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Abstract: The aim of this paper is to optimize the generation of frequencies obtained nonlinearly from
the propagation of ultrasound in a bubbly liquid. A study is presented for which the number and
size of the gas bubbles in the liquid are varied to determine the optimal medium, which is the one
that allows the highest amplitude for these frequency components. We use a previously developed
numerical software that tracks the nonlinear behavior of both ultrasound and bubble vibrations in
time to carry out several simulations. We focus our attention on two one-dimensional configurations,
a resonator of length set at a quarter of the wavelength with a free-wall condition and a cavity of
length set at sixteen wavelengths with open-field condition. In each case, we analyze the generation
of the 2nd, 3rd, and 4th harmonics of the source frequency. Our results show that, in both cases,
the use of higher source amplitudes and lower source frequencies is more useful to increase the
harmonic amplitudes. Moreover, smaller bubbles are more adequate when the void fraction is kept
constant for this purpose in the first configuration, whereas the modification of void fraction has no
influence in the second configuration, for which given a void fraction value, bubble sizes whose ratio
are f0/ f ≈ 5, f0/ f ≈ 7, and f0/ f ≈ 9 maximize the 2nd, 3rd, and 4th harmonics, respectively. These
conclusions could be of interest for some applications.
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1. Introduction

An interesting type of multiphase media is the one composed by liquids with gas
bubbles. These media are very attractive because the introduction of a small amount of
gas in the form of tiny bubbles into the liquid changes its characteristics significantly,
particularly its acoustic properties, which are altered drastically, albeit, its density is hardly
modified. Gas bubbles introduce dispersion, attenuation, and nonlinear phenomena to the
bubbly liquid [1,2].

Nonlinearity causes a transfer of energy from the fundamental signal to new frequency
components when a finite-amplitude ultrasonic field propagates through a bubbly liquid.
The generation of these new frequencies can be very interesting if one can take advantage
of their virtues in a specific context, virtues that can be different and complementary from
the features of the fundamental frequency, and that can be combined at the same time in
such a way that the quality of the whole signal is enhanced. For example, on one hand,
high-frequency components (harmonics, sum-frequency) generated from a single or a
dual lower-frequency source can benefit from the high spatial resolution at its frequency
value and from the low attenuation at the source frequencies, [3], which can be useful
for applications in medical imaging [4], such as sonography, or bubble detection and
characterization [5,6], such as bubble size. On the other hand, low-frequency components
(subharmonics, difference–frequency) generated from a single or a dual higher-frequency
source can benefit from the low attenuation at its frequency value and from the high spatial
resolution at the source frequencies, which can be useful for applications in underwater
exploration [7] or transmission [3,8] and nondestructive testing [9,10].
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From the above considerations, optimizing the generation of the new frequency
components, i.e., in such a way that the highest nonlinearity is obtained in the bubbly
liquid, is clearly of interest, both from a theoretical challenge and applied point of view. Few
studies on this topic exist in the literature. In [11], the existence of an optimal concentration
of bubbles for which the harmonic generation is maximum by a layer of bubbles without
changing its radius is described. In [12], the optimization of the generation of the second
harmonic with the bubble radius and with the bubble density, separately without taking
into account the trade-off between both, is shown. The generation of harmonics with the
bubble density by keeping the bubble radius constant is studied in [13]. Due to the lack of
existing studies about how to nonlinearly optimize a bubbly liquid accounting for all the
parameters involved in the interaction between ultrasound and bubbles, it is reasonable to
shed some light on this question. That is what this work deals with.

We thus seek here a compromise between bubble radius size and bubble density
in order to have an optimal nonlinear medium for the generation of new frequencies.
To this purpose, we study the double nonlinear interaction between the acoustic field,
modeled by the wave equation, and the bubble vibrations, modeled by a Rayleigh–Plesset
equation, as seen in Section 2, and we solve the resulting differential problem by means
of the numerical model developed in [13]. Several studies are carried out to optimize the
generation of harmonics, which is a measure of the nonlinearity of the medium. Different
configurations are considered, by varying: the source amplitude, Sections 3.1.2 and 3.2.2;
the void fraction, Sections 3.1.3 and 3.2.3; the source frequency, Sections 3.1.4 and 3.2.4.
Two types of resonator are used: one with a free-wall condition, Section 3.1; one with an
open-field condition, Section 3.2. Finally, Section 4 shows the conclusions of this work.

