
Controlling two-dimensional chaotic transients with the safety

function
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Abstract

In this work we deal with the Hénon and the Lozi map for a choice of parameters where they

show transient chaos. Orbits close to the chaotic saddle behave chaotically for a while to eventually

escape to an external attractor. Traditionally, to prevent such an escape, the partial control

technique has been applied. This method stands out for considering disturbances (noise) affecting

the map and for finding a special region of the phase space, called the safe set, where the control

required to sustain the orbits is small. However, in this work we will apply a new approach of the

partial control method that has been recently developed. This new approach is based on finding a

special function called the safety function which allows to automatically find the minimum control

necessary to avoid the escape of the orbits. Furthermore, we will show the strong connection

between the safety function and the classical safe set. To illustrate that, we will compute for the

first time, safety functions for the two-dimensional Hénon and Lozi maps, where we also show the

strong dependence of this function with the magnitude of disturbances affecting the map, and how

this change drastically impacts the controlled orbits.
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I. INTRODUCTION

Chaotic transient behavior [1, 2] usually arises when due to the change of a parameter

of the system, a chaotic attractor collides with his own boundary basin causing a boundary

crisis. The chaotic set becomes a nonattracting chaotic set (i.e chaotic repellor or a chaotic

saddle),and almost all orbits in the neighborhood of the nonattracting chaotic set are free

to escape to an external attractor. If in addition we consider that the dynamics are affected

for some disturbances (noise), all trajectories sooner or later eventually escape.

Traditionally, to avoid the escape of the orbits and sustain them around the nonattracting

chaotic set, we have used the classical partial control method. This technique is applied on

maps and is based on finding certain special set in the phase space, called the safe set,

where the control needed is small. Unlike other control methods [3–6],), partial control is

designed from the ground up to deal with disturbances. Furthermore, it takes into account

the magnitude of the disturbances, to find the best safe set. One of the more remarkable

result is that the control used to sustain the orbits in the safe set, is always smaller than

the magnitude of disturbances affecting the orbits.

However, in this work we will not use the classical approach of the partial control method

based on finding a safe set. Instead, we will use the new approach based on the computation

of a special functions called the safety function from which we can obtain the minimum

control necessary to sustain the orbits and also the minimum safe set. In this sense, this

new approach is a generalization of the classical partial control method.

In the next sections we will illustrate the application of this new approach based on the

computation of the safety function. First with the one-dimensional tent map, and then, for

the first time, with the two-dimensional Hénon and Lozi map.

II. THE PARTIAL CONTROL: FROM THE CLASSICAL APPROACH TO THE

NEW APPROACH

The first step to apply the partial control technique is to define a region Q in the phase

space containing the chaotic saddle. In this region Q, we assume that the dynamics can be

described by the following map:
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qn+1 = f(qn) + ξn + un, with |ξn| ≤ ξ0, |un| ≤ u0 < ξ0,

where q describes the state vector of the system, ξn is the disturbance affecting the map

and we assume it is limited by an upper bound value ξ0. The control un is applied every

iteration of the map with the knowledge of f(qn) + ξn. This control is also limited by the

upper bound value u0, which can be previously fixed by the controller.

The points q ∈ Q that can be sustained in Q without exceed the control u0, defines the

safe set (which is a subset of Q). To do that, there is an algorithm called the Sculpting

Algorithm [7, 8]. This algorithm takes as input, the map f defined in Q and the values

ξ0 and u0, and compute the corresponding safe set. However if the value u0 introduced is

too small, no safe set exists. Therefore to find the minimum u0 value, we have to gradually

increasing u0 until the safe set appears. This task can be rather unpractical since u0 is

manually set for every computation. In a recent work [9], it was presented a new approach

of partial control, that automatically computes the minimum u0 value. This approach takes

as input the map f defined in Q and the value ξ0, to then compute a special function in the

region Q called the safety function U . The minimum of this function is called u0. The set

of points q ∈ Q that satisfy U(q) = u0 define what we call the minimum safe set. Transient

chaotic orbits can be sustained in the minimum safe set forever by applying every iteration

a control |un| ≤ u0 < ξ0. The algorithm to compute the safety function is presented and

explained in [9]. To make this work self-contained and make it easier for the reader, we also

include the algorithm at the end of this manuscript, in the Appendix.

Before illustrating, for the first time, the application of this control method in two-

dimensional maps, we believe that it would be helpful for the reader an initial example

using a one-dimensional map to show how this method works. To do that we will take a

previous work presented in [10] where we use the well known tent map slope-three given by:

xn+1 =

⎧
⎨

⎩
µxn + ξn + un for xn ≤ 1

2

µ(1− xn) + ξn + un for xn > 1
2

(1)

This map with µ = 3, exhibits transient chaos in the interval Q = [0, 1] (see Fig. 1a).

