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Single screw extrusion is a major polymer processing
operation. Its optimization is crucial for producing good
quality products at suitable costs. This study addresses
extrusion as a multiobjective optimization problem that
can be solved using evolutionary algorithms incorporating
decision making and robustness strategies for selecting
solutions. This approach enables focusing the search for
solutions in favored regions where the preference was
defined either by the relative importance of the objectives
or determined considering the robustness of solutions
against perturbations in the design variables. The out-
come of this strategy provides not only a better insight
into the problem at hand, but also facilitates the choice of
a single solution for practical implementation. The useful-
ness of the approach is illustrated by several case studies
involving the definition of the most adequate operating
conditions, of the best screw geometry and the two
together. POLYM. ENG. SCI., 58:493–502, 2018. VC 2017 Society
of Plastics Engineers

INTRODUCTION

Plasticating screw extrusion involves the conversion of the

inlet material (usually in pellet or powder form) into a homoge-

neous melt that is continuously pushed through a shaping die, to

produce a molten extrudate with the required cross-section.

Extrusion products are used in a variety of industries—including

window and roofing profiles for construction, plastic tubes for

engineering and medicine, vehicle trims and door frames for

transportation, shelves and racks for retail, film cores and pack-

aging tubes for food and cosmetics. Extrusion is also a unit

operation for other industrially relevant manufacturing technolo-

gies such as plastics compounding, injection molding, and blow

molding.

Single screw extruders use an Archimedes-type screw rotat-

ing at a constant controllable speed inside a hollow barrel that

is kept under a set temperature profile. The solid polymer is typ-

ically delivered to the screw channel by gravity flow from a

vertical hopper. It is then dragged forward due to friction forces

and eventually melts due to conducted and dissipated heat. The

melt is progressively mixed and pressurized and subsequently

flows through the die [1–3]. Thus, extrusion is a complex pro-

cess, its performance depending on a number of factors includ-

ing polymer properties, operating conditions and screw and die

geometries. Setting/adjusting the operating conditions for a

given production or designing a screw with improved perfor-

mance can constitute major challenges, as the process is charac-

terized by multiple, often conflicting, objectives. For instance, a

large mass output usually entails high power consumption that

should be minimal for economic reasons, and may also jeopar-

dize the physical properties of the extrudate due to poorer mix-

ing. In practice, finding the trade-off between the different

objectives involved in extrusion in order to ensure a competitive

and adequate production is frequently performed on a trial-and-

error basis, heavily dependent on personal knowledge and

experience.

Process modelling can support decision making based upon

quantitative predictions of process behavior. Modelling involves

solving the relevant governing equations coupled to adequate

boundary conditions and constitutive equations in order to pres-

sure, stress, temperature and velocity [1–4]. These predictions

are delivered for a given set of input values, thus it is up to the

user to identify the input parameters (e.g., operating parameters

and/or geometry) that will satisfactorily solve the extrusion

problem. Unfortunately, solving the inverse problem, i.e., solv-

ing the governing equations in order to the operating parameters

and/or geometrical variables is often mathematically ill-posed

[5]. A few methodologies have been proposed to approach

extrusion problems. Rauwendaal [1] derived analytical equations

for distinct extrusion stages that addressed various individual

process objectives. Other researchers coupled statistical methods

to process modelling routines. For example, Potente [6] com-

bined factorial experiments to modelling routines to optimize

screw geometry. However, statistical methods usually generate a

number of points that can be insufficient to describe a multi-

modal/complex response.

An alternative route to approaching extrusion problems con-

sists in linking global optimization methods and process model-

ling. While the former searches for the best solution(s) within

the feasible search space, the latter is used to evaluate the per-

formance of each solution considered during the optimization.

Covas et al. [7] determined the optimal operating settings for

single screw extrusion considering the weighted sum of four

objectives and a genetic algorithm. Later, various objectives

were simultaneously optimized for single [8] and twin screw

extrusion [9], the results being validated experimentally. The
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methodology was also applied to extrusion scale-up [10]. This

approach is known as multiobjective optimization (MO) and

generates a set of Pareto optimal solutions [11, 12]. These are

the global solutions to the problem that cannot be improved in

terms of any of the individual objectives without compromising

some of the other objective values. The user—usually known as

decision maker (DM) in the field of optimization—can then

select the most adequate solution from a list, taking into account

his/her own preferences.

