 1-5 classes. BIC is a goodness-of-fit criterion, whose minimum value 

corresponds to the most probable number of modes. 

2.4.2. Potential analysis  

The existence of multiple modes within a variable indicates the presence of contrasting 

ecosystem states that point to a conspicuously different arrangement/functioning of the 

ecosystem. However, some studies revealed that such patterns found through spatial gradients 

may also be indicative of different dynamical states (Livina et al., 2010). In particular, when 

both modes of the variable under consideration vary abruptly through an environmental 

gradient and exhibit an area of co-existence along the gradient this is considered a pattern 

indicating possible abrupt transitions. A technique that allows to establish a link between 

multiple modes found through spatial gradients and stability is potential analysis. We used this 

analysis to explore whether the response of albedo to aridity matched this kind of pattern, which 

would be indicative of the existence of multiple states (Scheffer et al., 2001; Hirota et al., 2011; 

Berdugo et al., 2017a). This technique infers the position of stable equilibria directly from the 

data by estimating the basins of attraction for multiple states under the supposition that more 

stable conditions usually occur more frequently in a set of snapshots of the system (Livina & 

Lenton, 2007; Hirota et al., 2011; Xu et al., 2016; Berdugo et al., 2017a). Thus, this technique 

attempts to link the fact that certain values distribute in multiple modes with dynamical stability 

associated to each of these values and is, therefore a way of analyzing abrupt changes using 
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space for time substitution. As such, it is not free of caveats that should be taken into account 

when interpreting the results from a space-for-time-substitution analysis (Johnson & Miyanishi, 

2008). However, it allows to identify drastic changes in ecosystems with a plausible and 

important link to its dynamics (Eby et al., 2016). The basic assumption of this analysis is that, 

for the variable of interest, there is a generic underlying stochastic and dynamical system with 

a potential function 

                𝑑𝑧 = −𝑈′(𝑧)𝑑𝑡 + 𝜎𝑑𝑤                  (1) 

where 𝑈(𝑧) is the dynamical potential energy of the system as a function of its own state, 𝑧 

and 𝜎  represent the state variable (here albedo) and the noise level respectively, 𝑑𝑤 

represents a noise term emerging from a Wiener process. According to a Fokker-Planck 

equation, which converts the probability density to the potential energy, the potential U can be 

calculated as (Livina et al., 2010): 

                 𝑈 = −
𝜎2

2
𝑙𝑜𝑔 (𝑃𝐷𝐹)                   (2) 

where PDF is the empirically derived probability density function of the variable of interest 

(here albedo). To facilitate the calculations, potential U was scaled to U/σ2. By doing so, the 

estimation of σ , which is difficult, can be avoided. The probability density of albedo was 

estimated using the ksdensity function in MATLAB, and a standard bandwidth is calculated as 

1.06 s/n0.2 (s and n are the standard deviation and number of sample points, respectively; see 

Scheffer et al., 2012; Hirota et al., 2011 and Berdugo et al., 2017a).  

We analyzed the abrupt nature of a shift in albedo states along the aridity gradient studied 

by tracking the local minima of the potential energy (local minima correspond to the different 

states; see Scheffer et al., 2012; Hirota et al., 2011 and Berdugo et al., 2017a) in a moving 
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window. Moving windows subset the data under increasing aridity constraints and compute the 

potential energy and local minima for each iteration. By tracking the variation of these subsets 

along aridity gradients we can depict how potential energy and number of states change with 

increasing aridity. It has been reported that the correct rate of detecting states increased as the 

window size increased and a size of 400-500 data points showed >90% correction rate of 

detection (Livina et al., 2013). However, the moving window size was set to 100 points in our 

study because (1) it reflects more details about the individual variation of the potential energy 

of albedo throughout the aridity gradient studied; (2) the results from size of 100 points were 

similar to that from 500 points (see Fig. S4); (3) this size had been used when processing 

geophysical data (Smith et al., 2008). 

2.5. Mapping vulnerable areas to critical transitions in the face of climate change 

Based on the potential analysis described above, we identified the aridity threshold at which 

sharp shifts in albedo may occur, i.e., from a low albedo state to high albedo state (see results 

below). Then we extracted the regions with low albedo values beyond this aridity threshold as 

vulnerable areas where critical transitions may occur in the study area if aridity increases, as 

forecasted by current climate change models (Huang et al., 2016). We further overlapped these 

areas with the global vegetation sensitivity index (VSI) of Seddon et al. (2016). This index 

quantifies the ratio of change of enhanced vegetation index (EVI, a vegetation index very 

similar to NDVI) respect to precipitation and temperature changes observed during the same 

period (2000-2015, see Seddon et al. 2016). It is an integrated metric assessing the sensitivity 

of ecosystems to climate perturbations, thus directly associated with dynamical properties of 

the system. With this overlapping procedure we wanted to check whether areas that are more 
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likely to change their state due to increases in aridity (as indicated by decreases in the potential 

function calculated in the previous step) also show a higher sensitivity to external perturbations 

(a feature of systems that are close to cross a tipping point; Scheffer et al., 2001, 2009). 

