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A B S T R A C T   

In this paper we study the generation and behavior of subharmonics in a bubbly liquid confined in an acoustic 
resonator, through numerical simulations carried out at finite-amplitude acoustic pressure. Several configura
tions in terms of resonator length and driving frequency are considered here. Our results show that these fre
quency components, created from a higher-frequency signal at the source (ultrasound), are due to the 
nonlinearity of the medium at high acoustic-pressure amplitude and to the configuration of the resonator (ge
ometry and boundaries). We also show that they have an amplitude-threshold dependence, which is in 
concordance with the literature. The response of these subharmonics to different sequences of pressure ampli
tudes also reveals the hysteretic nature of the bubbly liquid.   

1. Introduction 

Ultrasound are commonly used in many sectors, such as industry and 
medicine [1]. In particular, ultrasonography is one of the most widely 
used diagnostic techniques, mainly because of its non-invasive nature, 
low cost and wide availability. This method is based on the reception of 
the waves reflected by the interfaces between different media within the 
volume to be evaluated, and takes advantage of the different propaga
tion speeds to create an image. 

When the difference between the propagation speed of the media is 
not very pronounced, strategies must be used to increase this difference 
and obtain sharper images. The main technique is the use of contrast 
agents, introducing a liquid with gas microbubbles into the bloodstream 
[2]. The presence of gas makes the speeds very different and, therefore, 
the quality of the image is hugely enhanced. In addition, because of the 
presence of bubbles, the media become highly nonlinear, causing other 
very interesting effects for diagnostics, such as the generation of new 
frequencies, harmonics and subharmonics [3,4]. 

The use of harmonics to obtain higher image quality, due to their 
better spatial resolution, is not very suitable with the control of the 
process because they can be caused by both bubbles and tissues [5]. 
However, subharmonics are more appropriate, because their existence is 
almost exclusively due to bubbles, and thus allows the control of the spot 

at which the user wants these new frequency components. The use of 
subharmonics to generate images reduces the processing and filtering of 
the signal obtained at the receiver [6,7]. 

A deep knowledge about the behavior and generation of sub
harmonics is a key factor to their use in ultrasound diagnostics. An 
important characteristic of subharmonics is their abrupt appearance 
when control parameters are varied. There is a threshold beyond which 
they are suddenly generated, as it has been studied for an uncoated 
bubble [8–12] and for a coated bubble [13–16]. All these works study 
the dynamics of a bubble excited by a linear continuous pressure source, 
but they do not consider the nonlinear retroaction of the bubble vibra
tions on the acoustic field. 

In this work we consider the simplified case of an homogeneous 
distribution of uncoated bubbles in a liquid contained in a one- 
dimension rigid-walled resonator. Besides its theoretical interest for 
the knowledge about the behavior of nonlinear ultrasound in bubbly 
liquids, the analysis proposed here in this configuration might be helpful 
for diagnosis purpose, since when contrast agents are used, ultrasound 
can interact with structures of different dimensions, or be confined in a 
bubble layer or a bubble cloud, which can be resonant and lead to the 
generation of subharmonics. This study could also be useful in the 
sonochemistry framework to generate subharmonics in a resonant 
sonoreactor, which are acoustic waves of lower frequencies with lower 
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attenuation. 
We study the interaction between the acoustic field, modeled by the 

wave equation accounting for the bubbles, and the bubble vibrations, 
modeled by a Taylor-expanded Rayleigh Plesset equation, recalled in 
Section 2 and solved by means of an appropriate numerical model [17]. 
The rigid-wall condition is appropriate for generating subharmonics in a 
highly nonlinear bubbly liquid medium (see the paragraph right below 
Eq. (5)), as shown in [18]. The results obtained here indicate which type 
of resonator, in terms of geometrical aspects (length), is more conve
nient to generate subharmonics, in Section 3.1, and show that their 
nature is clearly nonlinear, in Sections 3.2.1 and 3.3.1. In Sections 3.2.2 
and 3.3.2 the above-mentioned threshold is observed. In Section 3.4 the 
hysteretical nature of the bubbly liquid is demonstrated through the 
behavior of subharmonics when the pressure amplitude is either 
increased or decreased gradually. Section 4 gives the conclusions of this 
work. 