We consider in this case that that orbits of this map are affected by disturbances ξn ≤

3



ξ0 = 0.06. then, we compute the corresponding safety function shown in Fig. 1b in red line.

As shown,the safety function has 8 minima with the value u0 = 0.04. The minimum safe

set corresponds with the location of this minima indicated in Fig. 1b by the small black

pieces. Finally, orbits starting in the the safe set can be sustained inside it by applying

every iteration a control |un| ≤ u0 = 0.04. In Fig. 1b, 100 iterations of a controlled orbit

(blue line) is represented and the corresponding 100 |ξn| disturbances and |un| controls in

Fig. 1c.

III. PARTIAL CONTROL APPLIED TO THE HÉNON MAP AND THE LOZI

MAP

In previous works [7, 11–13], safe sets have been computed from 1D, 2D and 3D maps, by

applying the classical algorithm described in [7, 8]. However none of these safe sets have been

computed by means of the safety function. So far, the safety function approach presented

in [9], has been mainly applied to one-dimensional maps as the tent map presented before.

In this work, we want to show for the first time the computation of the safety functions

in two-dimensional maps. The extra dimension just adds more computation since now

the safety function will be a two-dimensional surface U(qx, qy). However the algorithm to

compute the safety function (see the Appendix) remains the same since it applies to any

dimension.

To illustrate the control method, we choose the well known Hénon map and the Lozi map

for a choice of parameters where they show transient chaos. In both cases we will follow the

same procedure: First define the region Q containing the chaotic saddle and set the upper

bound of disturbance xi0 affecting the map in Q. Next, compute the corresponding safety

function. Finally obtain the minimum safe set and control the orbits to remain in it.

A. Application to the Hénon map

In 1976 the French astronomer Michel Hénon introduced the map later named after him,

defined as:

xn+1 = a− byn − x2
n

yn+1 = xn.
(2)
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Figure 1. Partial control method. The slope-three tent map is represented in this figure. The

map is affected by a uniform disturbance bounded by ξ0 = 0.06. The small dots help to visualize

the intensity and distribution of the disturbance. (a) An uncontrolled orbit that escapes from the

interval Q = [0, 1] after a few iterations. (b) In red, the safety function that has 8 minima with

value u0 = 0.04. These 8 minima defines the safe set, which is represented with the black pieces at

the bottom. In blue, a controlled orbit is shown. This controlled orbit starts in the point x0 = 0.3

that belongs to the safe set. At every iteration of the map, the orbit is forced to pass through

the safe set to remain forever in Q = [0, 1]. (c) Disturbances (gray) |ξn| ≤ ξ0 = 0.06 affecting the

controlled orbit and controls (blue) |un| ≤ u0 = 0.04 applied during the first 100 iterations of the

map.

Hénon proved that this is the most general form of quadratic maps, which shows transient

chaos for a wide range of parameters a and b. Here we have have chosen the parameter values

a = 6 and b = 0.4. For these values, the trajectories with initial conditions in the square

Q = [−4, 4]×[−4, 4] have a short chaotic transient, before finally escaping this region towards
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a) b)

Figure 2. The 2D safety function for the Hénon map. The bound of a disturbance is

ξ0 = 0.20. a) The safety function was computed in the square Q = [−4, 4]× [−4, 4] using a grid of

1000 × 1000 points. The safety function takes 18 iterations to converge and it has the minimum

value min(U) = 0.15 = u0. The function is represented logarithmic to enhance the visualization.

b) The points q ∈ Q that satisfy U(q) = 0.15 define the safe set (in blue). We also represent 10000

iterations of a controlled orbit marked with the red dots.

infinity.

The corresponding Hénon map including the disturbance and the control is:

xn+1 = a− byn − x2
n + ξxn + ux

n

yn+1 = xn + ξyn + uy
n.

(3)

where we choose the bound of disturbance ξ0 = 0.20 so that ∥ ξxn, ξ
y
n ∥≤ ξ0. The control is

also limited so that ∥ ux
n, u

y
n ∥≤ u0, where the minimum u0 possible, will be defined by the

minimum value of the safety function. Below this value, no safe set exists.

The corresponding safety function is shown in Fig. 2 a, where it has been plotted in

logarithmic scale for a better visualization. For this case the minimum value is found to be

min(U) = 0.15 = u0. The points q ∈ Q with U(q) = 0.15 defines the minimum safe set,

which is represented in the Fig. 2 b.

Finally we use the safe set to control the orbits inside it. Every iteration of the map, the
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control (ux
n, u

y
n) with ∥ ux

n, u
y
n ∥≤ 0.15 is applied to put the orbit back in the nearest safe

point. A controlled orbit of 10000 iterations is represented in Fig. 2 b by the red dots.