3. Results 

3.1. Remotely sensed albedo revealed the presence of two states 

The probability density of shortwave white-sky albedo (SHO; Fig. 2a), visible white-sky 

albedo (VIS; Fig. 2b) and near-infrared white-sky albedo (NIR; Fig. 2c) showed two significant 

modes, a low albedo of 0.14, 0.05 and 0.22 and a high albedo of 0.31, 0.20 and 0.43 for SHO, 

VIS and NIR, respectively. Cut-off levels for the two modes, defined by employing the 

locations of the local minima, were found at albedo values of 0.22, 0.13 and 0.31 for SHO, VIS, 

and NIR, respectively. For the three albedos evaluated, the BIC exhibited a sharp decline when 

the number of modes changed from 1 to 2; no apparent variations were observed from 2 to 5 

modes (Fig. 2d). These results suggest that two modes of albedo are likely present in our study 

area. 

Potential analysis provided additional details of how the two albedo modes changed along 

the aridity gradient evaluated (Fig. 3). There was a single state at low albedo values before the 

aridity value of 0.72 (Fig.3, inset c1), two states that started to co-occur persistently at aridity 

levels ranging from 0.72 to 0.78 (Fig. 3, insets c2-4) and again another single state, but of high 

albedo values, at higher aridity values (Fig. 3, inset c5). Interestingly, at the start of the aridity 

range where two albedo states co-occurred (i.e. aridity of 0.72), the low albedo state exhibited 

more attraction (lower potential energy) than the high albedo state (Fig. 3, inset c2), while the 

former started to exhibit less attraction (higher potential energy) than the latter at aridity values 
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around 0.75 (Fig. 2, inset c3). An abrupt and discontinuous increase around aridity of 0.78 was 

observed regardless of the type of albedo considered (Fig. 3a, b and c). 

These results did not change qualitatively when grazing areas were left unmasked (see Figs. 

S5 and S6). When rainfed crop areas were left unmasked, the three albedo metrics still showed 

two modes by latent class analysis (Fig. S7). However, the cut-off levels for the two modes 

(0.24, 0.14 and 0.34 for SHO, VIS and NIR respectively) were not as sharp as those observed 

when these areas were masked (Fig. 2). In addition, the co-occurrence of the two albedo states 

was no longer observed in the aridity range between 0.72 and 0.78, but albedo exhibited a quick 

change within this aridity range (Fig. S8). 

Results from latent class analysis changed little when separating the wet and dry seasons 

(Fig. S9). For the potential analysis, the behavior of SHO in dry season (Fig. S10b) was very 

similar to that shown in Fig. 3. In the wet season, and albeit the behavior of SHO showed 

differences (Fig. S10a), significant changes in this variable still could be observed during the 

0.72-0.78 aridity range. However, it must be noted that the duration of the wet/dry season 

changes along the aridity gradient evaluated, something that was not considered in our analyses. 

3.2. States of vegetation cover along aridity gradients 

Before the aridity level of 0.72, when only the low albedo state was observed, vegetation cover 

was very high (~90%). During the aridity range when the two states albedo states co-occurred 

(0.72-0.78) vegetation cover exhibited a rapid, continuous decrease from ~90% to ~50%. 

Beyond aridity values of 0.78, when only the high albedo state was observed, vegetation cover 

showed a very high decrease rate (from ~50% to ~5%). Vegetation turned very low at aridity 

values around 0.88 (Fig. 4). 
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3.3. Identification of vulnerable areas where critical transitions may occur 

We extracted areas with low albedo values (<0.22, the cut-off level for the two SHO albedo 

states identified) beyond the aridity value of 0.75 (see Section 4.2 for further explanations about 

why this value was selected) as vulnerable regions where critical transitions may occur if aridity 

increases as forecasted by climate change models (Fig. 5). These areas were mainly covered 

by shrubs, grasses and mosaics of both. Most of these areas had high/medium vegetation cover 

values (Shrub, 82%; Grass 31%, Mixed, 48%), and showed low SHO values (around 0.17, 

Table 1). In addition, most of them had moderate/high VSI values (Fig. 5). The average VSI 

value observed in vulnerable areas (16.75 ± 4.57, mean ± SD) was higher than that found in 

non-vulnerable areas (13.98 ± 3.99). 

