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I. Introduction
The high concentration of space debris in particular zones of Low Earth Orbit (LEO) constitutes a considerable risk

for the future of space operations. Specifically, it enhances the likelihood of a collision cascade phenomenon that would

produce an uncontrollable generation of debris fragments [1]. Further studies have determined that the active removal of

hazardous pieces of debris is necessary to achieve the stabilization of the number of objects within the zones of interest

[2, 3]. In particular, it is expected that Active Debris Removal (ADR) missions will be able to remove several objects

with a single servicing spacecraft. The use of low thrust propulsion constitutes a promising approach to ameliorate the

substantial fuel requirements of such multi-target missions.

The most relevant candidate objects in LEO describe near-circular orbits. Thus, it is reasonable to consider transfers

between circular orbits during the preliminary mission design. The classic Edelbaum approach [4] makes use of an

averaged orbital dynamics to obtain an analytical solution of a minimum-time continuous-thrust transfer between two

circular orbits. The Edelbaum solution was later reformulated as an optimal control problem [5] and extended to

consider richer transfer models [6–8].

Moreover, such candidate objects are concentrated among different clusters of orbits with similar altitude and

inclination. However, the objects within a cluster are, in general, arbitrarily spread in right ascension of the ascending

node (RAAN). The usual strategy to traverse large RAAN differences during a transfer is to leverage the RAAN drift

produced by the 𝐽2 perturbation. The Cerf approach [9] uses a three-arc transfer (i.e., thrust-coast-thrust) in which the

whole RAAN difference is overcome by the 𝐽2 perturbation. Nevertheless, a better performance is achieved when the

thrust carries out part of the RAAN change. The yaw switch steering approach (YSS) [10] considers it introducing the

orbital position of the thrust reversal as a control variable.

The optimal target selection for ADR missions might require the consideration of pools of hundreds of relevant

objects [11, 12], as well as the computation of a substantial amount of possible transfers. Hence the importance

of developing fast and reliable evaluation methods for such transfers. The split Edelbaum strategy (SES) [9] is a

simplification of the Cerf approach in which the thrust arcs are computed using the Edelbaum analytical solution.

This results in a two-variable Nonlinear Programming problem (NLP). More recently, Shen [13] developed an explicit
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analytical approximation for the aforementioned three-arc transfers.

This work adds the effect of the 𝐽2 perturbation to the Edelbaum approach, while considering the semimajor axis

and relative inclination w.r.t. the target orbit (i.e., the angle of the current orbital plane with the target orbital plane)

as the state variables. The optimal solution of this problem, albeit not analytical, only requires the determination of

the initial value of the thrust yaw angle. Then, the final thrust arc of the SES approach is replaced with the proposed

transfer. This results in a three-variable NLP problem. Additionally, two heuristic control laws of the proposed transfer

are defined to further accelerate the resolution of the NLP problem. This methodology intends to exploit the RAAN

change executed by the thrust to obtain potential Δ𝑣 improvements, while maintaining a computational complexity

similar to the one of the SES approach.

The remainder of this manuscript is organized as follows. Section II describes the resolution method of the

continuous-thrust optimal control problem. Section III defines the three-arc transfer NLP problem. Section IV shows

numerical experiments of the proposed methodology and provides a comparison with other relevant approaches. Finally,

Section V summarizes the main conclusions of this work.

II. Continuous-thrust transfer
The problem at hand is to provide a time-optimal solution for a particular class of continuous-thrust transfers

between circular orbits. Specifically, the proposed maneuver involves the application of tangential and out-of-plane

thrust with the thrust yaw angle as the sole control variable. Moreover, the out-of-plane thrust is reversed when traversing

the antinodes of the relative line of nodes w.r.t. the target orbit. Thus, the considered thrust produces changes in

the semimajor axis as well as the relative inclination w.r.t. the target orbit. Additionally, the effect of the average 𝐽2

perturbation in the RAAN is also considered.

A. Problem dynamics

The Edelbaum analytical solution is equally valid to represent inclination changes as well as changes of relative

inclination w.r.t. the target orbit. The reason for it is that both kinds of maneuvers are geometrically identical, but seen

from reference frames with different orientation. Namely, the usual equatorial coordinate system and a reference frame

such that its XY plane is the target plane and its Z axis goes along the angular momentum of the target orbit, respectively.

