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Abstract — An extension to the standard FDTD formu-
lation aimed at modelling the micromagnetics of materials
together with the solution of Maxwell’s equations is pre-
sented in this paper. Numerical computations using actual
thin film head geometries were carried out with the purpose
of validating the method. The analysis of results revealed
the importance of the method for modelling electromagnetic
interaction with lossy magnetic material in the presence of
current and magnetic sources.

Index Terms — FDTD Computations, Equation of Motion,
Eddy Currents, Magnetic Losses, Micromagnetic Model,
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I. INTRODUCTION
Advances in recording speeds have reached a point

where the micromagnetics of the heads have become
a physical limit. Consequently, to continue with the
rise in areal storage densities and to push towards
higher recording speeds, research has been focused
on understanding and improving flux propagation and
reversal times in thin-films inductive recording heads
[1], [2]. The flux reversal time is the time required
in order to obtain a response from the magnetic flux
(inside the head circuit) to changes in the write current
waveform. Minimising this time in the head yoke
reduces the rise time of the writing fields in the pole tip
region and allows shorter and well defined magnetic
transitions to be written onto the storage medium [3].

High-speed experimental studies using the time-
resolved magneto-optical Kerr microscope on mag-
netic thin-films [1] and on thin-film recording heads
[2] have contributed to furthering the understanding
of the switching mechanisms in these magnetic struc-
tures. With the reduction of the size of the active
regions in thin-film recording heads [4], the ability

to observe the flux distribution during switching in
the pole tip region of heads is becoming beyond
the optical resolution of this technique. As a result,
modelling and simulation are becoming increasingly
important as alternative tools to understand the flux
reversal process in these small head features and to
enable the optimisation of write head designs. This
motivated the study of the contribution and effect of
eddy currents when working at high frequencies, e.g.
developing non-destructive evaluations of conductive
materials by means of eddy current imaging [5].

Static models of characterising magnetic heads
include equivalent circuit models, transmission line
models and finite elements models [6], [7], [8], [9],
[10], [11]. These are either time independent or limited
in the frequency domain to the fundamental response,
and ignore the magnetic detail of the head material.
Dynamic models, on the other hand, utilise full micro-
magnetic description of the magnetic material [12], but
the absence of electromagnetic formulation in these
models neglects the eddy current effect coming from
time varying fields in the finite resistivity thin-film ma-
terials. Therefore the need arises for a dynamic model
that combines the solution to Maxwell’s equations for
the electromagnetic fields with micromagnetic models
of the material to accurately simulate the reversal
process in magnetic heads.

Modern computational methods such as the Finite
Difference Time Domain (FDTD) algorithm will play
a key role in modelling magnetic heads in the future
[13]. The FDTD method solves the electromagnetic
phenomena for a given geometry inside a compu-
tational space and, as a result, the magnitude and
direction of the electromagnetic fields are given for
the whole computational space. This research extends
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the standard FDTD algorithm to model the micro-
magnetics of materials together with the solution of
Maxwell’s equations having in this manner a better
description of the reversal process. Studying and char-
acterising the fast switching process (dynamics) in
thin-film heads is the main aim of this work which
will be achieved through FDTD computations of actual
thin-film head geometries. The advantage provided by
this study is that magnetisation motion can be simu-
lated considering electromagnetic interaction in lossy
magnetic material by making use of the FDTD method
and the LLG equation (having a better description of
the reversal process).

This paper is organised as follows, Section II
formalises the general electromagnetic theory and
the micromagnetic model formulation for non-linear
magnetic materials which form the basis behind the
numerical work in this research. Section III presents
the discretisation of the equation of motion. Space and
time synchronism, boundary conditions and stability
of the extended method are dealt with in Sections IV,
V and VI respectively. In Section VII the numerical
experiments carried out are presented followed by
an analysis of results. The paper concludes with a
discussion of the main findings in Section VIII.