Application of MO to plasticating extrusion is not straightfor-

ward due to the nonlinear interactions between the search varia-

bles, the multimodality of the search space, the high number,

and conflicting character of the objectives and the need that the

solutions obtained meet convergence and diversity requirements

[9]. The set of Pareto optimal solutions can be quite large, mak-

ing the task of the DM difficult and tedious. The problem is

illustrated in Fig. 1, where a Pareto plot is shown for setting the

operating conditions [screw speed (N) and barrel temperatures

(Ti)], in order to maximize the output (Q) and the degree of dis-

tributive mixing (calculated as WATS, as suggested in [13]) and

to minimize the mechanical power consumption (Power) for a

specific extruder, die and polymer (for a detailed analysis, see

[9]). Given the complexity of the three-dimensional Pareto sur-

face, selection of the best solution is not evident. Table 1

presents the best solutions to maximize and/or minimize each of

the three objectives. These solutions correspond to the extreme

points of the plot, i.e., to the solutions that take into account a

single objective and, therefore, are not the best answer to the

problem. Thus, it is clear that the best overall solution, hope-

fully within the Pareto front, results from a compromise defined

by the preferences of the DM.

The aim of this study is to develop the methodology able to

support decision making when solving polymer extrusion prob-

lems. This methodology is based on MO that integrates the deci-

sion maker’s preferences and allows to obtaining not only

optimal solutions but also those most relevant to the DM. More

specifically, the DM preferences will be defined before the

search and taken in from two different perspectives. One con-

cerns the relative importance of the objectives, which is rela-

tively easy to define for most process engineers. The other

considers the robustness of the solutions against inescapable

small perturbations in the process. The method can run automat-

ically, requiring little intervention from the DM.

Process Modelling

The typical configuration of a single screw extruder is

depicted in Fig. 2. The screw (with diameter D) rotates inside a

hollow barrel (with length L). The latter contains a lateral open-

ing for material inlet through a hopper, while the die is fixed at

the opposite end. Both barrel and die are enveloped by heater

bands. The screw has three geometrically distinct sections (with

lengths L1, L2 and L3, respectively), with constant channel depth

(H1), channel depth varying linearly (between H1 and H3) and

constant depth H3ð ), respectively. The screw helix is defined by

its pitch (P) and flight thickness (e). The operator sets the screw

rotation speed (N) and barrel/die temperature profile (Tb). As

the material is poured into the hopper, it is successively sub-

jected to: (1) gravity induced flow of discrete solid particles in

the hopper towards the screw channel; (2) friction drag of the

solids along the screw together with dissipated heat and con-

ducted heat from the barrel; (3) melting of a thin layer of mate-

rial adjacent to the inner barrel wall; (4) progressive melting of

the remaining material, according to a mechanism involving

segregation of melt and surviving solids; (5) viscous drag of the

molten material with pressure generation; and (6) pressure flow

through the die [1, 2]. This process is influenced by the geome-

try of the extruder components such as the barrel, screw, and

die [14]. Important effects are also produced by the operating

conditions and the characteristics of the material. The latter

encompass physical properties (friction coefficients, solids and

FIG. 1. Example of a Pareto front for the optimization of the operating

conditions of a single screw extrusion process aiming at maximizing the out-

put (Q) and degree of distributive mixing (WATS), and minimization of

mechanical power consumption (Power).

TABLE 1. Best results for the individual objectives considered in the optimization of the operating conditions of a single screw extrusion process.

Operating conditions Objectives

Aim Objective N (rpm) T1 (8C) T2 (8C) T3 (8C) Q (kg/h) Power (W) WATS

Maximize Min (Q) 10.8 209.9 175.6 150.8 1.43 296.9 488.0

Max (Q) 59.9 155.2 189.3 199.5 8.83 2038.0 238.4

Minimize Min (Power) 59.4 156.2 206.1 154.2 8.45 2231.0 239.9

Max (Power) 10.8 209.9 175.6 150.8 1.43 296.9 488.0

Maximize Min (WATS) 59.9 155.2 189.3 199.5 8.83 2038.0 238.4

Max (WATS) 10.8 209.9 175.6 150.8 1.43 296.9 488.0

Data taken from the Pareto front plotted in Fig. 1.

