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Abstract 24 

Questions: Positive and negative associations among species influence the structure of 25 

plant communities. Yet, how these plant associations are assembled at the community level 26 

is poorly understood. We propose a new approach that combines spatial ecology, network 27 

theory and functional traits to examine the assembly of plant–plant associations at the 28 

community level. 29 

 30 

Location: Gemmipass, Swiss Alps. 31 

 32 

Methods: We fully mapped a plant community at the individual-plant, recording both plant 33 

coordinates and functional traits for each individual. We identified non-random species 34 

associations using spatial point-pattern analysis and partialled out the effect of abiotic 35 

heterogeneity. We then analyzed the plant network structure and used plant traits to 36 

predict species associations. 37 

 38 

Results: We identified 36 significant spatial associations between plant species, 34 positive 39 

and 2 negatives. Dominant, stress-tolerant species such as Dryas octopetala, Linaria alpina 40 

and Leontodon montanus were highly connected in the network whereas rare, water- and 41 

nutrient-demanding species such as Saxifraga aizoides, Galium anisophyllon  and Thymus 42 

praecox were less connected compared to random expectation. The plant network was 43 

clustered, meaning that species were overall more connected among each other than 44 

expected by chance. 45 

 46 
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Conclusions: Positive associations among species characterized the studied plant 47 

community. Besides the primary effect of associations of the “foundation” species D. 48 

octopetala with other species, these “subordinate” plants were also associated with each 49 

other. Our study reveals the assembly of plant communities as driven by positive 50 

associations among stress-tolerant pioneer species, highlighting their role in supporting the 51 

cohesiveness of alpine plant communities. 52 

 53 

Key-words: Alpine tundra, biodiversity, community ecology, competition, ecological 54 

networks, facilitation, functional traits, spatial patterns, Swiss Alps  55 

 56 

Introduction 57 

Biological diversity is determined by ecological processes that take place in space and time 58 

(McGill 2010). Environmental heterogeneity, dispersal and biotic interactions can shape the 59 

fine-scale distribution of organisms and affect the spatial structure of populations, 60 

communities and ecosystems (Rietkerk et al. 2004; Kefi et al. 2007; Meron 2012). For 61 

instance, facilitation can induce fine-scale associations (Bruno et al. 2003; Schöb et al. 2008; 62 

Chacon-Labella et al. 2016), while competition can reduce them (MacArthur and Levins 63 

1967; Tilman 1994; Durrett and Levin 1998; Pescador et al. 2014).The structure of plant 64 

communities can therefore be characterised by a network of positive and negative 65 

interactions among species (Verdù and Valiente-Banuet 2008; Levine et al. 2017; Losapio et 66 

al. 2018; Saiz et al. 2018). Although this perspective could shed light on the assembly of 67 

plant communities, the ecological factors contributing to the formation of these plant 68 

networks are poorly understood. 69 
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Plant networks depend on the method of how interactions are determined. Many 70 

studies rely on the simplistic approach that fine-scale co-occurrence patterns would reflect 71 

species interactions (Delalandre and Montesinos-Navarro 2018). However, several other 72 

processes besides species interactions, such as environmental heterogeneity, species 73 

microhabitat preferences and dispersal limitation, can influence species distribution and 74 

resulting spatial patterns (Condit et al. 2000; McGill 2010; Wiegand and Moloney 2014). 75 

Consequently, these other processes should be taken into account when inferring 76 

interactions from co-occurrence patterns. 77 

The use of spatial point-pattern analysis can provide a more appropriate way of 78 

inferring species associations than other co-occurrence statistics (Baddeley, Rubak, & 79 

Turner, 2015). For example, using spatial point-pattern analysis (Diggle 2003; Wiegand and 80 

Moloney 2014; Baddeley et al. 2015it is possible to infer plant interactions besides the 81 

effects of several other factors responsible for plant distribution, such as environmental 82 

heterogeneity, limited dispersal and shared microhabitat preferences (Chacon-Labella et al., 83 