However, this is not true when considering the effect of the 𝐽2 perturbation, as its contribution is not invariant under

reference frame rotations. Thus, the dynamics equations that model the problem at hand are equivalent to the ones in [5]

but with an additional term (𝛾) that quantifies the effect of the RAAN drift in the relative inclination:

d𝑎
d𝑡

= 2

√︄
𝑎3

𝜇
𝑓 cos (𝛽) (1)
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d𝑖∗

d𝑡
=
2
𝜋

√︂
𝑎

𝜇
𝑓 sin (𝛽) + 𝛾 (2)

where 𝑎 and 𝑖∗ are the semimajor axis and the relative inclination of the current orbit, respectively; 𝑓 is the thrust

acceleration; 𝛽 is the thrust yaw angle; and 𝜇 is the gravitational parameter of the Earth.

The averaged RAAN drift produced by the 𝐽2 perturbation for a circular orbit is:

dΩ
d𝑡

= −3
2
𝑅2⊕𝐽2

√︂
𝜇

𝑎7
cos (𝑖) (3)

where Ω is the RAAN, 𝑅⊕ is the equatorial radius of the Earth, and 𝐽2 is the coefficient of the spherical harmonic of

degree 2 and order 0 of the Earth’s gravity field.

Consequently, the determination of 𝛾 requires two tasks. On the one hand, the term cos (𝑖) has to be redefined as a

function of orbital parameters associated to the target orbit reference frame. On the other hand, the rate of change of Ω

has to be turned into a rate of change of 𝑖∗.

Regarding the first task, the ascending nodes of the current (𝑁) and target (𝑁 𝑓 ) orbits as well as the relative ascending

node (𝑁∗) constitute the spherical triangle shown in Figure 1, resulting in the following trigonometry laws:
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Fig. 1 Spherical triangle formed by ascending nodes.

cos (𝑖∗) = cos (𝑖) cos (𝑖 𝑓 ) + sin (𝑖) sin (𝑖 𝑓 ) cos (ΔΩ) (4)

cos (𝑖) = cos (𝑖 𝑓 ) cos (𝑖∗) − cos (𝜔 𝑓 +Ω∗) sin (𝑖 𝑓 ) sin (𝑖∗) (5)
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sin (𝑖∗)
sin (ΔΩ) =

sin (𝑖)
sin (𝜔 𝑓 +Ω∗) (6)

where ΔΩ = Ω 𝑓 − Ω; Ω∗ is the RAAN asociated to the target orbit reference frame; and 𝑖 𝑓 , Ω 𝑓 , and 𝜔 𝑓 are the

inclination, RAAN, and argument of perigee of the target orbit, respectively.

Regarding the second task, as 𝛾 quantifies the rate of change of 𝑖∗ strictly produced by the RAAN drift of the current

and target orbits, the subsequent chain rule can be applied:

𝛾 =
d𝑖∗

d𝑡

����
𝐽2

=
𝜕𝑖∗

𝜕ΔΩ

dΔΩ
d𝑡

(7)

Taking the corresponding partial derivative of Eq. (4) and substituting Eq. (6) yields:

𝜕𝑖∗

𝜕ΔΩ
= sin (𝑖 𝑓 ) sin (𝜔 𝑓 +Ω∗) (8)

In turn, subtracting the RAAN drifts experimented by the target and the current orbits (Eq. (3)) and substituting

Eq. (5) results in:

dΔΩ
d𝑡

= −3
2
𝑅2⊕𝐽2

©­«
√︄

𝜇

𝑎7
𝑓

cos (𝑖 𝑓 ) −
√︂

𝜇

𝑎7
(
cos (𝑖 𝑓 ) cos (𝑖∗) − cos (𝜔 𝑓 +Ω∗) sin (𝑖 𝑓 ) sin (𝑖∗)

)ª®¬ (9)

It has to be noted that the term (𝜔 𝑓 +Ω∗) appears in the definition of 𝛾, but the differential equation that describes

its temporal evolution is not considered in the problem dynamics. Therefore, given the value of 𝛾 at a certain epoch,

the propagation of Eqs. (1,2) is not enough to determine its value at future time instants. Fortunately, the following

properties of the considered transfer can be exploited to propagate 𝛾 without the need for adding an additional differential

equation to the problem dynamics:

1) 𝑖 is modified exclusively by the thrust.