The minimum and maximum objective values are shown in bold.

494 POLYMER ENGINEERING AND SCIENCE—2018 DOI 10.1002/pen



melt density, etc.), thermal properties (heat conduction coeffi-

cients, melting temperature, heat capacity, etc.) and rheological

properties (shear-dependent viscosity).

For process modeling purposes, each of the above steps can

be mathematically described by constitutive equations relating

to mass, momentum, and energy conservation, together with a

rheological law and the relevant boundary conditions. Coherent

linkage between contiguous steps is assured by proper boundary

conditions. Details of the modelling routine developed by the

authors and of its experimental validation can be found else-

where [15]. For a given set of inputs, the model predicts the

main process responses, such as mass output, Q, average melt

temperature of the polymer at die exit, Tmelt, mechanical power

consumption, Power, length of screw required for melting the

polymer, Lmelt, degree of distributive mixing (in terms of the

average deformation induced, WATS), as well as the evolution

of pressure, temperature, shear rate, etc., along the screw.

Changes in the values of the input variables will cause altera-

tions in the process responses.

MULTIOBJECTIVE OPTIMIZATION

Background

When approaching extrusion as a multiobjective optimization

problem (MOP), a set of Pareto optimal solutions is obtained, rep-

resenting different trade-offs between the individual (some of them

conflicting) objectives. In the absence of additional information,

the Pareto optimal solutions are equally important. In order to select

a single solution, the DM must express his/her preferences 11.

Multiobjective evolutionary algorithms (MOEAs) [11, 12]

are appropriate to solve MOPs due to their population-based

nature, which enables an approximation to the Pareto set in a

single run. By incorporating the DM preferences into MOEAs,

the search can focus on the interesting regions of the space.

Then, high-resolution Pareto optimal regions can be obtained

instead of the whole Pareto set containing numerous solutions

but many of them probably inappropriate to the DM. Since there

is no need to explore the entire search space, the computational

overhead is reduced, which is pertinent to those applications

where function evaluations involve expensive simulations (such

as extrusion).

Formulating and integrating the DM preferences into MOEAs

in order to direct the search is challenging and thus remains an

active research topic. Preferences can be formulated as con-

straints that specify the limits for the objectives, or as a weight

vector expressing how important the objectives are [16]. Most

previous work on extrusion optimization adopted this approach,

aggregating multiple objectives into a value or utility function

[6]. The approach has three major limitations: (1) combining

objectives referring to process parameters of different nature

may not make sense; (2) small changes to the weights may pro-

duce quite different solutions without practical value, and (3)

the method may not be applicable to certain shapes of the opti-

mal Pareto front [11]. To overcome these difficulties, some

authors proposed to provide reference points reflecting the aspi-

ration level of the DM toward the objective values [17]. Others

exploited a biased distribution of solutions by scaling differently

the objectives [18], or mapped the solutions according to desir-

ability functions that incorporate knowledge about target regions

[19], or suggested a nonlinear transformation of the objectives

into desirability functions [20] and the definition of a weighted

function over the objective space [21]. Reviews of preference-

based methods can be found in [22]. Integrating the preferences

of the DM remains an open problem because the methods pro-

posed so far are unable to clearly correlate the preferences

defined by the DM (e.g., using weights or goals) with the solu-

tions (or regions) on the Pareto front [23]. This is particularly

delicate in problems where the solutions generate a Pareto front

with a complex shape.

Simultaneously, when dealing with real-world extrusion, it is

also important to consider the sensitivity of the solutions to small

variations of the parameters of the problem. Solutions exhibiting

little sensitivity to such variations are labelled as robust and are

favored. Robustness is usually addressed either by optimizing the

expectation and the variance [24], or by introducing additional

constraints [17, 25]. The topic was reviewed by Jin and Branke

[26] and Beyer and Sendhoff [27]. As in the case of DM, no exist-

ing method can address MO and robustness simultaneously in an

efficient way, probably due to two main difficulties: (1) the likeli-

hood of having to deal with various decision variables in robust-

ness calculations; (2) the need to identify the neighbors of the

point where robustness must be calculated [28].