2. Materials and Methods

In this section, we describe the model used in this work to study the ultrasonic field
within a cavity of length L filled with a bubbly liquid. Two kinds of cavities are taken into
account in the following study, which aims at designing the optimization of the bubbly
medium in different configurations, given the wavelength λ at the source: a free-walled
resonator for which L = λ/4 with a pressure source at one side and a null pressure at the
other one; an open-field cavity for which L = 16λ with a pressure source at one side and
an open-field condition at the other one.

We assume an homogeneous distribution of spherical gas bubbles of the same size in a
liquid. We also consider that: these bubbles are the only source of attenuation, nonlinearity,
and dispersion; they are monodisperse and oscillate at their first radial mode; the surface
tension is neglected; the bubble collapse is not modeled; buoyancy, Bjerknes and viscous
drag forces are not considered [1,14,15]. Our model does not include inertial cavitation
bubbles [16], for which the dispersion law for nonlinear attenuation and sound speed
can be found in [17,18]. It must be noted that, since bubble–bubble interactions are not
included here, their influence when void fraction is varied, which is described in [17,19,20],
is neglected in the following Sections 3.1.3 and 3.2.3.

The nonlinear interaction between bubble vibrations and ultrasound is modeled by
the following differential system that couples the acoustic pressure p(x, t) (wave equation,
Equation (1)) and the bubble volume variation v(x, t) = V(x, t)− v0g (Rayleigh–Plesset
equation, Equation (2)),

∂2 p
∂x2 −

1
c2

0l

∂2 p
∂t2 = −ρ0l Ng

∂2v
∂t2 , (x, t) ∈ (0, L)× (0, Tt), (1)

∂2 p
∂t2 + δω0

∂p
∂t

+ ω2
0gv + ηp = av2 + b

(
2v

∂2 p
∂t2 +

(
∂2 p
∂t2

)2)
, (x, t) ∈ [0, L]× (0, Tt), (2)
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where V(x, t) is the current bubble volume, v0g = 4πR3
0g/3 is the initial bubble volume,

R0g is its initial radius, x is the one-dimensional space coordinate, and t is the time. The
resonator is excited by a pressure source placed at x = 0 from time t = 0 up to t = Tt. In
Equation (1), the sound speed and the density at the equilibrium state of the liquid are c0l
and ρ0l , and the bubble density in the liquid is Ng. In Equation (2), the viscous damping
coefficient of the bubbly fluid is δ = 4νl/ω0R2

0g, in which νl is the cinematic viscosity of

the liquid, ω0 = 2π f0 =
√

3γg p0g/ρ0l R2
0g is the resonance frequency of the bubbles, in

which γg is the specific heats ratio of the gas, p0g = ρ0gc2
0g/γg is its atmospheric pressure,

ρ0g and c0g are the density and sound speed at the equilibrium state of the gas. The other
parameters involved in the differential system are η = 4πR0g/ρ0l , a = (γg + 1)ω2

0g/2v0g,
and b = 1/6v0g. The initial conditions are

p(x, 0) = 0, v(x, 0) = 0,
∂p
∂t

(x, 0) = 0,
∂v
∂t

(x, 0) = 0, x ∈ [0, L], (3)

whereas the time-dependent pressure source of frequency f and amplitude ps is defined by

p(0, t) = ps sin(2π f t), t ∈ [0, Tt]. (4)

As said above, we consider two types of cavities, each one with a specific boundary
condition at x = L, i.e., the resonator with the free-walled cavity,

p(L, t) = 0, t ∈ [0, Tl ], (5)

and the open-field cavity Equation (6) defined by

∂p
∂x

(L, t) = − 1
c0l

∂p
∂t

(L, t), t ∈ [0, Tl ]. (6)

Both differential systems, Equations (1)–(5) for free-walled cavity on one hand,
Equations (1)–(4) and (6) for open-field cavity on the other hand, are solved using the
numerical model based on the finite-volume method in the space dimension and the finite-
difference method in the time developed in [13]. It must be noted here that 100 finite
volumes per wavelength and 400 time points per period of the source frequency Tf are
used in Section 3.