2. Material and methods 

We consider an ultrasonic field in a one-dimensional cavity of length 
L, filled with a bubbly liquid. We suppose an homogeneous distribution 
of spherical gas bubbles of the same size in the liquid. The initial bubble 
radius, R0g, is assumed small compared to the wavelength of the acoustic 
field, λ. We study the nonlinear interaction of acoustic waves and bubble 

vibrations, which is modeled by a partial differential equations system 
[19–21]: 

pxx − ptt
/

c2
0l = − ρ0lNgvtt, (x, t) ∈ (0, L) × (0, Tl), (1)  

vtt + δω0gvt +ω2
0gv+ ηp = av2 + b

(
2vvtt + (vt)

2 )
, (x, t) ∈ [0, L] × (0,Tl),

(2)  

where p(x, t) is the acoustic pressure and v(x, t) = V(x, t) − v0g is the 
bubble volume variation, x is the one-dimensional space coordinate, t is 
the time, Tl is the last instant of the study, v0g =

4
3 πR3

0g is the initial 
volume of the bubbles, and V(x, t) is the instantaneous volume of a 
bubble located at position x. In Eq. (1) (wave equation accounting for 
the bubbles), c0l and ρ0l are the sound speed and the density at the 
equilibrium state of the liquid, and Ng is the bubble density in the liquid. 
In Eq. (2) (Rayleight-Plesset equation), δ = 4νl/ω0gR2

0g is the viscous 
damping coefficient of the bubbly fluid, in which νl is the cinematic 

viscosity of the liquid, ω0g = 2πf0g =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3γgp0g/ρ0lR2

0g

√
is the isentropic 

resonance frequency of the bubbles, in which γg is the specific heats ratio 
of the gas, p0g = ρ0gc2

0g/γg is its atmospheric pressure, ρ0g and c0g are the 
density and sound speed at the equilibrium state of the gas. The other 
parameters are η = 4πR0g/ρ0l, a = (γg +1)ω2

0g/2v0g and b = 1/6v0g. 

Fig. 1. Pressure amplitude distribution of frequency components in the cavity with ps = 12kPa, f = 300kHz. L = 3λ/4 (a), and L = 5λ/4 (b).  

Fig. 2. Pressure amplitude distribution of frequency components in the cavity with ps = 12kPa, f = 300kHz. L = λ/2 (a), and L = λ (b).  
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Subscripts combining t and x denote partial derivatives. 
Eqs. (1) and (2) are complemented with the following initial 

conditions: 

p(x, 0) = 0, v(x, 0) = 0, pt(x, 0) = 0, vt(x, 0) = 0, x ∈ [0, L]. (3)  

Moreover, the cavity is excited by a time-dependent pressure source s(t)
of amplitude ps and frequency ω = 2πf located at x = 0: 

p(0, t) = s(t) = pssin(ωt), t ∈ [0, Tl], (4)  

and we assume a rigid-wall boundary condition at x = L: 

px(L, t) = 0, t ∈ [0, Tl]. (5)  

This model assumes that bubbles are the only source of attenuation, 
dispersion, and nonlinearity in the fluid, they are monodisperse and 
oscillate at their first radial mode, and surface tension is neglected. The 
translational motion of the bubbles relative to the liquid, under 
Bjerknes, buoyancy, viscous drag and added-mass forces is not consid
ered in this work [20,22]. 

This differential system, Eqs. (1)–(5), is solved using the numerical 
model developed in [17]. This tool is based on the finite-volume method 
in the space dimension and the finite-difference method in the time 
domain. In Section 3, 100 finite volumes per wavelength and 400 time 
points per period of f are used. 