Multiobjective Evolutionary Algorithm

The method starts with the identification of the problem

characteristics, such as main objectives, decision variables and

constraints of process parameters. Obviously, a process model-

ing tool must be available to predict process responses and thus

evaluate the solutions.

A specific MOEA, the Reduced Pareto Set Genetic Algo-

rithm (RPSGA), was used given its good performance when

applied to various benchmark problems [29], including robust-

ness studies [28, 30]. MOEAs are characterized by the use of an

internal population of solutions that are progressively improved

along various generations. The RPSGA maintains also an exter-

nal population of the best solutions. In summary, at each gener-

ation the following operations are performed: (1) the internal

population is evaluated using the results of the modeling rou-

tine; (2) a clustering technique is applied to reduce the number

of solutions on the efficient frontier and to calculate the ranking

of the individuals of the internal population; (3) the fitness of

the individuals is calculated using a ranking function; (4) a fixed

number of the best individuals are copied to the external popula-

tion; (5) if the external population is not complete, genetic oper-

ators are applied to the internal population to generate a new

population; (6) if the external population is complete, the

FIG. 2. Decision variables (geometrical and operating parameters) for a sin-

gle screw extruder. The range of variation is defined between square brackets.
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clustering technique is applied to sort the individuals of the

external population and a pre-defined number of the best indi-

viduals are incorporated in the internal population, replacing

those individuals with the lowest fitness.

A second MOEA, the Non-dominated Sorting Genetic Algo-

rithm (NSGA–II) [31], was used as reference. This algorithm is

extensively used in optimization because it can be easily be

adapted to real problems and converges quickly to a good

approximation of the optimal Pareto front. It uses Pareto domi-

nance and crowding distance measure concepts to evaluate the

quality of the individuals of the population. A comprehensive

presentation can be found in [31].

Each of the above two MOEAs yields a subset of the Pareto

optimal solutions. As shown below, Decision Making and

Robustness are taken into account when calculating the fitness

of the individuals, which forces the MOEA to converge to spe-

cific regions (subsets) of the Pareto front.

Introducing Preference Based on Importance of Objectives

The Weighted Stress Function Method (WSFM) [23] is based

on the idea that the solution that best meets the DM preferences

must belong to the set of non-dominated solutions (i.e., the solu-

tions on the Pareto surface), and that the difference between the

ideal objective vector and each solution induces a “stress” on

that solution that depends on the relative importance attributed

to each objective. The concept was inspired by the stress–strain

behavior of thermoplastic vulcanizates (TPV). These materials

exhibit high variations of stress with strain at low or high strain

values, while at intermediate strains the stress changes little.

This behavior was described mathematically by Coran and Patel

[32], taking into consideration the thermoplastic/rubber concen-

tration, mp. WSFM mimics this behavior. The weight wj attrib-

uted to the jth objective and mp range in the same interval [0,1],

and play a role similar to that of increasing or decreasing the

stress. The solution that best meets the DM preferences is the

one having balanced stresses. WSFM can be used for both mini-

mization and maximization problems. Given the weight vector

w5 w1; . . . ; wmð Þ specifying the relative importance of the m
objectives and the set of N solutions X5 x1; . . . ; xN

� �
, the solu-

tion that best meets the preferences can be found by solving:

minimizex2X : T xð Þ5 max
1�j�m

rj f xð Þ; wð Þ (1)

where rj is a stress that is associated with the jth objective and

computed as a function of its value and the value of weight wj

[23]. Thus, the fitness of the ith population individual can be for-

mulated as:

F ið Þ5Rank ið Þ1 T ið Þ
T ið Þ11

(2)

where Rank ið Þ is the rank based on the Pareto dominance.