II. NON-LINEAR MAGNETIC MATERIALS

When linear magnetic materials are considered, the
magnetic flux density B is proportional to the external
magnetic field Happ by a constant called the perme-
ability of the material µ. However, when considering
non-linear magnetic materials, the following equation
applies

B = µo(Happ +M) (1)

where the magnetisation vector M is taken into ac-
count to calculate the magnetic flux density.

Extending the FDTD method to non-linear magnetic
materials requires to start by considering Maxwell’s
curl equations for a general medium.

∂B
∂t

= −∇× E (2)

∂D
∂t

= ∇×Heff (3)

where B is as in (1) and

D = εE (4)

substituting B and D into (2) and (3) yields
∂Happ
∂t

= −
1

µo
∇× E−

∂M
∂t

(5)

∂E
∂t

=
1

ε
∇×Heff (6)

where the nonlinearity introduced by the term ∂M/∂t
is described by Landau-Lifshitz-Gilbert’s (LLG) equa-
tion [14].

∂M
∂t

= −γ(M×Heff) +
α

Ms

(

M×
∂M
∂t

)

(7)

III. DISCRETISATION OF LLG EQUATION
To discretise all of above equations, central finite

difference expressions, which provide second order
accuracy, for the space and time derivatives are used.
Equation (6) follows the same expression as in the
normal FDTD method therefore no changes are needed
for the Ez component in the 2D TMz mode.

Ez|
n+ 1

2

i+ 1
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,j+ 1

2

= Ca|i+ 1
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(8)

Equation (5) has a new term ∂M/∂t, which is
discretised using central differences in time, and it
must be included in the final expressions for Hx and
Hy.
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(9)
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(10)

where the coefficients C and D are described as

Ca|i,j =

(

1−
σi,j∆t

2εi,j

)/(

1 +
σi,j∆t

2εi,j

)

(11)

Cb|i,j =

(

∆t

εi,j
∆

)/(

1 +
σi,j∆t

2εi,j

)

(12)

Da|i,j =

(

1−
σ∗
i,j∆t

2µi,j

)/(

1 +
σ∗
i,j∆t

2µi,j

)

(13)
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Db|i,j =

(

∆t

µi,j∆

)/(

1 +
σ∗
i,j∆t

2µi,j

)

(14)

for which ∆x = ∆y = ∆ is assumed.
An expression for the magnetisation vector compo-

nents can be obtained by expanding the vector product
in LLG equation (7) and solving for ∂Mx/∂t, ∂My/∂t
and ∂Mz/∂t; this yields

∂Mx

∂t
=

γ

Ms(1 + α2)
[Ms(HzMy −HyMz)

+αMx(HyMy +HzMz)− αHx(M2
s −M2

x)]
(15)

∂My

∂t
=

γ

Ms(1 + α2)
[Ms(HxMz −HzMx)

+αMy(HxMx +HzMz)− αHy(M2
s −M2

y )]
(16)

∂Mz

∂t
=

γ

Ms(1 + α2)
[Ms(HyMx −HxMy)

+αMz(HxMx +HyMy)− αHz(M2
s −M2

z )]
(17)

Applying central time differences to (15) and evaluat-
ing Mx at time step n+ 1/2 yields

Mx|n+1−Mx|n

∆t
= f(Hx,Hy,Hz,Mx,My,Mz)|

n+ 1

2 (18)

rearranging terms gives the time marching scheme for
Mx

Mx|n+1 = Mx|n + f(Hx,Hy,Hz,Mx,My,Mz)|
n+ 1

2∆t (19)

where f(Hx,Hy,Hz,Mx,My,Mz) is a function of
the magnetic field and the magnetisation vector com-
ponents coming from (15) and has the form

f(H,M) =
γ

Ms(1 + α2)

[

Ms(HzMy −HyMz)

+αMx(HyMy +HzMz)− αHx

M2
s −M2

x

M2
y +M2

z

] (20)