3. Results 

The objective of this section is to study the generation of sub
harmonics from a single frequency by means of the model presented in 
Section 2. The following data for the bubbly liquid are set into the 
model: c0l = 1500ms− 1,ρ0l = 1000kg m− 3, and νl = 1.43 × 10− 6m2s− 1 

for the liquid (water) and c0g = 340ms− 1, ρ0g = 1.29kg m− 3, and γg =

1.4 for the gas (air). We use bubbles of radius R0g = 2.5μm (resonance 
frequency f0g = 1.35MHz), and the bubble density is Ng = 5× 1011m− 3. 
In the following, the final time of the simulations, Tl, is high enough to 
guarantee that the steady regime is reached in the resonator, i.e., Tl =

2000 T in Sections 3.1 (Figs. 1a and 2a), 3.2 and 3.4.1, Tl = 4000 T in 
Sections 3.1 (Figs. 1b and 2b), 3.3 and 3.4.2. A Fast Fourier Transform 

(FFT) is applied to the last 100 T of the acoustic pressure signal to study 
the distribution of its frequency components. 

3.1. Resonators of length L = (2n+1)λ/4 vs. L = nλ/2, n = 1, 2 

In this section the source frequency is f = 300kHz (f/f0g = 0.223) 
and the source amplitude is ps = 12kPa. We use cavities of length L =

3λ/4 and L = 5λ/4 (Fig. 1) vs. L = λ/2 and L = λ (Fig. 2)) to determine 
which type of resonator is the most convenient to generate low fre
quency components in the configuration given via Eqs. (1)–(5). As it can 
be seen, when the resonator length is L = (2n+1)λ/4 (Fig. 1), new fre
quencies do not appear, although the maximum amplitude of the 
fundamental f is very high in both cases, 38.8kPa and 23.3kPa (323% 
and 194% of ps), respectively. However, when the length is L = nλ/2 
(Fig. 2), low and high frequencies appear. When the resonator length is 
L = λ/2 (Fig. 2a), a low frequency f/2 (red line) with maximum 
amplitude 34.2kPa (285% of ps) and a high frequency (among others less 
intense) of large amplitude 3f/2 (blue line), with maximum amplitude 
8.08kPa (68.2% of ps), are generated. When the resonator length is L = λ 
(Fig. 2b), two low frequencies appear, f/4 and 3f/4 (red and green line, 
respectively) with maximum amplitudes 18.3kPa and 11.8kPa (125% 
and 98.4% of ps), respectively. A high frequency, 5f/4 (blue line) with 
maximum amplitude 5.98kPa (49.8% of ps), is also generated. There
fore, the resonators used in the following sections will be chosen within 
the set L = nλ/2. 

3.2. Resonator of length L = λ/2 

3.2.1. Nonlinear behavior 
In this section the origin of the generation of new low-frequency 

components is studied. Fig. 3 shows the dimensionless acoustic pres
sure waveform at the 3/4-length point of the cavity during the entire 
time of the study, Tl = 2000 T, (top) obtained at a low source amplitude, 
ps = 10Pa (Fig. 3a), at a high source amplitude, ps = 12kPa (Fig. 3b), 
and at the same high source amplitude, ps = 12kPa, but by canceling the 
nonlinear contributions in the differential system, i.e., a = b = 0 in Eq. 
(2) (Fig. 3c). As it can be seen, when the amplitude is high and a, b are 
not null, the amplitude in the cavity increases considerably. The corre
sponding frequency decompositions are shown in Fig. 3 (bottom). At low 

Fig. 3. Dimensionless pressure waveform and at the 3/4-length point of the cavity (top) and dimensionless pressure amplitude distribution of frequency components 
in the cavity (bottom) of length L = λ/2 with f = 300kHz during Tl = 2000 T. Low amplitude ps = 10Pa (a), high amplitude ps = 12kPa (b), and ps = 12kPa without 
nonlinear terms in Eq. (2) (c). 
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Fig. 4. Maximum amplitude of f/2-subharmonic pmf/2 in the cavity of length L = λ/2 vs. source amplitude ps, (a) for several source frequencies: f = 200kHz (blue 
line), f = 250kHz (red line), f = 300kHz (green line), f = 350kHz (yellow line), f = 400kHz (black line), (b) once the threshold amplitude pth is exceeded, for one 
frequency: f = 250kHz (red line). 