2) (𝜔 𝑓 +Ω∗) is modified exclusively by the 𝐽2 perturbation.

3) ΔΩ is modified by both the thrust and the 𝐽2 perturbation.

Thus, given the values of all the variables up to a certain point in time, the propagation to a subsequent epoch can be

performed as follows:

1) The values of 𝑎 and 𝑖∗ can be obtained with a straightforward propagation of Eqs. (1,2).

2) When considering Keplerian dynamics, (𝜔 𝑓 +Ω∗) remains constant, while the obtained 𝑖 would be identical to

the one of the 𝐽2-perturbed case. Consequently, computing 𝑖∗ for the Keplerian case (i.e., 𝛾 = 0) and introducing

it, together with (𝜔 𝑓 +Ω∗), into Eq. (5) would result in the desired value of 𝑖.

3) The Keplerian value of ΔΩ results from substituting the Keplerian values of 𝑖, (𝜔 𝑓 +Ω∗), and 𝑖∗ in Eqs. (4,6).
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Then, its corresponding nodal precession (Eq. (3)) can be added to obtain its 𝐽2-perturbed counterpart.

4) Subsequently, the 𝐽2-perturbed value of (𝜔 𝑓 +Ω∗) results from Eqs. (5,6).

5) Finally, Eq. (7) is used to compute 𝛾.

B. Optimality conditions

The optimal control formulation of the problem at hand involves the minimization of the transfer time, as depicted in

the following objective function:

𝐽 = min
∫ 𝑡 𝑓

𝑡0

d𝑡 (10)

where 𝑡0 is the fixed initial time and 𝑡 𝑓 is a free final time.

Subject to the dynamics defined by Eqs. (1,2) and the following boundary conditions:

𝑎(𝑡0) = 𝑎0 𝑖∗ (𝑡0) = 𝑖∗0

𝑎(𝑡 𝑓 ) = 𝑎 𝑓 𝑖∗ (𝑡 𝑓 ) = 0
(11)

where 𝑎0 and 𝑎 𝑓 are the initial and final values of the semimajor axis, respectively, and 𝑖∗0 is the initial relative inclination.

The Pontryagin’s minimum principle states that the optimal solution of this problem requires the selection of a

control law of 𝛽 such that the following Hamiltonian function is minimized throughout the whole optimal trajectory:

H = 1 + 𝜆𝑎
©­«2

√︄
𝑎3

𝜇
𝑓 cos (𝛽)ª®¬ + 𝜆𝑖

(
2
𝜋

√︂
𝑎

𝜇
𝑓 sin (𝛽) + 𝛾

)
(12)

where 𝜆𝑎 and 𝜆𝑖 are the costate variables associated to Eqs. (1,2), respectively. The following differential equations

determine the rates of change of the costate variables:

d𝜆𝑎

d𝑡
= −𝜕H

𝜕𝑎
= − 𝑓

√
𝜇

(
3𝜆𝑎

√
𝑎 cos (𝛽) + 𝜆𝑖

𝜋
√
𝑎
sin (𝛽)

)
− 𝜆𝑖

𝜕𝛾

𝜕𝑎
(13)

d𝜆𝑖
d𝑡

= −𝜕H
𝜕𝑖∗

= −𝜆𝑖
𝜕𝛾

𝜕𝑖∗
(14)

The necessary condition for the Hamiltonian function minimization is:

𝜕H
𝜕𝛽

= −2𝜆𝑎

√︄
𝑎3

𝜇
𝑓 sin (𝛽) + 2

𝜋
𝜆𝑖

√︂
𝑎

𝜇
𝑓 cos (𝛽) = 0 (15)

Resulting in the following optimal control law:

5



tan (𝛽) = 𝜆𝑖

𝜆𝑎𝜋𝑎
(16)

It has to be noted that time does not explicitly appear in the Hamiltonian function (Eq. (12)). Hence, its value

is constant throughout the whole optimal trajectory. Furthermore, 𝑡 𝑓 is a free variable and its associated boundary

conditions are time-independent. Consequently,H(𝑡 𝑓 ) = 0 and, by extension, is null during the whole trajectory. This

condition, along with the optimal control law (Eq. (16)), can be used to unambiguously define the sine and cosine of 𝛽

as functions of the costate variables:

sin (𝛽) = − 2𝜆𝑖
√
𝑎 𝑓

𝜋
√
𝜇 (1 + 𝜆𝑖𝛾)