3. Results

The objective of this section is to study which type of bubbly liquid, in terms of bubble
size and density, is more suitable for the generation of harmonics from a given frequency
source in two different types of cavities, a free-walled resonator of length L = λ/4 in
Section 3.1 and a open-field cavity of length L = 16λ in Section 3.2. These resonators are
chosen with these boundary conditions to limit the generation of subharmonics [21]. It
must be noted here that whereas [21] studies the behavior of subharmonics, we study
here the behavior of harmonics and their use to optimize the bubbly medium. The length
L = λ/4 is chosen to control the maximum pressure amplitude in the cavity. The length
L = 16λ is enough to define open-field propagation. The liquid considered here is water,
for which c0l = 1500 m/s, ρ0l = 1000 kg/m3, and νl = 1.43× 10−6 m2/s, and the gas is air,
with c0g = 340 m/s, ρ0g = 1.29 kg/m3, and γg = 1.4.

In the following, the last instant used in the simulations, Tt, is high enough to guarantee
the steady regime in the cavity; Tt = 500 Tf in Section 3.1 and Tt = 1000 Tf in Section 3.2.
The frequency-dependent results shown here are obtained by fast Fourier transform (FFT)
applied to the last 100 Tf of the time-dependent acoustic pressure signal at a given space
point within the cavity.
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3.1. Cavity of Length L = λ/4
3.1.1. Amplitudes in the Cavity

In this section, we consider the free-walled resonator of length L = λ/4 and a medium
defined by Ng = 5× 1011 m−3 and R0g = 2.5× 10−6 m ( f0 = 1.35 MHz). The void fraction
vv = 3.2725× 10−5. At the source we set f = 200 kHz ( f0/ f = 6.73) and ps = 20 kPa. The
distribution of amplitudes of the fundamental and harmonic components generated in the
cavity is shown in Figure 1. The maximum amplitude is obtained at the source frequency f .
The maximum amplitude at the 2nd harmonic is huge, 88% of ps, whereas the respective
values at the 3rd and 4th harmonics are much lower, 5.45% and 8.52%.

0 L=λ/4
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Figure 1. Amplitude of f (black line), 2 f (blue line), 3 f (green line), and 4 f (red line) in the cavity of
length L = λ/4 vs. for ps = 20 kPa.

3.1.2. Several Source Amplitudes

To determinate which medium is more convenient to obtain more harmonic ampli-
tudes for a given f , we change both Ng and v0g (thus also R0g and f0) by keeping vv

constant at vv = 3.2725× 10−5. Figure 2 shows the maximum amplitude of the 2nd, 3rd,
and 4th harmonics vs. ratio f0/ f for ps = 20 kPa, ps = 22.5 kPa, and ps = 25 kPa. The
higher is ratio f0/ f (medium with more smaller bubbles), the higher are the harmonic
amplitudes. When f0/ f increases from 3 to 20 the harmonic amplitudes grow quickly,
whereas for values of f0/ f from 20 to 65 their growth is slower and ends up to be constant.
This behavior is similar for the three ps studied here, although, as expected, the harmonic
generation is more intense for larger ps.
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Figure 2. Maximum amplitude of 2 f (a), 3 f (b), 4 f (c) in the cavity of length L = λ/4 vs. f0/ f , for three
different source amplitudes ps = 20 kPa (blue line), ps = 22.5 kPa (green line), and ps = 25 kPa (red line).
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3.1.3. Several Void Fractions