Fig. 5. Threshold amplitude pth vs. source frequency f for f/2-subharmonic pmf/2 in the cavity of length L = λ/2.  
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source amplitude, ps = 10Pa, there is only one component, the driving 
frequency f (Fig. 3a). At high amplitude, ps = 12kPa, in addition to the 
source frequency, there are new frequency components (Fig. 3b). 
However, the cancellation of the nonlinear contributions in the differ
ential system (a = b = 0 in Eq. (2)) prevents the new frequency com
ponents from being created, even at high source amplitude, ps = 12kPa 
(Fig. 3c). These results clearly demonstrate that the generation of the 
new low-frequency components is a nonlinear effect. 

3.2.2. Study of subharmonic f/2 for several driving frequencies 
In this section we study the generation of the low-frequency 

component at f/2 as a function of the source amplitude ps for several 
values of the driving frequency f ranging between 200 and 400kHz. To 
this purpose, the source amplitude ps is raised from 1kPa to 15kPa, and 
we analyze whether the component f/2 appears or not by observing its 
maximum amplitude pmf/2 . 

As can be seen in Fig. 4a for several frequencies, when the amplitude 
ps is low there is no f/2-component. However, above a threshold value 
pth, the amplitude at f/2 increases suddenly and hugely up to 200% or 
300% of ps. Once this threshold is exceeded, the growth of the 
f/2-component, shown in Fig. 4b for f = 250kHz (which is representa
tive of the five source frequencies studied here), seems to be linear for 
the five source frequencies studied here. 

This behavior (existence of a excitation threshold, linear increase 
beyond the threshold) is the same for the five source frequencies studied 
here. 

Moreover, the threshold value pth increases with the driving fre
quency f, as evidenced in Fig. 5. This threshold amplitude seems to 
roughly follow a slight quadratic deviation from a linear behavior law 
vs. frequency. 

3.3. Resonator of length L = λ 

3.3.1. Nonlinear behavior 
In this section the origin of the generation of new low-frequency 

components is studied. Fig. 6 shows the dimensionless acoustic pres
sure waveform at the mid-point of the cavity during the entire time of 
the study, Tl = 4000 T, (top graphs) obtained at a low source amplitude, 
ps = 10Pa (Fig. 6a), at high source amplitude, ps = 12kPa (Fig. 6b), and 

at the same high source amplitude, ps = 12kPa, but by canceling the 
nonlinear contributions in the differential system, i.e., a = b = 0 in Eq. 
(2) (Fig. 6c). As can be seen, when the amplitude is high and a, b are not 
null, the amplitude in the cavity increases considerably. The corre
sponding frequency decompositions are shown in Fig. 6 (bottom 
graphs). At low source amplitude, ps = 10Pa, there is only one compo
nent, the source frequency f (Fig. 6a). At high amplitude, ps = 12kPa, in 
addition to the driving frequency, there are new frequency components 
(Fig. 6b). However, the cancellation of the nonlinear contributions in the 
differential system (a = b = 0 in Eq. (2)) prevents the new frequency 
components from being created, even at high source amplitude, ps =

12kPa (Fig. 6c). Like in Section 3.2.1, these results clearly demonstrate 
the nonlinear character of the generation of new low-frequency com
ponents in the resonator. 

3.3.2. Study of subharmonics f/4 and 3f/4 for several driving frequencies 
In this section we study the generation of the low-frequency com

ponents at f/4 and 3f/4 as a function of the source amplitude ps for 
several values of the driving frequency f ranging between 200 and 
350kHz. To this purpose, the source amplitude ps is raised from 1kPa to 
15kPa, and we analyze whether the f/4 and 3f/4-components appear or 
not by observing their maximum amplitude, pmf/4 and pm3f/4 , 
respectively. 