Introducing Preference Based on Robustness of Solutions

To address robustness, the following steps were introduced in

the MOEAs:

(1) A variance-based measure of the ith individual with respect to

the mth objective, Rm, is calculated with the following equation:

Rm ið Þ5 1

N0

XN0
k51

jfm xið Þ2fm xkð Þj
jxi2xkj

(3)

where N0 is the number of neighbors, k, whose distance in

the decision space, d0ik, in not greater than d0max. This distance

can be determined using:

d0ik5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL

l51

xli2xlj

� �2

vuut (4)

Since multiple objectives are considered, the robustness mea-

sures of individual objectives are combined:

R ið Þ5 1

M

XM

m51

Rm ið Þ (5)

(2) The distance metric for diversity preservation, which is a

measure of the density of neighbors, is computed from:

I ið Þ5
XN

i51

sh dikð Þ (6)

where dikis the distance between the ith population member

and all its k neighbors, sh dikð Þ is a sharing function that takes into

account the distance in the objective space and is calculated as:

sh dikð Þ5
12

dik

rshare

� �2

; dik � rshare

0; otherwise

8><
>: (7)

with rshare being an experimentally determined parameter.

(3) The global fitness value of the ith population individual,

F ið Þis given by:

F ið Þ5Rank ið Þ1E
I ið Þ

I ið Þ11
1 12Eð Þ R ið Þ

R ið Þ11
(8)

where Rank ið Þ is the rank based on the Pareto dominance

relation and E is the dispersion parameter that determines the

degree to which robustness influences global fitness. Smaller fit-

ness values correspond to a better performance.

RESULTS AND DISCUSSION

Case Studies

The application of optimization methods to solve single

screw extrusion problems will be discussed by addressing the 11

case studies presented in Table 2. Setting the most adequate

operating conditions, defining the best screw geometry and the

two together will be approached. The polymer properties as well

as the die geometry will remain constant. For each case study,

the table indicates the type of optimization to be performed, the

decision variables (process parameters) and the objectives (pro-

cess responses). The range of variation of the decision variables

is defined between square brackets in Fig. 2, which schematizes

a conventional small size single screw extruder. Objectives

include maximize mass output, Q 2 1; 20½ � kg/h and degree of

distributive mixing, WATS 2 0; 1300½ �, and minimizing the

length of screw required for melting, Lmelt 2 0:2; 0:9½ � m, melt
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temperature at die exit, Tmelt 2 150; 210½ � �C, and mechanical

power consumption, Power 2 0; 9200½ � W.

Decision Making Based on Importance of Objectives

The influence of the relative importance of the objectives on

the results of an optimization run can be more easily understood

for those case studies of Table 2 involving only two objectives.

The numerical experiments were performed for combinations of

weights w1;w2 2 0:1; 0:2; 0:5; 0:8; 0:9jw11w251f g:
Figure 3 displays the results for case studies 1–4 referring to

operating conditions and Table 3 presents the best solutions in

terms of the values of the decision variables (operating parame-

ters) and objectives (process responses) proposed by RPSGA.

The graphs on the left column were obtained using RPSGA,

those on the right resulted from using NSGA–II. Table 2 also

includes the results for case study 5 involving the simultaneous

optimization of 5 objectives (thus, a 5-dimensional Pareto front

exists). The correlations between output and the remaining

objectives were expected, at least qualitatively. Higher outputs

require longer length of screw channel to complete melting,

induce higher viscous dissipation (higher melt temperature at

die exit) and higher mechanical power consumption. The effect

on distributive mixing (WATS) is more complex, but generally

WATS decreases with increasing Q due to the joint effect of

shorter screw length fully filled with melt and lower residence

time. From an optimization point of view, for a fixed weight

vector the solutions converge to a specific Pareto optimal

region, its location in the objective space depending on the

value of w1;w2: For w150:9, the algorithm focus mainly on

maximizing output, whereas for w250:9, Q is somewhat

neglected. When optimizing Q and WATS, the solutions

TABLE 2. Optimization case studies.