The magnetisation components are evaluated at the
same spatial location as the magnetic field components
in the Yee’s cell. Time marching expressions for My

and Mz are derived in the same manner. From equation
(19) it is noticed that My , Mz , Hy and Hz are used
to compute the new value of Mx, however, these are
placed at different locations than Mx within the Yee’s
cell, therefore spacial interpolation is needed. It is also
noticed that equation (19) uses Mx, My , Mz , Hx, Hy

and Hz evaluated at time step n + 1/2 while their
values are only known at time step n, with n being
an integer, thus time extrapolation is required. The
proper space and time discretisation of LLG equation

to maintain second order accuracy are addressed in
detail next.

IV. SPACE AND TIME SYNCHRONISM
Here two different problems are addressed to main-

tain second order accuracy of the central difference
scheme. First, Hx, Hy, Hz, Mx, My and Mz are not
known at time step n+1/2 in (19) or any other M (the
same applies for the time marching expressions for My

and Mz). A simple approach to solve this problem is to
use an extrapolation scheme [15] in which the current
value of a variable depends on the previous values
using the backward differencing approximation

u|n+
1

2 $ u|n−
1

2 +
∂u

∂t

∣

∣

∣

∣

n− 1

2

∆t (21)

The unknown value of u|n−
1

2 on the right side of the
equation can be expressed as the average of u|n−1

and u|n and the derivative can be estimated using
standard central differences. These operations lead to
the second order accurate time marching formalism
for correct integration into the FDTD scheme.

u|n+
1

2 $ u|n−1+u|n

2 + u|n − u|n−1

= 1
2 (3u|

n − u|n−1)
(22)

To illustrate the time synchronism, Mx will be
computed for time step n + 1. From (19), Hx, Hy,
Hz , Mx, My and Mz must be known at time step
n + 1/2 in order to evaluate Mx|n+1. This is done
by applying the time synchronism equation (22) to all
vector components of H and M using previous values
at time steps n and n− 1.

Hx,y,z|
n+ 1

2 =
1

2
(3Hx,y,z|

n −Hx,y,z|
n−1) (23)

Mx,y,z|
n+ 1

2 =
1

2
(3Mx,y,z|

n −Mx,y,z|
n−1) (24)

Now, all components on the right side of equations
(23) and (24) are known, however, it is not yet possible
to compute the magnetisation vector at time step
n + 1 in the time marching scheme because space
synchronism has not been applied.

In the Yee’s cell, the M components are evaluated
at the same spatial location as the H components.
Therefore when any component of the magnetisation
vector say Mx is being computed at a given point, say
(i+ 1

2 , j), the y and z components of H and M used
to compute Mx are located at different space locations
as shown in Figure 1.
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Fig. 1. Reallocation of components in a 2D Yee’s cell for space
synchronisation.

Thus, all the components in equations (23) and (24)
must be reallocated to Mx position. This is done by
interpolation of all components surrounding Mx in
the Yee’s cell [15]. This can be easy understood by
a graphical example. Figure 1 represents the space
synchronism operations needed to compute Mx (blue
circle) where My at spatial point (i+ 1

2 , j) will be the
average of the four My components surrounding Mx
in Figure 1. This is the operation represented by the
red arrows denoted below as My Mx.

My Mx|
n+ 1

2

i+ 1

2
,j
= 1

4

(

My|
n+ 1

2

i,j− 1
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+My|
n+ 1

2

i,j+ 1

2

+My|
n+ 1

2

i+1,j− 1

2

+My|
n+ 1

2

i+1,j+ 1

2

) (25)

The same must be done with Hy Mx (red arrows
operation)

Hy Mx|
n+ 1

2

i+ 1

2
,j
= 1

4

(

Hy|
n+ 1

2

i,j− 1

2

+Hy|
n+ 1

2

i,j+ 1

2

+Hy|
n+ 1

2

i+1,j− 1

2

+Hy|
n+ 1

2

i+1,j+ 1

2

) (26)

In a similar way Mz Mx (Mz to compute Mx)
is described by the operation represented by green
arrows.