As it can be seen in Fig. 7a for several frequencies, when the 
amplitude ps is low no components at f/4 and 3f/4 are observed. 
However, when the amplitude reaches a specific threshold value pth, the 
amplitudes of f/4 and 3f/4 subharmonics increase suddenly and 
abruptly up to 100% or 200% of ps. The respective behaviors of f/4 and 
3f/4 subharmonics above this threshold, shown in Fig. 7b, left and right 
diagrams respectively, for f = 250kHz (which is representative of the 
four source frequencies studied here), differ in two aspects (compare 
solid and dashed curves in Fig. 7a): 1) the growth of the f/4-component 
amplitude seems to be linear and frequency-dependent (different slopes 
vs. frequency f), whereas the growth of the 3f/4-component amplitude 
seems to follow a quadratic deviation from a linear behavior and almost 
frequency-independent; 2) the jump amplitude of the f/4-component at 
the threshold is an increasing function of frequency f, whereas the one of 
the 3f/4-component is only slightly an increasing function of frequency 
f. Moreover, it must be noticed that the threshold amplitude is the same 

Fig. 6. Dimensionless pressure waveform and at the mid-point of the cavity (top) and dimensionless pressure amplitude distribution of frequency components in the 
cavity (bottom) of length L = λ with f = 300kHz during Tl = 4000 T. Low amplitude ps = 10Pa (a), high amplitude ps = 12kPa (b), and ps = 12kPa without nonlinear 
terms in Eq. (2) (c). 
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Fig. 7. Maximum amplitude of f/4 and 3f/4-subharmonics, pmf/4 (solid lines) and pm3f/4 (dashed lines), in the cavity of length L = λ vs. source amplitude ps, (a) for 
several source frequencies: f = 200kHz (blue line), f = 250kHz (red line), f = 300kHz (green line), f = 350kHz (yellow line), (b) once the threshold amplitude pth is 
exceeded, for one frequency: f = 250kHz (solid red line for f/4-subharmonic and dashed red line for 3f/4-subharmonic). 

Fig. 8. Threshold amplitude pth vs. source frequency f for both f/4 and 3f/4-subharmonics, pmf/4 and pm3f/4 , in the cavity of length L = λ.  
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for both frequency components. This suggests that the nonlinear sub
harmonic generation mechanism is strongly conditioned by the geom
etry of the resonator. 

This behavior (existence of a excitation threshold, linear or slightly 
quadratic behavior beyond the threshold), observable for both sub
harmonics, is the same for the four source frequencies studied in this 
section. 

Moreover, like in Section 3.2.2, the threshold value pth increases with 
the driving frequency f, as evidenced in Fig. 8 for both subharmonics. 
Again this threshold amplitude seems to roughly follow a slight 
quadratic deviation from a linear behavior law. 

3.4. Hysteretic character of subharmonic generation 

In this section we study the hysteretic character of the subharmonic 
generation by refining the analysis of Sections 3.2 and 3.3, in the two 
cases L = λ/2 and L = λ, respectively. To this end, the pressure field in 
the cavity is computed twice, by stepwize increasing and stepwize 
decreasing the source amplitude ps (using steps of 1kPa), the initial 

conditions considered for each step being the final conditions of the 
precedent one, instead of the generic initial conditions Eq. (3). We thus 
examine whether the direction in which the source amplitude is varied 
has an effect on the behavior of the subharmonics or not, and whether 
their appearance is hysteretic or not. 