Case Problem type Decision Variable Objectives

1 Operating

conditions

Q; Lmelt

2 Q; Tmelt

3 N Tb1 Tb2 Tb3 Q; Power

4 Q; WATS
5 All

6 Screw

geometry

Q; Power

7 L1 L2 H1 H3 P e Q; WATS

8 All

9 Operating

conditions and

Screw geometry

N Tb1 Tb2 Tb3 L1 L2 H1 H3 P e Q; Power

10 N Tb1 Tb2 Tb3 L1 L2 H1 H3 P e Q; WATS

11 N Tb1 Tb2 Tb3 L1 L2 H1 H3 P e All

FIG. 3. Pareto frontiers for decision making considering the optimization of operating conditions and using RPSGA

and NSGA-II: (a) case study 3; (b) case study 4.
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obtained by NSGA–II are less dispersed around the preferred

region than those attained by RPSGA. This suggests that

NSGA–II applies higher selection pressure to the regions of

interest, while RPSGA yields higher diversity of solutions and

thus capture more complex process responses.

The Pareto fronts for case studies 6 and 7 are shown in Fig.

4 while Table 3 contains the related best solutions, as well as

those for case study 8 (considering simultaneously Q, Power,

and WATS). The purpose is to design a screw operating at con-

stant conditions (N 5 60 rpm and Tbi51908C) in view of differ-

ent combinations of objectives. Figure 4(a) demonstrates the

difficulty in controlling Q and Power exclusively by means of

the screw geometry, as the best solutions are located within a

small region of the objective space regardless of the weights. As

discussed above, Q and Power are conflicting and considerably

dependent on screw speed and barrel temperature. The solutions

found by NSGA–II for case study 6 (incorporating Q and

WATS) are biased toward high Q while WATS remains small.

Conversely, the solutions proposed by RPSGA are distributed

along most of the Pareto optimal region.

Figure 5 deals with the joint optimization of operating condi-

tions and screw geometry (case studies 9 and 10 in Table 2). As

before, Table 3 presents the associated best solutions both for

these two case studies and case study 11 (all objectives

together). The two optimization algorithms locate distinct Pareto

optimal regions for Q and Power that depend on the relative

importance of each objective. Higher Q and lower Power are

attained in comparison to the previous case studies. Specifically,

for RPSGA, in comparison to the case studies involving screw

geometry and operation conditions alone, the maximum value of

Q increased by approximately 80% and 35%, while the mini-

mum value of Power decreased by nearly 20% and 87%, respec-

tively. This obviously results from the possibility of

manipulating more process parameters, offers more control over

the process. Similar conclusions can be taken with regards to Q

and WATS. Again, RPSGA performs better than NSGA-II.

Table 3 summarizes the practical best operating conditions,

screw geometry or the two together for the 11 case studies of

Table 2. They correspond to the individuals of the final popula-

tion that have the highest fitness values (Eq. 2). For cases

TABLE 3. Best results presented in the decision variables and objectives domains using RPSGA for the 11 case studies of Table 2: W1 (0.1,0.9); W2

(0.5,0.5); W3 (0.9,0.1); W4 (0.1,0.225,0.225,0.225,0.225); W5 (0.5,0.125,0.125,0.125,0.125); W6 (0.9,0.025,0.025,0.025,0.025).