Mz Mx|
n+ 1

2

i+ 1

2
,j
=

Mz|
n+ 1

2

i+ 1

2
,j− 1

2

+Mz|
n+ 1
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The same must be done with Hz Mx if any (green
arrows operation).

Hz Mx|
n+ 1

2

i+ 1

2
,j
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n+ 1

2
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2
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Hx and Mx to compute Mx will remain the same as
they are already in the same spatial position as Mx.

Mx Mx|
n+ 1

2

i+ 1

2
,j
= Mx|

n+ 1

2

i+ 1

2
,j

(29)

Hx Mx|
n+ 1

2

i+ 1

2
,j
= Hx|

n+ 1

2

i+ 1

2
,j

(30)

Then the values obtained from (25) to (30) are used in

(20) to calculate f(Hx,Hy, Hz,Mx,My,Mz) at time
step n+1/2. To finish the computation of Mx|n+1 the
previous result and the known value of Mx at time n
are introduced in (19).

The purpose of all these operations referred here as
space and time synchronism is to maintain the second
order accuracy in the differentiating scheme.

V. BOUNDARY CONDITIONS

From the minimisation of the total energy in a
magnetic material, the following boundary condition
is derived [16], [17]:

∂M
∂n = 0 (31)

where n is the direction normal to the material surface.
For example, solving (31) at the left boundary of the
material (n = −x) involves the following operations

Mx|i+ 1

2

= Mx|i+ 3

2

(32)
My|i = My|i+1 (33)

Mz|i+ 1

2

= Mz|i+ 3

2

(34)

and similar equations would apply for other directions
of n.

The perfectly matched layer (PML) around the com-
putational space used in normal FDTD to absorb the
outgoing waves can be used for the extended method
as far as the magnetic material is surrounded by the
computational space and not in contact with the PML
areas. This is based on the fact that the magnetisation
vector has zero value outside the material (it doesn’t
exist) therefore the extended equations without the
magnetisation are the same as in the normal FDTD
method.

VI. STABILITY OF THE EXTENDED METHOD

Due to the rotation of the magnetisation in a mag-
netic material another upper limit in ∆t must be
considered to make a stable solution for LLG equation.
The worst case happens when damping is neglected
and a strong field is applied in one direction, there-
fore the magnetisation describes a circular movement
perpendicular to the applied field with a precession
angular frequency ω0 = γH which in this particular
case will be equal to the maximum rotational angular
frequency of the magnetisation. Then, the equation of

720 ACES JOURNAL, VOL. 27, NO. 9, SEPTEMBER 2012



motion can be written as:
dMx

dt
= ω0My

dMy

dt
= −ω0Mx

dMz

dt
= 0



























(35)

In order to obtain an equation explicitly for, say Mx,
expression (35) must be differentiated to give:

d2Mx

dt2
= ω0

dMy

dt
(36)

Substituting dMy/dt from (35) into (36) yields the
ordinary differential equation for Mx:

d2Mx

dt2
= −ω2

0Mx (37)

Applying central finite differences to this equation:

Mn+1
x − 2Mn

x +Mn−1
x

(∆t)2
= −ω2

0M
n
x (38)

and solving for Mn+1
x yields the explicit time march-

ing scheme for Mx

Mn+1
x = 2Mn

x −Mn−1
x − ω2

0∆t2Mn
x

= Mn
x (2− ω2

0∆t2)−Mn−1
x

(39)

Using a complex exponential solution Mx =
Msejω0t and substituting in (39) gives

ejω0(n+1)∆t = ejω0n∆t(2− ω2
0∆t2)− ejω0(n−1)∆t (40)

Expanding the exponential terms and applying Euler’s
relation to the exponential terms gives