(17)

cos (𝛽) = − 2𝜆𝑎

√
𝑎3 𝑓

√
𝜇 (1 + 𝜆𝑖𝛾)

(18)

The costate variables can be also given as functions of 𝛽 as follows:

𝜆𝑖 = − sin (𝛽)
2
𝜋

√︃
𝑎
𝜇
𝑓 + 𝛾 sin (𝛽)

(19)

𝜆𝑎 = − cos (𝛽)

2
√︃

𝑎3

𝜇
𝑓 + 𝛾𝜋𝑎 sin (𝛽)

(20)

Finally, the strong Legendre–Clebsch condition guarantees that a local minimum is obtained (as opposed to a

maximum or saddle point).

𝜕2H
𝜕𝛽2

= −2𝜆𝑎

√︄
𝑎3

𝜇
𝑓 cos (𝛽) − 2

𝜋
𝜆𝑖

√︂
𝑎

𝜇
𝑓 sin (𝛽) > 0 (21)

Adding Eq. (12) yields:

𝜆𝑖𝛾 > −1 (22)

Then, substituting 𝜆𝑖 from Eq. (19) gives:

𝛾 sin (𝛽)
2
𝜋

√︃
𝑎
𝜇
𝑓 + 𝛾 sin (𝛽)

< 1 (23)

This expression implies that the signs of its denominator and the first term of such denominator have to be identical.

By definition, said first term is positive. Hence, the following condition is sufficient for the obtention of a local minimum:
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2
𝜋

√︂
𝑎

𝜇
𝑓 + 𝛾 sin (𝛽) > 0 (24)

C. Heuristic control laws

When focusing on the computational efficiency of the resolution of optimal control problems, it is worth to investigate

promising heuristic control laws. Specifically, control laws independent of the costates that, albeit suboptimal, can

achieve near-optimal solutions under the right circumstances. This way, such near-optimal solutions can be obtained by

simply propagating the state equations to the desired final state. Two promising heuristics are subsequently presented,

namely, the proportional control law and the corrected Edelbaum strategy.

The selection of 𝛽 involves a trade-off between the magnitude of the in-plane (to modify 𝑎) and out-of-plane (to

change 𝑖∗) thrust components. The proportional control law allocates the thrust components such that the rates of change

of the state variables are proportional to their difference with the target values, that is:

d𝑎/d𝑡
d𝑖∗/d𝑡 = −

𝑎 𝑓 − 𝑎

𝑖∗
(25)

For the sake of simplicity, Eq. (25) is reformulated as follows:

𝜙𝑎 cos (𝛽)
𝜙𝑖 sin (𝛽) + 𝛾

= 𝑑 (26)

where 𝑑 is the right hand side of Eq. (25) and 𝜙𝑎, 𝜙𝑖 are the factors that multiply cos (𝛽), sin (𝛽) in Eqs. (1,2),

respectively.

Using the Pythagorean trigonometric identity, the sine and cosine of 𝛽 can be isolated. This results in two possible

solutions of Eq. (26). Nevertheless, one of those solutions increases the gap between both of the current states and the

target orbit, while the other solution does the opposite. Thus, the only relevant solution is:

sin (𝛽) = −
𝜙𝑖𝛾𝑑

2 + 𝜙𝑎

√︃
𝜙2𝑎 + (𝜙2

𝑖
− 𝛾2)𝑑2

𝜙2𝑎 + 𝜙2
𝑖
𝑑2

(27)

cos (𝛽) =
𝑑

(
𝜙𝑎𝛾 − 𝜙𝑖

√︃
𝜙2𝑎 + (𝜙2

𝑖
− 𝛾2)𝑑2

)
𝜙2𝑎 + 𝜙2

𝑖
𝑑2

(28)

In turn, the corrected Edelbaum control law straightforwardly considers the 𝛽 of the Edelbaum analytical solution.

𝛽 = atan2

(
− sin

( 𝜋
2
𝑖∗
)
,

√︂
𝑎 𝑓

𝑎
− cos

( 𝜋
2
𝑖∗
))

(29)
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However, as this control law ignores the effect of the 𝐽2 perturbation, the expected terminal state will not be exactly

achieved. This problem is ameliorated by using the proportional control law during the last revolution of the transfer.