We carry out a study similar to the one in Section 3.1.2 but by keeping ps con-
stant at ps = 20 kPa and for different void fractions. Figure 3 displays the maximum
amplitude of the 2nd, 3rd, and 4th harmonics vs. ratio f0/ f for vv = 3.2725 × 10−5,
vv = 2× 3.2725× 10−5, and vv = 3× 3.2725× 10−5. The higher is vv, the higher are the
harmonic amplitudes. When vv increases the 2nd harmonic amplitude hardly varies,
whereas the 3rd and 4th harmonic amplitudes change over a high range. This range is
higher for the 3rd harmonic. The growth with f0/ f is similar to the previous section: When
f0/ f increases from 3 to 20 the harmonic amplitudes grow quickly, whereas for values of
f0/ f from 20 to 65 their growth is slower and ends up to be constant. It must be noted that
even if pressure amplitudes here are low and void fractions here are high for biomedical
applications [17], even in the case of imaging, this study shows that intense second and
third harmonics can be obtained even at moderate pressure amplitudes through the correct
definition of the optimal parameters of the bubbly liquid, such as bubble size and density.
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Figure 3. Maximum amplitude of 2 f (a), 3 f (b), 4 f (c) in the cavity of length L = λ/4 vs. f0/ f , for
three different void fractions vv (blue line), 2vv (green line), and 3vv (red line).

3.1.4. Several Source Frequencies

A study similar to Sections 3.1.2 and 3.1.3 is carried out by keeping ps constant at
ps = 20 kPa and vv constant at vv = 3.2725× 10−5 for different source frequencies. Figure 4
represents the maximum amplitude of the 2nd, 3rd, and 4th harmonics vs. ratio f0/ f for
f = 200 kHz, f = 300 kHz, and f = 400 kHz. The lowest f value generates the higher
harmonic amplitudes. The difference observed in the harmonic generation with the source
frequency is more accentuated for the 4th and 3rd harmonics, although the latter to a lesser
extent. The growth with f0/ f is similar to the previous sections, when f0/ f increases
from 3 to 20 the harmonic amplitudes grow quickly, whereas for values of f0/ f from 20 to
65 their growth is slower and ends up to be constant.

To summarize, in this resonator, larger source amplitudes, smaller source frequencies,
more amount of air and, for the same void fraction, more smaller bubbles, are more
convenient and efficient for the generation of more intense harmonics.
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Figure 4. Maximum amplitude of 2 f (a), 3 f (b), and 4 f (c) in the cavity of length L = λ/4 vs. f0/ f , for
three different source frequencies f = 200 kHz (blue line), f = 300 kHz (green line), and f = 400 kHz
(red line).

3.2. Cavity of Length L = 16λ

3.2.1. Amplitudes in the Cavity

In this section, we consider the open-field cavity of length L = 16λ and we use the
same parameters as in Section 3.1.1. The shape of the source and harmonic amplitudes
inside the cavity is shown in Figure 5. As we can see, the maximum amplitude is given
for the source frequency, f , and its position is at the source. The maximum of the 2nd
harmonic amplitude is 32.3% (of ps) and its position is at x = 3.45λ , the maximum of
the 3rd harmonic amplitude is 19.4% (of ps) and its position is at x = 4.12λ, and the 4th
harmonic amplitude is 13.7% (of ps) and its position is at x = 4.42λ.
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Figure 5. Amplitude of f (black line), 2 f (blue line), 3 f (green line), and 4 f (red line) in the cavity of
length L = 16λ/4 vs. for ps = 20 kPa.