2 cos (ω0∆t) = 2− ω2
0∆t2 (41)

Equation (41) relates the angular frequency of the
system to the time increment. Furthermore

ω0∆t = cos−1

(

1−
ω2
0∆t2

2

)

= cos−1 ξ (42)

As in the general case for non-magnetic materials,
stability is found for the values of ξ that make ω0∆t
in equation (42) to be real. For values of ξ outside the
interval -1 and 1, the function cos−1 ξ will be complex
valued and therefore the rotation of magnetisation will
produce an unstable solution. At the limits of the above
interval

ξ = 1−
ω2
0∆t2

2
= 1 → ∆t = 0 (43)

0 50 100−20

0

20

Samples

M
x

(a)

0 50 100−2

0

2

Samples

M
x

(b)

Fig. 2. Solution of (37) sampled with (a) ∆t = 2/ω0 which
makes the system unstable and (b) ∆t = 0.1/ω0 which makes the
system stable.

ξ = 1−
ω2
0∆t2

2
= −1 → ∆t =

2

ω0
(44)

Therefore defining the range of ∆t for the stable
solution of the oscillator equation (37)

0 < ∆t <
2

ω0
= UpperBound (45)

This is clearly understood by an example. Figure
2(a) represents a sampled solution of (37) with a
sampling rate of ∆t = 2/ω0 which is just over the
limit in (45) therefore the system is unstable and the
solution grows to infinity as time goes on. Figure 2(b)
is an example of a stable solution where ∆t = 0.1/ω0

implies a stable solution. Although equation (45)
defines the stable range when the magnetisation is
introduced, the general equation that rules the stability
of the FDTD method still needs to be considered as

∆t > 1
/

c
√

1
(∆x)2 + 1

(∆y)2 ≡ ∆tstable limit2D (46)

Therefore the time increment of the system ∆t must
be bounded in such a way that satisfies both (45) and
(46) to avoid instability.

To finalise with the stability section, the solution to
LLG equation is convergent when the magnetisation
is aligned with the applied field or expressed mathe-
matically as

|M×H|

|M| · |H|
≈ 1 (47)

This then provides a test of convergence in the numer-
ical implementation.

VII. EXPERIMENT SET UP AND RESULTS
Figure 3 represents the head diagram used for

the simulations. Both geometry and dimensions were
taken from an actual Seagate head manufactured in
1997 trhough electron microscope imaging. Two snap-
shots of the magnetic field strength during simulation
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Fig. 3. Scaled diagram of the head geometry with dimensions:
front gap height= 0.5µm, a= 56.7µm, b= 11.5µm, c= 33.3µm,
d= 11.9µm, e= 4.6µm, f= 2.7µm, g= 10.2µm, h= 12.4µm,
i= 4.6µm, j= 4.6µm. For simulation purposes the axis are taken
as shown where the z-axis represents the anisotropy axis.
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Fig. 4. Magnetic field magnitude for two time instants, (a) t =
0.2ns and (b) t = 0.45ns, computed using the standard FDTD
algorithm (no magnetisation is considered) and a 15mA current
step excitation with rise time constant 20ps.
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Fig. 5. Configuration of the upper pole simulation in the TEz

mode. Only the zoomed image of the upper pole is defined in
the simulation. The excitation is applied uniformly as indicated
by Happ.