Decision variables Objectives

N Tb1 Tb2 Tb3 L1 L2 H1 H2 P e Q Lmelt Tmelt Power WATS

Case Weights rpm �C �C �C mm mm mm mm mm mm kg/h mm �C W

1 W1 24.4 208.8 159.1 199.1 3.7 0.2 199.6 1047.3 423.4

W2 53.4 209.6 184.6 188.6 7.7 0.3 197.3 2069.2 310.6

W3 60.0 152.4 190.5 209.5 9.0 0.7 209.8 1765.7 235.9

2 W1 16.8 150.1 187.8 150.0 2.4 0.4 153.4 535.2 283.1

W2 50.2 150.0 174.1 150.0 7.2 0.6 162.0 1798.9 239.9

W3 60.0 150.1 190.2 199.9 8.9 0.6 195.0 1816.6 236.6

3 W1 14.4 209.9 193.0 208.4 2.4 0.2 208.5 310.8 427.5

W2 52.0 209.8 167.7 206.0 7.8 0.5 203.5 1177.0 242.3

W3 60.0 170.1 201.6 209.9 8.8 0.6 213.2 1786.8 237.3

4 W1 42.6 153.2 179.5 209.1 6.4 0.6 206.2 1263.9 235.1

W2 13.2 209.7 168.9 150.1 1.7 0.1 156.8 510.1 486.9

W3 58.2 210.0 177.8 190.6 8.2 0.5 196.5 1731.3 295.5

5 W4 36.8 205.8 171.0 151.8 5.1 0.2 170.3 1449.3 419.7

W5 51.7 207.9 182.0 151.0 7.2 0.4 175.7 1564.1 275.0

W6 44.1 204.4 186.8 152.3 6.0 0.4 172.9 1351.0 280.3

6 W1 382.2 392.1 20.5 26.5 37.0 3.0 10.3 0.8 178.4 1254.2 49.0

W2 117.1 171.9 24.1 28.4 41.5 3.0 12.2 0.7 181.8 1434.0 91.2

W3 118.2 204.0 21.2 27.1 41.1 3.0 11.0 0.6 181.8 1468.0 114.6

7 W1 104.6 177.9 21.5 31.9 39.9 3.3 6.4 0.2 179.0 2058.2 691.9

W2 113.8 172.5 21.7 31.7 40.3 3.5 6.7 0.2 179.3 2130.2 639.8

W3 119.8 175.0 22.6 27.7 41.0 3.0 10.5 0.7 181.4 1476.7 99.3

8 W4 299.4 307.5 20.6 31.9 41.3 3.3 7.5 0.6 179.1 1554.4 266.9

W5 110.0 293.2 24.8 28.8 39.0 3.4 10.7 0.5 181.5 1846.5 224.2

W6 141.7 238.9 20.6 27.4 41.7 3.5 10.7 0.6 181.9 1642.2 135.0

9 W1 16.0 209.7 158.2 207.1 381.0 285.0 22.8 26.1 39.9 3.0 4.0 0.5 194.6 431.7 153.0

W2 37.1 208.4 153.9 209.2 264.6 330.2 25.9 26.4 40.6 3.2 8.8 0.5 195.1 1236.9 151.8

W3 55.2 208.6 193.4 193.2 169.7 185.5 24.2 26.1 40.8 3.1 12.6 0.7 200.2 1138.9 48.2

10 W1 59.9 183.1 188.8 155.6 105.1 179.4 23.3 31.4 41.1 3.5 8.4 0.3 176.6 2362.7 606.8

W2 59.1 164.7 197.8 161.8 104.1 179.4 24.8 31.5 38.9 3.4 8.1 0.4 182.2 1990.5 515.2

W3 59.4 208.3 206.7 188.9 125.2 181.0 23.0 26.6 41.9 3.6 14.2 0.7 204.2 1434.4 79.8

11 W4 46.0 178.6 199.0 151.9 105.2 186.7 23.3 31.5 39.5 3.2 6.2 0.3 168.1 1809.9 575.5

W5 52.2 157.0 194.0 150.4 144.3 194.9 20.8 31.4 34.5 3.5 6.6 0.3 164.4 2642.7 511.0

W6 58.3 179.6 169.5 155.5 107.9 187.1 22.5 27.7 41.1 3.3 11.8 0.7 179.1 1793.6 131.7

The bold values indicate that the corresponding objectives were used during optimization.
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studies 1–5, where only the operating conditions need to be

defined, when Q is important the best results are attained for

high screw speeds; Lmelt is smaller when Tb1 is higher; Tmelt is

lower when the last heating zone downstream is set to the

lowest value; Power is lower for reduced screw speeds and

higher barrel temperatures. If all objectives are taken simulta-

neously, a compromise solution is suggested. When designing a

screw that will work under constant operating conditions (case

FIG. 4. Pareto frontiers for decision making considering the optimization of screw geometry and using RPSGA and

NSGA-II: (a) case study 6; (b) case study 7.

FIG. 5. Pareto frontiers for decision making considering the optimization of both operating conditions and screw

geometry using RPSGA and NSGA-II: (a) case study 9; (b) case study 10.
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studies 6–8), the most important parameter governing output is

the channel depth in the metering zone. When multiple objec-

tives are included (case study 8) a balance is again found. When

more process variables can be set (i.e., operating conditions and

screw design), better performances can be reached. For example,

the highest output is obtained for high screw speeds and for

deeper channels in the metering zone. Therefore, the proposed

methodology offers to the process engineer a practical and effi-

cient decision tool.