Hence the name of corrected Edelbaum strategy.

D. Problem resolution

In general, the resolution of the problem at hand involves the propagation of the dynamics differential equations

(Eqs. (1,2,13,14)), while fulfilling the optimal control law (Eqs. (17,18)). Moreover, the accomplishment of the desired

boundary conditions at 𝑡 𝑓 (Eq. (11)) requires the determination of specific initial values for the costate variables. This

can prove difficult because such variables do not possess a clear physical meaning. Nevertheless, in this particular case,

Eqs. (19,20) provide the values of such costates as a function of 𝛽. Therefore, the boundary conditions at 𝑡 𝑓 can be

achieved by simply selecting a suitable initial value of 𝛽, which has a bounded domain as well as a straightforward

meaning. Consequently, the whole resolution process can be encapsulated in the following scalar univariate shooting

function:

𝜓 : 𝛽(𝑡0) −→ 𝑎(𝑡 𝑓 ) − 𝑎 𝑓 (30)

Given an initial value of 𝛽, the shooting function propagates the dynamics equations until 𝑖∗ = 0 and returns the

defect of the resulting semimajor axis at that epoch, i.e., 𝑡 𝑓 . Hence, a root of 𝜓 generates an optimal trajectory that

complies with the boundary conditions. The following two-stage approach has been devised to obtain the aforementioned

root:

1) The initial 𝛽 angles corresponding to the proportional and corrected Edelbaum heuristic control laws are used to

initialize a secant method. This method is executed until two values of 𝜓 with different signs are found or until

the solution is obtained, whichever happens first.

2) If the solution has not been obtained during the previous stage, the 𝛽 angles corresponding to the values of 𝜓

with different signs are used to execute Brent’s bracketing method [14]. This way, the convergence to an optimal

solution is guaranteed (assuming that 𝜓 is continuous).

III. Three-arc transfer
When dealing with transfers involving a significant ΔΩ, continuous-thrust maneuvers may require an infeasible

amount of Δ𝑣. In those cases, it is interesting to exploit the RAAN drift produced by the 𝐽2 perturbation. Specifically,

the usual strategy is to introduce an intermediate coasting arc in which the satellite will remain in a drifting orbit with an

advantageous nodal precession.
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A. SES strategy

The previously mentioned SES strategy [9] comprises two propulsive arcs, modelled with the Edelbaum solution,

split apart by a coasting arc. This way, the propulsive arcs simultaneously modify 𝑎 and 𝑖, while the whole ΔΩ is

overcome exclusively by the 𝐽2 perturbation. Therefore, defining Δ𝑣Ed (𝑎0, 𝑖0, 𝑎1, 𝑖1) as the Δ𝑣 consumed during an

Edelbaum transfer from (𝑎0, 𝑖0) to (𝑎1, 𝑖1), the Δ𝑣 spent during the whole maneuver is:

Δ𝑣 = Δ𝑣Ed (𝑎0, 𝑖0, 𝑎0 + Δ𝑎, 𝑖0 + Δ𝑖) + Δ𝑣Ed (𝑎0 + Δ𝑎, 𝑖0 + Δ𝑖, 𝑎 𝑓 , 𝑖 𝑓 ) (31)

where Δ𝑎 and Δ𝑖 are the necessary parameter variations to reach the drifting orbit. In turn, the Δ𝑡 spent during this

maneuver is:

Δ𝑡 =
Δ𝑣

𝑓
+ 𝑡drift (32)

where 𝑡drift is the drifting time, whose value is unambiguously determined by the fact that a RAAN difference of ΔΩ has

to be crossed over during the transfer. That is:

𝑡drift = −ΔΩ + Δ(ΔΩ1) + Δ(ΔΩ2)
Δ ¤Ωdrift

(33)

where Δ(ΔΩ1) and Δ(ΔΩ2) are the variations of ΔΩ due to the 𝐽2 perturbation during the first and second propulsive

arcs, respectively, and Δ ¤Ωdrift is the rate of change of ΔΩ during the coasting arc. Both Δ(ΔΩ1) and Δ(ΔΩ2) are

computed through a numerical integration of Eq. (3).