in the TMz mode are shown in Figure 4. Figure 5
represents the configuration used to carry out simu-
lations of the upper pole of head A in TEz mode.
These were aimed to study the effects of eddy currents
on the switching time due to a field step applied
perpendicular to the plane of the paper, with 20ps time
constant and 12× 103A/m amplitude. The simulation
parameters were ∆x = 0.5µm, ∆t = 0.83333fs and
total simulation time 1ns. With regards to material
properties, three types of materials were considered: a
perfect conductor for the coil turns, a magnetic mate-
rial for the head core and an isolating material between
them. The coil turns were defined by a conductivity
σ = 5.8 × 107 (1/Ωm) and a relative permittivity
εr = 4.8; The magnetic material was defined by a low
electrical conductivity σ = 5000 (1/Ωm), saturation
magnetisation Ms = 800×103 (A/m) initially oriented
in the y direction, damping coefficient α = 0.1
(µm), uniaxial anisotropy with Hk = 400 (A/m) and
anisotropy constant Ku = 200 (J/m3), and exchange
stiffness constant Ax = 1.0 × 10−11 (J/m); The
isolating material was defined by εr = 1, µr = 1
and σ = 0. Demagnetising fields were included as
another term in the direction of the applied field into
the effective field expression. Considering the head
pole as an infinite cylinder, the demagnetising energy
can be expressed as

Edemag =
µ0

2
(NxM

2
x +NyM

2
y +NzM

2
z ) (48)

where due to the cylindrical geometry and orientation
in the z direction, Nx = Ny = 1/2 and Nz = 0. Then

Edemag =
µ0

2

(

M2
x

2
+

M2
y

2

)

(49)

The applied energy can be expressed as

Eh = −µ0MHapp (50)

where Happ = Hzk, then

Eh = −µ0MzHz (51)

Now, considering the total free energy as the applied
and demagnetising field contributions

E(M) =
µ0

2

(

M2
x

2
+

M2
y

2

)

− µ0MzHz (52)

or by normalising by µ0Ms

Ê(m) =
1

4
(m2

x +m2
y)−mzhz (53)
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Fig. 6. Eddy current effect at the head pole. (a) Applied field and
corresponding eddy current field. (b) Out of plane magnetisation
versus time showing a 0.13ns delay in the precessional switching
of the magnetisation.

Since m2
x +m2

y +m2
z = 1, then

Ê(m) =
1

4
(1−m2

z)−mzhz (54)

which concludes with effective field expression as

heff = −
∂Ê

∂m
=
(mz

2
+ hz

)

k (55)

The magnetic fields and the magnetisation were eval-
uated at the center of the head pole. Figure 6(a) shows
that eddy currents produce opposing fields to the
applied field that turns out to trigger the precessional
switching of the magnetisation. Analysing the plot in
Figure 6(b), when eddy currents are not considered,
a delay of 0.13ns is observed in the switching time
of the magnetisation, which causes a slower head
field response in agreement with the literature. The
expanded plot in Figure 6(a) represents eddy current
field due to ∂M/∂t which is negligible. Figure 7(a)
shows the current density across the head pole, its
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Fig. 7. Eddy current effect at the head pole. (a) Contour and arrow
plot of the current density (A/m2) at 0.02ns. (b) Magnetisation
precession with (dashed plot) and without (solid plot) eddy current
fields.

distribution agrees with the theory of eddy currents
that can be found in the literature. The eddy current
fields trigger the switching of the magnetisation and
also modify its precession as can be seen in Figure
7(b).

Figure 8 shows the magnetic field distribution near
the gap region at time 0.45ns for both the standard
and the extended FDTD algorithms. By comparison,
it is observed that when using the extended method,
the field strength is smaller and the effective field
concentrates at the head corners. As explained above,
these effects are due to the switching of the mag-
netisation and the demagnetising fields. The arrow
plot of Figure 8(b) represents the orientation of the
magnetisation. The direction of the magnetic flux
density can be visualised by observing the orientation
of the magnetisation arrows, it is obvious that there is
a flux linking both thin films through the gap resulting
in the external radiation of the write field.