4. Discussion 

4.1. Remotely sensed albedo revealed the presence of two ecosystem states 

Regardless of the metric considered, we found empirical evidence of the presence of two albedo 

states in African drylands. The magnitudes of the states revealed by NIR were higher than that 

of states reveled by VIS and SHO. This agrees with the fact that both soil and vegetation usually 

have higher albedo in the near-infrared domain than in the visible domain (Satterwhite & 

Henley, 1987; Lillesand et al., 2004). The two SHO states found were around 0.14 and 0.31, 

respectively. This is in accordance with the SHO values of that 0.14 and 0.35 employed by 

Charney (1975) to simulate regions covered with and devoid of plants, respectively, and to 

further uncover the albedo-rainfall feedback mechanism described by general climatic 

circulation models (Lofgren, 1995; Nicholson et al.,1998; Wang and Gao, 2004). Charney’s 

hypothesis postulates that such a magnitude of albedo change could cause a net decrease of 
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radiative flux large into the ground, leading to large decreases of rainfall in semi-arid areas in 

Africa, Asia and North America (Charney et al., 1977). This vegetation-climate feedback has 

been considered to be a plausible mechanism to explain the presence of two states in terrestrial 

areas (see Scheffer et al., 2001) and the shift from “wet” to “dry” states in areas like the Sahel 

within relatively short periods (see Foley et al., 2003), which are driven by contrasted wet and 

dry years, sometimes grouped in periods (Kusserow, 2017; Cherlet et al., 2018). However, we 

should note that Charney’s hypothesis is not without dispute because it is heavily affected by 

spatial scale and convective parameterizations (Taylor et al., 2013), and because it contradicts 

with the “re-greening” of the Sahel, which is supported by both field and satellite observations 

(Olsson et al., 2005; Hutchinson et al., 2005; Rasmusse et al., 2015; Brandt et al., 2014). 

We found empirical evidence that the use of remotely sensed albedo can identify two 

ecosystem states along spatial aridity gradients. The patterns described here suggest a 

substitution of these states along such gradients in a discontinuous and abrupt manner, thus 

matching the patterns expected from systems that exhibit the potential for critical dynamical 

transitions in response to increasing aridity (Livina & Lenton, 2007). It is important to remind 

that our work does not provide dynamical evidences of such transitions in the study area as it 

is entirely based on a spatial gradient. Additional studies on the temporal dynamics of these 

ecosystems are needed to further corroborate that the studied ecosystems may suffer 

catastrophic shifts with climate change, preferably, with field validations or experimental 

approaches. 

Regardless of their different magnitudes, the two albedo states revealed by the three albedo 

metrics considered co-occurred along aridity values ranging from 0.72 to 0.78. Throughout this 
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aridity range, vegetation cover exhibited a rapid and continuous, rather than abrupt, change. 

The differences observed in the behavior of albedo and vegetation cover were likely caused by 

a higher sensitivity of albedo (vs. percentage of cover) to changes in vegetation types. As shown 

in Fig. 6, the identified albedo states corresponded with multiple ecosystem types. In the aridity 

range between 0.72 and 0.78, the low albedo state vegetation was dominated by shrublands, 

while grasslands dominated in the high albedo state (Fig.6a). These two vegetation types could 

be separated clearly by their albedo (Fig. 6a), while their cover values were close near this 

aridity range (Fig. 6b). It has been reported that albedo not only can be affected by plant cover 

but also by other structural properties of vegetation such as the height, crown size and shape of 

trees (McElhinny et al., 2005; Koukal et al., 2014). Therefore, albedo can capture more 

information about vegetation features than cover alone, and this may explain why the co-

occurrence of two states can be revealed by albedo and not by vegetation cover alone. 

It has been reported that tree cover derived from satellites can reveal multiple ecosystem 

states in pantropical (Hirota et al., 2011; Staver et al., 2011) and boreal (Scheffer et al., 2012) 

regions. However, Hanan et al. (2014) argued that the multiple states detected in these studies 

may result from the inherent features of the datasets used by these authors as the algorithm 

used to produce vegetation cover datasets is a statistical-reliant method. We would like to 

remark that this is not an issue in our study because the albedo data used are mainly produced 

by physical models rather than by statistical models. 