2016; Jara-Guerrero, De la Cruz, Espinosa, Méndez, & Escudero, 2015; Pescador et al., 2014; 84 

Wiegand et al., 2012). 85 

By capturing essential aspects of the ecophysiology and life-history strategy of species, 86 

functional traits can help to better understand processes responsible for ecological patterns 87 

(McGill et al. 2006, Weiher, & Westoby, 2006). Thus, traits can indicate how the outcome of 88 

species interactions influences community structure (Gross et al. 2009) and how species-89 

specific plant interactions affect biodiversity (Schöb et al. 2017). Plant traits such as leaf 90 

mass per area, height and diameter reflect species competitive ability (Gross et al. 2009) 91 

and are therefore related to the assembly of plant communities (Schöb et al. 2012). The 92 

sensitivity of plant traits to environmental conditions further allows prediction of the effects 93 
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of environmental change on plant communities (Losapio & Schöb 2017). Plant traits may 94 

therefore be a suitable tool when it comes to assess the dependence of plant association 95 

networks of a plant community on environmental conditions. 96 

In this study, we combine spatial ecology, network theory and functional traits to 97 

reveal the assembly of plant communities. Since facilitation is assumed to be strong in 98 

stressful habitats such as alpine vegetation (Callaway et al. 2002; Schöb et al. 2008; Kikvidze 99 

et al. 2015) and as it is linked to plant community structure and plant functional traits (Gross 100 

et al. 2009; Schöb et al. 2012), we tested the hypothesis that (a) positive associations 101 

characterize a cohesive plant network and (b) functional traits can explain the degree of 102 

network-wide species associations. 103 

 104 

Methods 105 

Study area and sampling design 106 

The study was done in an alpine vegetation (Swiss Alps, 2300 m a.s.l., 46.39995°N, 107 

7.58224°E, Supporting Information Fig. S1) dominated by patches of the prostate dwarf-108 

shrub Dryas octopetala L. (Rosaceae). This plant forms vegetation patches and has 109 

facilitative sheltering effects on other plant species in tundra ecosystems (Klanderud and 110 

Totland 2005). The plant community was fully mapped with 1 cm accuracy during August 111 

2015 within a 9 x 3 m rectangular grid (Fig. 1, Supporting Information Fig. S2). For each 112 

individual plant (i.e., ramet for clonal plants) we recorded species identity, coordinates of 113 

the rooting point (x and y) and a set of following functional traits: diameter, height, number 114 

of leaves and leaf mass per area (Supporting Information Methods S1). In total, 2154 115 

individuals belonging to 29 species were recorded (Supporting Information Fig. S3). Fine-116 

scale spatial heterogeneity of soil properties was quantified by determining soil gravel 117 
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content, soil water content and soil C : N ratio with one composite sample in each 1 m2 and 118 

beneath each Dryas patch (n = 27, total = 54; see Supporting Information Methods S1 for 119 

more details). 120 

 121 

Spatial analysis and plant–plant associations 122 

To detect the statistical association between plant species, we employed spatial point-123 

pattern analysis (Ripley 1981; Diggle 2003; McGill 2010; Wiegand and Moloney 2014; 124 

Baddeley et al. 2015).  125 

First, for each specie' spatial pattern, we fitted models of fine-scale spatialdistribution 126 

that accounted for the effects of environmental heterogeneity and limited dispersal 127 

(Pescador et al., 2014; Jara-Guerrero et al., 2015; Chacon-Labella et al., 2016; see 128 

Supporting Information Methods S2 for details). Then, we assessed interspecific spatial 129 

associations using bivariate point-pattern analysis (Baddeley et al. 2015). Species 130 

associations were estimated using the inhomogeneous cross-type pair correlation function 131 

𝑔𝑔(𝑟𝑟) (Baddeley et al. 2015). This function looks at the proportion of individuals of species j 132 

occurring within a neighborhood of distance r of the individuals of species i. The probability 133 