Figure 9 is obtained by plotting the magnetic field
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Fig. 8. Magnetic field distribution of the head geometry near the
gap region at simulation time 0.45ns. (a) Contour plot of the field
strength for linear material and (b) contour plot of the field strength
and arrow plot of the magnetisation for non-linear material.
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Fig. 9. Recording gap fields simulating a plane parallel to the
disk surface in a recording system. (a) Fields at the pole surface
and (b) at 100nm from the head surface.

components Hx and Hy at the head surface and at a
distance of 100nm from the head surface in the gap
region. Here, the x-axis represents distances from the
central point of the gap region towards both poles
(upper and lower), e.g. x = 0 is the value taken in
the centre of the gap at a distance of 100nm away
from the head, the direction of x is parallel to the
disk surface. Having in mind that the disk surface in a

recording system would be parallel to this plane, the
field magnitude responsible for orientating the mag-
netisation of the disk in one direction or another will
be proportional to the plot in Figure 9. In particular,
Hy is the main field responsible for the recording
process in longitudinal media. Higher field gradients
are observed in the pole corner regions with the
inclusion of the magnetic details of the core material.
This has the implication that shorter transition lengths
are recorded in practice than predicted by models that
ignore the magnetic detail of the core material.

The obtained results are in agreement with previous
works present in the literature. In [18], a similar delay
of 0.25ns was observed when considering a damping
coefficient α = 0.1, which triggers the precession of
the magnetisation. The same conclusions were drawn
in [19] with respect to the precession of the magnetisa-
tion: eddy currents introduce an eddy current field that
triggers the precession. In [20], a faster magnetisation
switching was also observed, it was triggered by the
eddy currents which turned out into a slower head field
response. In [21], authors agree with the fact that the
effect of eddy currents is completely different when
considering micromagnetic level models and thus the
effect of the magnetisation can not be represented by
an equivalent permeability. Also, predicted gap field
distributions showed a more accurate field description
near the head poles when compared against simpler
head models, e.g. Karlqvist [22].

Regarding the memory requirement, in order to
store each sample, the extended FDTD simulation
requires 153,558,419 bytes, figure which is, without
surprise, above the amount of memory that uses the
standard FDTD method to simulate the same head
structure, 26,345,603 bytes. With respect to the calcu-
lation time, the time increment in between consecutive
iterations of an FDTD execution is directly related
to the spatial resolution of the grid in the FDTD
algorithm, stability equations (45) and (46). The grid
resolution is determined by the most restrictive of two
factors: the smallest feature in the simulated structure
or the shortest wavelength in the simulated space. In
this particular case, where a magnetic head has been
simulated, the very small front gap height for the head
geometry in Figure 3 determined a very small time
increment resulting in a large number of iterations.
Thus, a small grid resolution results in a very small
time increment and therefore large simulation time
(CPU time) to obtain the results of a single simulation

724 ACES JOURNAL, VOL. 27, NO. 9, SEPTEMBER 2012



(the TMz Matlab simulation took fifty days overall
on a 2GHz machine, with 2GB of RAM, running on
Windows XP). Large waiting time requirements have
made it impossible to carry out several simulations and
other tests over very small head structures.

VIII. CONCLUSION
This investigation aimed at developing a numerical

simulation approach that simultaneously incorporates
the fundamental micromagnetic and electromagnetic
details of magnetic materials to study the fast switch-
ing process in soft magnetic materials in general, and
in thin-film inductive writers in particular.

This work successfully met all its original objectives
by developing a numerical technique for simulating the
dynamic behaviour of magnetic materials and devices.
This technique naturally combines the fundamental
equation of magnetisation motion with the solution
of Maxwell’s equations using the Finite- Difference
Time-Domain method, with the unique feature that
the micromagnetic (including exchange and anisotropy
effects) and electromagnetic (electric and magnetic
fields due to charges and currents) descriptions of
simulated structures are produced simultaneously.

Using this technique will help to design and study
complete magnetic devices without ignoring the in-
teraction between the magnetic material and other
dielectric and conductive layers in the structure, which
is important at high frequencies. Moreover, this feature
simplifies the magnetostatic computations which are
inherently demanding in numerical micromagnetics,
thus extending existing work in micromagnetics to
more complex geometries and applications.
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