3.4.1. Resonator of length L = λ/2 
Fig. 9 represents the maximum amplitude of the f/2-subharmonic 

(pmf/2 ) obtained at the driving frequency f = 300kHz in the resonator of 
length L = λ/2 (Sections 3.2) (i) when the source amplitude ps is 
increased starting from Eq. (3) (solid blue line), (ii) when the amplitude 
is increased stepwise (dotted red line), and (iii) when the amplitude is 
decreased stepwise (dashed green line). It can be seen that the threshold 
for the subharmonic disappearance in Case (iii) (pthd = 3kPa) is different 
from the appearance threshold in Case (i) (pth = 10kPa). However, 
above these thresholds the behavior of pmf/2 remains the same in both 
cases. Case (ii) does not lead to the formation of the subharmonic, which 
would probably require higher amplitudes that cannot be handled by 

Fig. 9. Maximum amplitude of f/2-subharmonic pmf/2 for f = 300kHz in the cavity of length L = λ/2 when the source amplitude ps is (i) increased starting from Eq. 
(3) (solid blue line), (ii) increased stepwise (dotted red line), and (iii) decreased stepwise (dashed green line). 

Fig. 10. Maximum amplitude of f/4-subharmonic pmf/4 for f = 300kHz in the cavity of length L = λ when the source amplitude ps is (i) increased starting from Eq. (3) 
(solid blue line), (ii) increased stepwise (dotted red line), and (iii) decreased stepwise (dashed green line). 
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our model. Though Case (ii) is not conclusive, the comparison of Cases 
(i) and (iii) allows us to conclude about the existence of an hysteretic 
character of f/2-subharmonic generation. 

3.4.2. Resonator of length L = λ 
Figs. 10 and 11 represent the maximum amplitude of the f/4-sub

harmonic (pmf/4 ) and the 3f/4-subharmonic (pm3f/4 ), respectively, for a 
driving frequency f = 300kHz in the resonator of length L = λ (Sections 
3.3) (i) when the source amplitude ps is increased starting from Eq. (3) 
(solid blue line), (ii) when the amplitude is increased stepwise (dotted 
red line), and (iii) when the amplitude is decreased stepwise (dashed 
green line). It can be seen that the threshold for the disappearance of 
both subharmonics in Case (iii) (pth = 3kPa) and the threshold for their 
appearance in Case (i) (pth = 9kPa) and in Case (ii) (pth = 17kPa) are 
different. These three thresholds have the same values for both f/4 and 
3f/4-subharmonics. However, above these thresholds the amplitudes 
pmf/4 and pm3f/4 remains the same in the three cases. The comparison of 
Cases (i), (ii), and (iii) allows us to conclude about the existence of an 
hysteretic character of f/4 and 3f/4-subharmonics generation. 

As seen before [23], a change in acoustic pressure amplitude mod
ifies the characteristics of the bubbly medium (the average size of the 
bubbles, i.e., the void fraction in the liquid, is pressure amplitude 
dependent) and the resonance of the cavity containing it. Following this 
result, the threshold effect of a subharmonic is most likely due to the 
sudden match of the subharmonic frequency and the cavity resonance. 
The hysteretical behavior of this subharmonic may rely on the fact that 
the modifications of those characteristics of the medium are different 
depending on whether that pressure amplitude is raised or lowered. 
Further investigations are needed for a more comprehensive exploration 
of these points. They are part of our ongoing work. 

4. Conclusions 

We have carried out numerical experiments to study the generation 
of subharmonics in a bubbly liquid from a single-frequency ultrasonic 
driving signal in a one-dimensional resonator. The numerical simula
tions rely on a nonlinear mathematical model that couples the bubbles 
oscillations and the acoustic field. It has been shown via the model used 
here that the creation of subharmonics is a nonlinear effect and that the 
resonators that better suit this purpose in the boundary configuration 
assumed in this paper are those which length is a multiple of L = λ/2. 
The amplitude-threshold for the creation of subharmonics has been 
observed. The hysteretic nature of subharmonic generation in bubbly 

liquids has also been shown through the behavior of subharmonic 
components when different sequences of pressure amplitudes are 
applied at the source, which is the main point of this paper, since it has 
hardly been mentioned in the literature. 
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