𝑝𝑝(𝑟𝑟) of finding two plants of species i and j at two localities x and y separated by a distance r 134 

is 𝑝𝑝(𝑟𝑟) =  𝜆𝜆𝑖𝑖(𝑥𝑥)𝜆𝜆𝑗𝑗 (𝑦𝑦)𝑔𝑔𝑖𝑖𝑖𝑖 (𝑟𝑟) d𝑥𝑥 d𝑦𝑦, where 𝜆𝜆𝑖𝑖(𝑥𝑥) and  𝜆𝜆𝑗𝑗 (𝑦𝑦) are the densities of the two 135 

species at localities x and y estimated for each individual in inhomogeneous space d𝑥𝑥 and 136 

d𝑦𝑦, respectively (Supporting Information Fig. S6, Table S1). 137 

For each species pair, we assessed the deviation of the observed bivariate function 138 

from the expected null model of species independence (i.e., from a distribution of each 139 

species based exclusively on their environmental preferences and dispersal characteristics 140 

and independent of other species). Using this approach, we accounted for spatial 141 
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environmental heterogeneity, shared microhabitat preferences and random dispersal as 142 

drivers of species associations (Chacon-Labella et al., 2016; Condit et al., 2000; Pescador et 143 

al., 2014; Wiegand et al. 2012). 144 

In order to statistically determine whether observed associations 𝑔𝑔�𝑖𝑖𝑖𝑖 (𝑟𝑟) (n = 342) 145 

were significantly different from expectation of species independence, we used a goodness-146 

of-fit (GoF) test based on the Diggle-Cressie-Loosmore-Ford (DCLF) test statistic (Diggle 147 

2003; Loosmore and Ford 2006; Baddeley et al. 2014). This is a Monte Carlo test based on 148 

the test statistic 𝑢𝑢 = ∫ (𝑔𝑔(𝑟𝑟) − 𝑔𝑔𝑡𝑡ℎ𝑒𝑒𝑒𝑒 (𝑟𝑟))2𝑑𝑑𝑑𝑑𝑅𝑅
0 , which considers the integral of squared 149 

absolute deviation between the 𝑔𝑔(𝑟𝑟) function and its theoretical value 𝑔𝑔𝑡𝑡ℎ𝑒𝑒𝑒𝑒 (𝑟𝑟) betwen r = 150 

1 and r = R. As 𝑔𝑔(𝑟𝑟) we considered the empirical, observed pattern 𝑔𝑔�𝑖𝑖𝑖𝑖 (𝑟𝑟), and as 𝑔𝑔𝑡𝑡ℎ𝑒𝑒𝑒𝑒 (𝑟𝑟) 151 

the average of the theoretical, computed 𝑔̿𝑔𝑖𝑖𝑖𝑖 (𝑟𝑟) function (Baddeley et al. 2014). The 152 

maximum spatial distance R = 75 cm was considered because it is one fourth of the shortest 153 

side of the sampling plot (3 m). Monte Carlo (MC) simulations were used to generate 154 

𝑔𝑔𝑡𝑡ℎ𝑒𝑒𝑒𝑒 (𝑟𝑟) distributions under the null hypothesis of independence of species j with respect 155 

to species i. MC simulations consisted in shuffling individuals of species i according to their 156 

null-model distribution (i.e., the models fitted previously) while keeping the individuals of 157 

species j at their observed coordinates (Wiegand and Moloney 2014). This process 158 

randomizes the spatial association between species while holding all other processes 159 

constant. A total of 199 MC simulations were performed using the envelope function and 160 

tested using the dclf.test function in the R package spatstat (Baddeley et al. 2015). Note that 161 

statistical artefacts due to different sample sizes to fit species model or random noise in the 162 

MC null model may affect the quality and detectability of species associations (Wiegand and 163 

Moloney 2014; Baddeley et al. 2015). 164 

 165 
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Network analysis 166 

Network models were used to map and analyze plant associations at the community level. 167 