Eqs. (31,32) can be used to formulate a rather manageable single-constraint NLP problem of two variables (i.e., Δ𝑎

and Δ𝑖). Hence the efficiency and reliability of this method.

B. Relative Inclination Change (RIC) strategy

The SES strategy proves especially Δ𝑣-efficient when the available time to perform a transfer is such that the whole

ΔΩ can be traversed with moderate variations of the RAAN drift. However, when considering stingier transfer times, it

is notably advantageous to use the thrust to also modify the RAAN [10]. This concept can be exploited by substituting

the second Edelbaum propulsive arc with the relative inclination change maneuver described in Section II. Hence, this

approach is expected to outperform the SES strategy for tight transfer times. In turn, for longer transfer times both

approaches are nearly identical, the difference being that the RIC strategy inevitably performs a small ΔΩ change.

Therefore, this approach is expected to be slightly worse than the SES strategy for such transfer times.

Defining Δ𝑣RIC (𝑎0, 𝑖0, 𝑎1, 𝑖1,ΔΩ0) as the Δ𝑣 consumed during a relative inclination change transfer from (𝑎0, 𝑖0) to

(𝑎1, 𝑖1) with an initial RAAN difference of ΔΩ0; the Δ𝑣 spent during the whole maneuver is:
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Δ𝑣 = Δ𝑣Ed (𝑎0, 𝑖0, 𝑎0 + Δ𝑎, 𝑖0 + Δ𝑖) + Δ𝑣RIC (𝑎0 + Δ𝑎, 𝑖0 + Δ𝑖, 𝑎 𝑓 , 𝑖 𝑓 ,ΔΩ0 + ΔΔΩ1 + Δ ¤Ωdrift𝑡drift) (34)

The Δ𝑡 spent during this maneuver is also defined by Eq. (32). However, as the second propulsive arc is able to

modify ΔΩ, 𝑡drift is a variable to be determined during the optimization. Thus, Eqs. (32,34) result in a NLP problem of

three variables (i.e., Δ𝑎, Δ𝑖, and 𝑡drift).

IV. Results
Numerical experiments have been performed to provide a comparison between the RIC strategy and other relevant

methodologies. In decreasing order of complexity, the considered approaches can be classified into optimal control

problems (YSS [10], Cerf [9]), NLP problems (RIC, SES [9]), and analytical approximations (Shen [13]).

Specifically, the RIC and SES strategies are used to numerically solve a set of test cases, which involve the

minimization of the Δ𝑣 spent during a transfer while complying with a maximum transfer time. Such tests cases are

depicted in Table 1,

Table 1 Test cases

Case Δ𝑡𝑚𝑎𝑥 (days) ΔΩ0 (deg) ℎ0 (km) ℎ 𝑓 (km) 𝑖0 (deg) 𝑖 𝑓 (deg)
1 100 30 800 900 98 99
2 10 3 800 900 98 99
3 100 10 800 900 98 99
4 24.86 0.46 779.3 733.8 98.64 97.45

where ℎ0 and ℎ 𝑓 are the initial and final orbital altitudes, respectively, and Δ𝑡𝑚𝑎𝑥 is the maximum transfer time.

Cases 1 and 2 have been extracted from Ref. [10], while Cases 3 and 4 have been obtained from Ref. [13]. The values

of the constants of the gravitational model used during the resolution of the test cases are: 𝐽2 = 1.082635854 · 10−3,

𝜇 = 3.986004418 · 1014 m3s−2, and 𝑅⊕ = 6378137 m.

Tables 2 and 3 show the Δ𝑣 consumed by the RIC and SES strategies for the aforementioned test cases, as well as

the solutions achieved by other methods provided in the literature.

Table 2 Method performance comparison (Test cases 1 and 2)

Case 1 Case 2
Method Δ𝑣 (ms−1) Δ𝑣 (ms−1)
YSS [10] 596.7 507.0
Cerf [9] 598.1 652.5
SES [9] 598.2 664.3
RIC 598.8 567.2

The comparison of the RIC strategy with the other relevant methods can be summarized as follows:
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Table 3 Method performance comparison (Test cases 3 and 4)

Case 3 Case 4
Method Δ𝑣 (ms−1) Δ𝑣 (ms−1)
Shen (𝑖) [13] 325.3 255.1
Shen (𝑖,Ω) [13] 324.4 254.1
SES [9] 313.3 1187.6
RIC 313.5 245.0

1) SES: As anticipated in Section III.B, the RIC strategy clearly outperforms the SES strategy for tight transfer

times (Cases 2 and 4), while being marginally worse for longer transfer times (Cases 1 and 3). As both methods

have a similar computational complexity, it is reasonable to prefer the RIC strategy.