It is worth to note that our results were slightly affected when rainfed crop areas were left 

unmasked, as the cut-off levels for the two modes (Fig. S7) were not as sharp as those observed 

when these areas were masked (Fig. 2). The abrupt, discontinuous change observed between 
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the two albedo states were replaced by a quick, continuous change. This result suggests that 

extensive human activities performed in these areas may smooth observed albedo responses to 

changes in aridity. To further conclude about the mechanisms by which the abrupt nature of 

albedo shifts can be modulated, future studies need to be conducted in situ. Doing so is highly 

relevant as these studies may shed light on the mechanisms to lessen the consequences of abrupt 

ecosystem changes and help to define a safe-operating space against climate change within 

these areas (Rockström et al., 2009). 

4.2. Areas vulnerable to regime shifts under increased aridity conditions 

Our results showed that at aridity values around 0.75, the low albedo state (with SHO values 

around 0.14) started to exhibit less attraction (higher potential energy) than the high albedo 

state (with SHO values around 0.31; Fig. 3c). We also found that around this aridity level (0.75) 

vegetation cover decreased rapidly (Fig. 4). Therefore, we speculate that when aridity crosses 

0.75, ecosystems at low albedo state, dominated by shrublands, tend to transit into the high 

albedo state, dominated by grasslands, a change that is accompanied by a rapid decrease of 

vegetation cover. Albeit shrubs with low albedo values could exist beyond aridity values of 

0.75 (Fig. 6a), their cover decreased very rapidly as aridity increased (Fig. 6c). Herbaceous 

vegetation (with high albedo values) became prevalent under high aridity conditions (Fig. 6a). 

Our measurements cannot provide evidence for the mechanisms underlying the patterns 

observed, which need to be explicitly addressed by future studies performed at more local 

scales. However, it has been reported that a) forest and savannahs represent two alternative 

stable states driven by the complex interactions between precipitation and fire (N’Dri et al., 

2012; Sankaran et al., 2005; Staver et al., 2011), and b) abrupt vegetation shifts from forests to 
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savannahs and grasslands have occurred in some areas such as equatorial West Africa, the 

Amazon basin and some tropical areas in Colombia due to enhanced aridity (Willis et al., 2013; 

van der Hammen and Absy, 1994) or human activities (Cavelier et al., 1998; Nepstad et al., 

1997). In addition, and within similar aridity gradients such as those we investigated, other 

studies carried out in drylands have found non-linear changes in significant ecological 

properties and mechanisms. These include drastic declines in ecosystem functioning 

accompanied by abrupt changes of vegetation spatial patterns from power law-like to non-

power law-like (Berdugo et al., 2017a, 2018), shifts in the mechanisms driving the structure of 

plant communities, from facilitation-driven to competition-driven (Berdugo et al., 2017b), the 

decoupling of soil carbon, nitrogen and phosphorus cycles (Delgado-Baquerizo et al., 2013) 

and changes in nitrogen turnover rates (Wang et al., 2014). Therefore, we hypothesize that at 

aridity levels around 0.7-0.8, many structural changes occurring on the ecosystem may 

influence each other through these interacting feedbacks. These results also support the idea 

that abrupt shifts in ecosystems such as those we studied can occur when aridity crosses 0.75, 

and thus justify why used this aridity threshold to extract vulnerable areas to climate change 

(see Section 3.3). 

Most of the vulnerable areas we identified had high/medium values of vegetation cover 

and low SHO values (Table 1). Aridity in these areas had been forecasted to increase by the 

end of this century due to ongoing climate change (Huang et al., 2016). Therefore, and with all 

the reservations imposed by the space for time substitution approach used (Johnson & 

Miyanishi, 2008), we speculate that these areas may face a rapid decrease of vegetation cover, 

and may transition into a high albedo state, under forecasted aridity increases with climate 
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change (Huang et al., 2016). Our results showed that most of them had also moderate/high VSI 

values (in Fig. 5) and that the average VSI value in vulnerable areas was higher than that in 

non-vulnerable areas. These results suggest a low resistance to climate perturbations and a 

higher possibility of critical transitions to occur in vulnerable areas (Seddon et al., 2016). As 

such, based on our results, these areas should be given priority when establishing mitigation 

actions against desertification and climate change within the study area. 

We would like to remark that neither the vulnerable areas selected in our study nor the 

vulnerable areas or the VSI map from Seddon et al. (2016) are validated with field observations, 

and further monitoring is required to evaluate their potential vulnerability. This is necessary to 

assess other important factors affecting ecosystem states and vulnerability to climate change, 

such as recharge of groundwater and surface water (Richard & Poccard, 1998), which are not 

considered in our study nor that of Seddon et al. (2016) and that need to be measured in situ. 

5. Conclusions 

By integrating remote sensing information with latent class and potential analysis, we identified 

two land surface albedo states (low and high) within African drylands. These albedo states co-

occurred persistently along a critical range of aridity values between 0.72 and 0.78, regardless 

of the albedo metric considered (shortwave, visible and near-infrared white-sky albedo). 