We built a directed network (Kolaczyk and Csárdi 2014) 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) composed of 𝑉𝑉 plant 168 

species and 𝐸𝐸 ⊆  𝑉𝑉𝑖𝑖  x 𝑉𝑉𝑗𝑗  species links. We considered as species links 𝐸𝐸𝑖𝑖𝑖𝑖  the significant 169 

spatial associations 𝑢𝑢 between plant species i and j (α = 0.05). In other words, we 170 

considered that a link existed between two plant species when the observed p- value of the 171 

GoF DCLF statistic test was lower than 0.05. 172 

To reveal network-wide organization of the plant community, we measured: (a) the 173 

number of connections k of each plant species. This is the most basic species-level network 174 

property indicating the degree of interconnection of a species within a community. It was 175 

calculated using the degree function in igraph (Csárdi and Nepusz 2006). (b) the overall 176 

network structure as clustering or transitivity (Watts and Strogatz 1998; Kolaczyk and Csárdi 177 

2014), which is defined as the probability that two or more species associated to the same 178 

species are also associated with each other (as if friends of mine are also each other’s 179 

friends). We calculated transitivity using the clustering coefficient 𝑐𝑐 = 𝑁𝑁−1 ∑ (𝑠𝑠𝑖𝑖(𝑘𝑘𝑖𝑖 −𝑁𝑁
𝑖𝑖=1180 

1))−1, where ki is the number of species associated to species i and si is the number of 181 

associations among species associated to species i (Watts and Strogatz 1998). Clustering c 182 

measures the local cohesiveness of a group of species and the degree of interconnections of 183 

a community. We computed clustering using the transitivity function in igraph R package 184 

(Csárdi and Nepusz 2006). 185 

In order to assess the deviation of observed network properties from random 186 

expectation, we built random networks according to the G(n,m) Erdős–Rényi model 187 

(Kolaczyk and Csárdi 2014). This null model builds networks by assigning associations 188 

randomly to each pair of species on the basis of independent and identically distributed 189 
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binomial trials. We built 999 random networks with the same number of species and 190 

associations as the observed network. We used the sample_gnm function in igraph (Csárdi 191 

and Nepusz 2006). 192 

 193 

Statistical analysis 194 

To test the significance of observed network properties (i.e., species connections and 195 

clustering), we calculated the p-value as 𝑃𝑃� = 1 −∑ 𝐼𝐼[𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜 > 𝐻𝐻𝑗𝑗 ]𝑆𝑆
𝑖𝑖 𝑠𝑠⁄ , where I[Hobs > Hj] is an 196 

indicator function that equals 1 if the observed network property was greater (or smaller) 197 

than the random value and 0 otherwise, across s = 999 simulations. Species connections 198 

were standardized with the z-score as 𝑧𝑧(𝑘𝑘) = 𝑘𝑘�𝑖𝑖 − 𝑘𝑘�𝑖𝑖 𝑠𝑠𝑠𝑠(𝑘𝑘𝑖𝑖)⁄ , which indicates the relative 199 

deviation of observed number of connections k of each plant species i from random mean 200 

expectation 𝑘𝑘�𝑖𝑖 . 201 

Then, we tested whether species traits predicted species connections. We used 202 

Principal Component Analysis (Le et al. 2008) to reduce the dimensionality of trait space 203 

using the following variables: plant diameter, height, leaf mass per area (LMA), number of 204 

leaves, abundance and cover (Supporting Information Table S2). Variables were 205 

standardized; moss was excluded as lacking leaf traits. We extracted species scores for the 206 

first two principal components (PCs). We used linear models with these two PCs scores as 207 

predictors and species connections as response. We used the PCA function in FactoMineR 208 