2) Cerf: The Cerf approach improves the Δ𝑣 achieved by the SES strategy, at the cost of a greater computational

complexity. However, when compared to the RIC strategy, it shows the same disadvantages as the SES strategy

on top of the increased computational complexity.

3) YSS: The YSS method outperforms the RIC strategy. It is a logical result because the YSS method is a strict

generalization of the RIC, SES and Cerf methods. However, due to the computational complexity of its associated

optimal control problem, the YSS method might not be suitable for the formulation of large-scale combinatorial

problems. Additionally, it has to be noted that several instances of the SES strategy are solved to obtain an initial

guess of the costates of the YSS method. As the RIC strategy provides a Δ𝑣 improvement over the SES strategy

for longer transfer times, it might provide a better costate guess for those problem instances. Thus accelerating

the resolution of the YSS method.

4) Shen: The RIC strategy outperforms both of Shen analytical approximations. Therefore, selection of which of

these methods to use in a large-scale combinatorial problem involves a trade-off between solution quality and

computational efficiency.

It has to be noted that the RIC strategy can make use of the heuristic control laws described in Section II.C to further

accelerate the resolution of the method. Tables 4 and 5 show the Δ𝑣 consumed for each of the control laws used during

the second propulsive arc, as well as the Δ𝑎 and Δ𝑖 changes performed during the first propulsive arc.

Table 4 Heuristic control laws performance comparison (Test cases 1 and 2)

Case 1 Case 2
Method Δ𝑣 (ms−1) Δ𝑎 (km) Δ𝑖 (deg) Δ𝑣 (ms−1) Δ𝑎 (km) Δ𝑖 (deg)
Optimal 598.84 -391.77 1.216 567.23 -310.77 1.015
Corr. Edelbaum 599.05 -391.77 1.217 567.25 -310.77 1.014
Proportional 600.06 -375.60 1.294 567.78 -310.77 1.017

It can be seen that both heuristics achieve near-optimal solutions, with the corrected Edelbaum control law being
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Table 5 Heuristic control laws performance comparison (Test cases 3 and 4)

Case 3 Case 4
Method Δ𝑣 (ms−1) Δ𝑎 (km) Δ𝑖 (deg) Δ𝑣 (ms−1) Δ𝑎 (km) Δ𝑖 (deg)
Optimal 313.46 -122.82 0.8957 245.03 -10.00 -0.3482
Corr. Edelbaum 313.46 -122.82 0.8957 245.03 -10.00 -0.3482
Proportional 313.46 -122.82 0.8957 245.04 -9.98 -0.3482

marginally better.

V. Conclusions
This manuscript proposes a novel 𝐽2-perturbed continuous-thrust transfer between circular orbits. Specifically, this

transfer considers tangential and out-of-plane thrust, with the thrust yaw angle being the sole control variable. Moreover,

the dynamics of the transfer is described by two state variables. Namely, the semimajor axis and the relative inclination

w.r.t. the target orbit. The optimal solution of this problem involves finding a root of a function of the thrust yaw angle.

Two heuristic control laws provide initial guesses for this root-finding problem. The convergence of this solution can be

guaranteed with the use of bracketing root-finding methods, assuming that the function is continuous.

Furthermore, a thrust-coast-thrust strategy has been formulated. Its first propulsive arc corresponds to an Edelbaum

transfer, while the second one performs the aforementioned relative inclination change transfer. This results in a

three-variable NLP problem. The performance of this strategy for time-constrainted Δ𝑣-optimal transfers has been

compared with the solutions of other relevant methods of the literature. It has been shown that the proposed three-arc

strategy provides an advantageous trade-off between solution quality and computational complexity. Thus being suitable

for the formulation of large-scale combinatorial problems. Finally, it has been shown that the use of the proposed

heuristic control laws in the second propulsive arc results in near-optimal solutions, while further accelerating the

resolution process.
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