Albedo showed an abrupt and discontinuous increase with increases in aridity beyond a 

treshold found at aridity values around 0.75. By identifying regions with low albedo values in 

areas beyond this threshold, we also provided the location of vulnerable areas where critical 

transitions may occur as a consequence of ongoing increases in aridity due to climate change. 

Overall, our findings highlight the potential of remotely sensed albedo metrics to indicate the 
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vulnerability of dryland ecosystems to experience discontinuous transitions that could lead to 

their degradation. They also provide empirical verification of the existence of 

two states in African drylands, and support the use of remotely sensed albedo indices to 

identify multiple states and critical transitions in terrestrial ecosystems. 

 

 

Data Accessibility 

The aridity index we used is from Deblauwe et al. (2016), which is available from 

https://vdeblauwe.wordpress.com/download/. The land cover maps from European Space 

Agency (ESA) are archived at http://maps.elie.ucl.ac.be/CCI/viewer/. The three white-sky 

(shortwave, visible and near-infrared white-sky) metrics, vegetation cover percent and other 

information for the 9000 random points used are available from Figshare 

(https://figshare.com/s/c715f218d2612a8d813c). 
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Table 1 The characteristics of vegetation types in the vulnerable areas identified. SD is the 

standard deviation. SHO is the shortwave white-sky albedo. 

 
Shrubland 

  
Grassland 

   
Mixed 

 

 
Aridity SHO Cover 

 
Aridity SHO Cover 

 
Aridity SHO Cover 

Mean 0.78 0.17 82% 
 

0.89 0.17 31% 
 

0.86 0.16 48% 

SD 0.03 0.02 13% 
 

0.05 0.03 22% 
 

0.05 0.02 22% 

Minimum 0.75 0.08 0 
 

0.75 0.1 0 
 

0.75 0.11 0 

Maximum 0.95 0.22 95% 
 

0.95 0.22 93% 
 

0.95 0.22 94% 
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Figure 1. Steps leading to the selection of the area analyzed in our manuscript. The study area 

is geographically defined by the transition between the Saharan desert and the wet climate of 

tropical Africa, characterized by a natural wide aridity gradient (Fig. 1a). We first masked 

humid/hyper-arid areas (b), followed by urban/irrigated/water (c) and rainfed crop areas (d). 

We then masked areas with a density of grazers >15 TLU (TLU is Tropical Livestock Units) 

and with a slope > 5º, resulting in the area selected for 

analyses (f). 
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Figure 2. Probability density of shortwave white-sky albedo (SHO; a), visible white-sky 

albedo (VIS; b) and near-infrared white-sky albedo (NIR; c) across the study area. The curve 

shown in panels a, b and c was fitted by using a Gaussian kernel function. The comparison of 

fitting 1-5 normal distributions to albedos based on the Bayesian Information Criterion (BIC) 

is shown in panel d. 
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Figure 3. Variation of the states (i.e. local minima of the moving window with a size of 100 

points) obtained from potential energy for the visible white-sky albedo (VIS; a), near-infrared 

white-sky albedo (NIR; b) and shortwave white-sky albedo (SHO; c) along the aridity gradient 

studied. The black and purple-red dots are both local minima obtained from the moving 

window; the potential energy at black dots is lower than at purple-red dots. The solid lines 

delimit the aridity range (i.e. 0.72-0.78) is where the two states co-occur; the dashed line 

indicates the aridity level (i.e. 0.75) where the low albedo state starts to exhibit less attraction 

(i.e. higher potential energy) than the high albedo state. Contour lines (see color bar) represent 

the estimated potential energy. The (c1)-(c5) insets show details for the variation of the states 

of SHO along the aridity gradient studied. 
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Figure 4. Variation of the states (i.e., local minima of the moving window with a size of 100 

points) obtained from potential energy for vegetation cover along the aridity gradient studied. 

Rest of caption as in Fig. 3. 
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Figure 5. Vulnerable areas where critical transitions in albedo and vegetation may occur as 

aridity values increase due to climate change (marked in brown, pink and black for areas 

dominated by shrublands, grasslands and mixed vegetation). The colored and white areas in 

the background are the vegetation sensitivity index (VSI) from Seddon et al. (2016) and the 

regions excluded by our mask layers, respectively. 
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Figure 6. Relationships between aridity and shortwave white-sky albedo (SHO; a), total (b) 

and shrub (c) cover. The dash and solid lines are same as those in Fig. 3. Different vegetation 

types are noted by different symbols/colours. 