(Le et al. 2008) and lm and anova in R (R Core Team 2018). 209 

 210 

Results 211 

We detected a total of 36 significant spatial associations. We found that positive 212 

associations (n = 34) but not negative associations (n = 2) between species characterized our 213 
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alpine plant community (Fig. 2). Our plant–plant association network was therefore 214 

composed by 𝑉𝑉 = 19 plant species and 𝐸𝐸 = 36 links (Fig. 3). Three plant species – Dryas 215 

octopetala, Linaria alpina and Leontodon montanus – were significantly more connected to 216 

other species than expected by chance (P = 0.003, P = 003, P = 0.060, respectively; Fig. 4a). 217 

Three plant species – Galium anisophyllon, Saxifraga aizoides and Thymus praecox – were 218 

significantly less connected to other species than expected by chance (p = 0.011, p = 086, p 219 

= 0.090, respectively; Figure 4a). 220 

The first PC was composed of species diameter (r = 0.952, P < 0.001), cover (r = 0.872, 221 

P < 0.001), number of leaves (r = 0.846, P < 0.001), LMA (r = 0.602, P < 0.001) and plant 222 

height (r = 0.506, P = 0.003). This PC1 marginally explained species connections (β = 0.380 ± 223 

0.178 SE, F1,15 = 4.53, P = 0.050). The second PC was composed of abundance (r = 0.780, P = 224 

0.001), LMA (r = 0.506, P = 0.032) and plant height (r = -0.576, P = 0.012). This PC2 225 

significantly explained species connections (β = 0.792 ± 0.273 SE, F1,15 = 8.1, P = 0.011; Fig. 226 

S7; Tab. S3). Over-connected plant species D. octopetala, L. alpina and L. montanus were 227 

dominant, stress-tolerant with high LMA and small stature. Less-connected plant species G. 228 

anisophyllon, S. aizoides and T. praecox were rare, water-and nutrient-demanding species 229 

with low LMA (Fig. S7). 230 

The plant interaction network was overall organized in a transitive, cohesive manner. 231 

Indeed, the overall degree of clustering of the plant network was significantly higher 232 

compared with random networks (c = 0.33, P = 0.001, Fig. 4c). 233 

 234 

 235 

Discussion 236 
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Our new approach combining spatial ecology with network theory and functional traits 237 

provided new insights on assembly process of plant communities. On the one hand, with 238 

spatial point-pattern analysis we could identify and isolate species associations by 239 

considering relevant confounding factors such as environmental heterogeneity and species 240 

microhabitat preferences (Diggle 2003; McGill 2010; Wiegand and Moloney 2014; Baddeley 241 

et al. 2015). On the other hand, with network models we could analyze a complex and 242 

complete set of species associations beyond pairwise interactions (Verdù and Valiente-243 

Banuet 2008; Levine et al. 2017; Losapio et al. 2018; Delalandre and Montesinos-Navarro 244 

2018). Integrating spatial analysis within network analysis therefore helped us to better 245 

reveal and model the structure of plant communities. In addition, the use of functional traits 246 

could provide a mechanistic, process-oriented view of the assembly of the plant interaction 247 

network. 248 

Our findings support the hypothesis that positive associations through stress-tolerant 249 

species can support the cohesiveness of plant networks in this alpine community, with 250 

functional traits explaining the assembly. Our observed network was composed of 19 plant 251 

species linked by 36 associations. This yields a level of connectivity equal to 11%, which is 252 

similar to other plant networks, for instance in deserts (Verdù and Valiente-Banuet 2008; 253 

Losapio et al. 2018) and drylands (Saiz et al. 2018) or even similar compared to aquatic food 254 

webs (Dunne et al. 2002). Only one plant species was completely isolated from the network 255 

whereas three species were significantly more connected to other plant species than 256 

expected by chance. Isolated species were more competitive and nutrient-demanding 257 

plants, as indicated by their lower LMA and taller stature. Highly connected species were 258 

stress-tolerant plants, as indicated by high LMA, that dominate the vegetation. Several 259 

subordinate and less-connected plant species were positively associated with them.  260 
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In line with experimental evidence of facilitation by Dryas octopetala (Klanderud and 261 