Decision Making Based on Robustness of Solutions

The decision making based on robustness is especially rele-

vant when defining operating conditions, since in practical

FIG. 6. Pareto frontiers for robustness considering the optimization of operating conditions using RPSGA for differ-

ent values of the dispersion parameter: (a) case study 1; (b) case study 2; (c) case study 3; (d) case study 4.

TABLE 4. Most robust solutions in the decision variables domain and objectives considering the optimization of operating conditions for RPSGA and

E 5 0.05.

Decision variables Objectives

Case N Tb1 Tb2 Tb3 Q Lmelt Tmelt Power WATS

rpm �C �C �C kg/hr mm �C W

1 60.0 152.3 198.3 209.8 9.0 0.6 211.8 1704.3 236.1

2 60.0 152.4 208.2 209.9 9.0 0.5 214.2 1836.8 243.6

3 60.0 152.4 158.9 210.0 9.0 0.6 203.2 2005.1 237.1

4 60.0 150.0 168.5 210.0 9.0 0.6 205.2 1934.6 237.1
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extrusion fluctuations of screw speed and barrel temperatures

are unavoidable. These disturb thermal exchanges and flow, pos-

sibly causing variations in the process responses.

The solutions of case studies 1–4 created by RPSGA are

shown in Fig. 6 and Table 4. In Fig. 6, each column of graphs

corresponds to a given value of E, the dispersion parameter that

sets the influence of robustness on the global fitness. As the

value of E increases, the solutions become better distributed

along the Pareto optimal region. The plots reveal a few useful

patterns to the decision maker. For example, the mass output of

a robust solution is limited to approximately 9 kg/h, but most

robust solutions (i.e., with a small E) are located in regions of

high Q. However, this relates to poor values for the other objec-

tives. If the DM wishes to avoid such an outcome, a higher

value of E can be selected, potentially leading to a higher

grained resolution of a wider region of the Pareto front. Table 4

presents the values of the variables and of the objectives corre-

sponding to the solutions with the best fitness values for case

studies 1–4. Simultaneously, an analysis of the most robust solu-

tions presented in Table 4 shows that they are obtained for the

higher screw speed, for the lowest barrel temperature in the feed

zone (Tb1) and for the highest barrel temperature in the metering

zone (Tb3), while the results for Tb2 are more irregular.

It should be noted that the features of the Pareto front remain

unchanged in the present and previous section. What changes is

the focus of the search, which is determined either by the

importance of the objectives or by the robustness of solutions.

Also, it is important to note that the best solution with respect

to robustness is the same for different values of E. By changing

E, the user can widen or reduce the range of robust region,

whereas the location of the region and its best solution remain

unchanged.

CONCLUSIONS

A design optimization approach was proposed for the multi-

objective optimization of plasticating single screw extrusion.

The methodology couples MOEAs with decision-making prefer-

ences, in order to support the identification of the solutions with

the most desirable characteristics. The two MOEAs used,

RPSGA and NSGA-II, showed distinct performances, RPSGA

being globally was able to suggest better results. Formulating

the DM preferences was addressed in two ways. First, prefer-

ence information was quantified by attributing weights express-

ing the relative importance of individual objectives. In addition,

the robustness of solutions against small perturbations in the

decision variables was taken into consideration. In this case, the

DM expressed his or her preferences by means of a dispersion

parameter controlling the extension of the solution according to

their robustness. The smaller the dispersion parameter, the more

robust solutions are obtained.

The method was used to tackle various case studies involving

the definition of the extruder operating conditions, screw

design and both together. It was demonstrated that reaching the

objectives is greatly affected by the choice of the design varia-

bles, thus highlighting the importance of using effective tools to

support technical decisions concerning extrusion. Both the

relative importance of the objectives and the level of robustness

of the solutions can be used as part of decision making.

Depending on the preferences, different solutions are suggested.

Simultaneously, the trade-offs between objectives provide quan-

titative knowledge on major process responses and can also con-

tribute to achieving a higher extrusion performance. The use of

decision making strategies such as the proposed here offers the

plastic engineer an effective tool to solve practical extrusion

problems.
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