3.2.2. Several Source Amplitudes

To determinate which medium is more convenient to obtain more harmonic ampli-
tudes for a given f , we change both Ng and v0g (thus also R0g and f0) by keeping vv constant
at vv = 3.2725× 10−5. Figure 6 shows the maximum amplitude of the 2nd, 3rd, and 4th
harmonics vs. ratio f0/ f for ps = 20 kPa, ps = 22.5 kPa, and ps = 25 kPa. A maximum
for each 2nd, 3rd, and 4th harmonics exists. If we focus our attention on the generation
of the second harmonic, Figure 6a, the maximum amplitude takes place when the ratio
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f0/ f ≈ 5, with amplitudes of the order of 50% (of ps) for the three source amplitudes
studied. The third harmonic has the maximum amplitude when f0/ f ≈ 7, with amplitudes
of the order of 33% (of ps) for the three source amplitudes studied. The fourth harmonic
has the maximum amplitude when f0/ f ≈ 9, with amplitudes of the order of 23% (of
ps) for the three source amplitudes studied. The three harmonics have a similar behavior
with f0/ f , the harmonic amplitude grows quickly until it reaches a maximum, and then it
decreases quickly until reaching a constant value. This behavior is similar for the three ps
studied here, although, as expected, the harmonic generation is more intense for larger ps.
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Figure 6. Maximum amplitude of 2 f (a), 3 f (b), and 4 f (c) in the cavity of length L = 16λ vs. f0/ f , for
three different source amplitudes ps = 20 kPa (blue line), ps = 22.5 kPa (green line), and ps = 25 kPa
(red line).

3.2.3. Several Void Fractions

We carried out a study similar to the one in Section 3.2.2 but by keeping ps con-
stant at ps = 20 kPa and for different void fractions. Figure 7 displays the maximum
amplitude of the 2nd, 3rd, and 4th harmonics vs. ratio f0/ f for vv = 3.2725 × 10−5,
vv = 2× 3.2725× 10−5, and vv = 3× 3.2725× 10−5. The generation of harmonics in this
configuration is totally independent on void fraction, for the three void fractions the same
harmonic amplitudes are obtained, the maximum for the three harmonics is maintained for
the same ratio f0/ f .

3.2.4. Several Source Frequencies

A study similar to Sections 3.2.2 and 3.2.3 is carried out by keeping ps constant at
ps = 20 kPa and vv constant at vv = 3.2725× 10−5 for different source frequencies. Figure 8
represents the maximum amplitude of the 2nd, 3rd, and 4th harmonics vs. ratio f0/ f
for f = 200 kHz, f = 300 kHz, and f = 400 kHz. The lowest f value generates the
higher harmonic amplitudes, in a way similar to Section 3.1.4. For the three harmonics, the
maximum is shifted slightly toward a lower ratio f0/ f for higher source frequencies.

To summarize, in this open-field case, larger source amplitudes, smaller source fre-
quencies, and a ratio f0/ f of approximately 5, 7, and 9 are more convenient and efficient
for maximizing the 2nd, 3rd, and 4th harmonic, respectively. The generation of harmonics
in this configuration is independent of void fraction.
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Figure 7. Maximum amplitude of 2 f (a), 3 f (b), and 4 f (c) in the cavity of length L = 16λ vs. f0/ f ,
for three different void fractions vv (blue line), 2vv (green line), and 3vv (red line).
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Figure 8. Maximum amplitude of 2 f (a), 3 f (b), and 4 f (c) in the cavity of length L = 16λ vs. f0/ f , for
three different source frequencies f = 200 kHz (blue line), f = 300 kHz (green line), and f = 400 kHz
(red line).

4. Conclusions

In this work, we have carried out several one-dimensional numerical studies to
analyze and to enhance the generation of harmonics in a bubbly liquid from a single-
frequency ultrasonic field in two cavities. Our results show that higher source ampli-
tudes (20–25 kPa), lower source frequencies (200–400 kHz), and higher void fractions
(3.2725× 10−5 − 9.8175× 10−5) are more suitable for the enhancement of the amplitude of
harmonic components amplitudes in the free-walled cavity of length L = λ/4. Moreover,
when keeping a constant void fraction in the cavity, smaller bubbles are more adequate for
this purpose. This latter could especially be useful in practice. On the other hand, higher
source amplitudes and lower source frequencies are more suitable for the enhancement
of the amplitude of harmonic components amplitudes in the open-field cavity of length
L = 16λ, whereas the modification of void fractions has no influence on this enhance-
ment over the frequency range considered here. Moreover, when keeping a constant void
fraction in this cavity, the optimal bubble size is f0/ f ≈ 5, f0/ f ≈ 7, and f0/ f ≈ 9 for
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maximizing the 2nd, 3rd, and 4th harmonic, respectively. This latter could be particularly
useful in practice.
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