Totland 2005), our results indicate that this dwarf shrub can act as “foundation” species. 262 

This highlight that foundation species such as D. octopetala can have a pivotal role in the 263 

cohesiveness of plant networks and organization of plant communities. Furthermore, this is 264 

consistent with the idea that facilitation is more common in stressful alpine environments 265 

then elsewhere in grassland (Callaway et al. 2002; Cavieres et al. 2014) and suggests that 266 

species with positive effects on the community are the highly connected, stress-tolerant 267 

species up in the hierarchy, while the potential “beneficiaries” are the less connected, 268 

subordinate species (Brooker et al. 2008). 269 

The plant network had a clustering structure, with species significantly interconnected 270 

among each other than expected by chance. This means that, on average, two or more plant 271 

species associated to a common species were likely associated to each other. This indicates 272 

that besides the primary effect of foundation species also subordinate species are in turn 273 

associated with each other. This supports the call to move beyond pair-wise competition in 274 

plant communities (Levine et al. 2017) and considering interactions among plants at the 275 

level of the entire network. Finally, these results might explain the patchy structure of the 276 

examined alpine tundra vegetation because several plant species tended to aggregate more 277 

often than expected by chance. Potential underlying mechanisms might be positive 278 

feedbacks or facilitation cascades among plant species (Bruno et al. 2003; Meron 2012) as 279 

well as increasing pollinator availability among facilitating plants (Losapio et al., 2017). 280 

Taken together, our results reveal a network of mostly positively interacting plant 281 

species in an alpine plant community. Few stress-tolerant species are central in supporting 282 

network structure, facilitating the formation of a patchy tundra community. Despite the 283 

lower proportion of species associations compared to neutral associations, the plant 284 
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community showed a well-structured and cohesive web of interdependencies among plant 285 

species. 286 

In conclusion, we have shown that combining spatial patterns with network theory 287 

and functional traits can advance our understanding of the assembly of plant communities. 288 

It is, however, important to bear in mind though that observational studies such as the 289 

present one may only suggest potential mechanisms underpinning observed patterns. 290 

However, since the number of co-occurring species in natural communities can be high, 291 

manipulative experiments used to infer species dependencies are often restricted to a 292 

limited number of pair-wise species combinations. To overcome this limitation including as 293 

many species as possible, this analytical framework can be efficient in revealing the 294 

assembly of plant communities. 295 
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Fig. 1 Framework for studying plant networks. A plant community is fully mapped at the 421 

individual level. Spatial point-pattern analysis is then used to identify non-random species 422 

associations. Finally, network analysis is used to reveal structural properties of plant–plant 423 

association networks. 424 
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 425 

Fig. 2 Analysis of spatial patterns using the pair correlation g function. Panels show 426 

significant associations between pairs of plant species (see Tab. S2 for species names). Solid 427 

black lines represent the observed pattern 𝑔𝑔�(𝑟𝑟), red dashed lines represent the average of 428 

theoretical, simulated patterns 𝑔̿𝑔(𝑟𝑟). Shading indicates the pointwise envelope obtained 429 

from 199 MC simulations of the g function. GoF DCLF statistic test 𝑢𝑢 and relative p values 430 

are reported. 431 
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 432 

Fig. 3. Plant network in a patchy tundra vegetation dominated by Dryas octopetala. Plant 433 

species are depicted with dots (see Tab. S2 for species names), whose color indicates the 434 

standardized connections. Positive associations are depicted with red arrows, negative 435 

associations with blue arrows. 436 
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 22 

Fig. 4 Analysis of plant networks. a) Deviation (z-score) of observed number of connections 438 

k of each plant species from random expectations. b) Relationship between PC2 and species 439 

connections. PC2 correlated positively with abundance and LMA and negatively with height 440 

(see also Fig. S7 and Tab. S3). c) Observed network clustering c (line) and distribution of 441 

clustering values from 999 random networks (curve). 442 
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