B. Application to the Lozi map

A piecewise linear version of the Hénon map was given by the French mathematician

René Lozi in the form:

xn+1 = 1− a|xn|+ byn

yn+1 = xn.
(4)

For the choice of parameters a = 2, b = 0.5 the orbits in the square Q = [−4, 4]× [−4, 4]

behave chaotic for a while to eventually escape from it. In order to avoid this escape we will

applied the partial control technique following the same steps as with the Hénon map. In

this case the controlled maps is the following:

xn+1 = 1− a|xn|+ byn + ξxn + ux
n

yn+1 = xn + ξyn + uy
n (5)

with ∥ ξxn, ξ
y
n ∥≤ ξ0 and ∥ ux

n, u
y
n ∥≤ u0.

To compute an example, we consider the upper bound of disturbance ξ0 = 0.050. Then we

compute the safety function U shown in Fig. 3 a, where the function is plotted logarithmic for

a better visualization. The minimum of U is found to be min(U) = 0.035 = u0. Therefore,

the minimum safe set is the set of point q ∈ Q for which U(q) = 0.035. This safe set is shown

in the in Fig. 3 b, where we also draw 10000 iterations of a controlled orbit (red points).

IV. SAFE SET VARIATION WITH ξ0

The partial control method takes advantage of the fractal structure of the non-attracting

chaotic set responsible for the chaotic transients. As shown in the two-dimensional maps

used here, the safe sets resembles the coarse grained structure of the stable manifold of

the chaotic saddle. The grain size is mainly determined by the magnitude of disturbance

affecting the map. Smaller values of ξ0 leads to finer safe sets like a Cantor set. In Fig

4, different safe sets for the Hénon and the Lozi map has been computed. Top safe sets
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a) b)

Figure 3. The 2D safety function for the Lozi map. The bound of a disturbance selected is

ξ0 = 0.050. a) The safety function was computed in the square Q = [−4, 4] × [−4, 4] using a grid

of 1000× 1000 points. The safety function takes 23 iterations to converge and it has the minimum

value min(U) = 0.035 = u0. The function is represented logarithmic to improve the visualization.

b) By taking the points q ∈ Q that satisfy U(q) = 0.035 we obtain the safe set (blue). We also

represent 10000 iterations of a controlled orbit marked with the red dots.

correspond to the Hénon map and bottom figures to the Lozi map. In both cases the bound

of disturbance ξ0 affecting the map, decreases from left to right figures.

It each safe set of Fig 4, it has been also plotted a controlled orbits consisting of 10000

iterations. We can observe that any starting orbit in the safe set, quickly converges to a

smaller region called the asymptotic safe set [8], that resembles the coarse grained structure

of the chaotic saddle. Once the controlled orbit enters in the asymptotic safe set, it remains

inside forever..

Finally, we want to point out that, although the safe sets computed here were the smaller

possible, there is no restriction to compute safe sets with bigger values of u0. These safe

sets will be a fattened version of the minimum safe set. This feature can be of interest if we

want that the controlled orbit visit more points of the region Q, at the expense of applying

bigger controls |un| ≤ u0.
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Figure 4. Safe sets for different ξ0. The top figure correspond to safe sets computed for the

Hénon map affected by different upper disturbance values ξ0, that decreases from left to right. On

the bottom, the safe sets corresponding to the Lozi map. All the safe sets are minimum with the

minimum bound of control u0 < ξ0 indicated on the top. Below this control value, no safe set

exists. Note that the safe sets computed with biguer ξ0, consist of a few and fat strips, while the

safe sets computed with smaller ξ0, are made of many and thin strips. This is very clear in the

case of the Hénon safe sets where we have 4,8 and 16 strips respectively. The red dots plotted over

each safe set correspond to 10000 iterations of a controlled orbit.

V. CONCLUSIONS

In this work we have shown the application of the new approach of partial control tech-

nique based on the safety functions. This technique is applied to maps showing transient

chaos with the goal to avoid the escape of the orbits from the non-attractive chaotic set.
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For the first time, we applied this technique to the two-dimensional Hénon map, and the

Lozi map, both affected by disturbance that is considered bounded. In each case, we define

a region Q containing the chaotic saddle, where we compute the safety function. Then we

have extracted the minimum safe set, where the orbits can be sustaining using a minimum

control bound. Finally we have shown how the minimum safe sets change depending on the

bound of disturbance affecting the map, which has a drastic impact in the controlled orbits.
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Appendix: The safety function algorithm

Notation:

i ≡ index of the starting point q[i], i = 1 : N where N = total number of grid points in Q.

s ≡ index of the disturbance ξ[s], s = 1 : M where M = number of disturbed images.

j ≡ index of the arrival point q[j], j = 1 : N .

Map with the index notation: qn+1 = f(qn) + ξn + un → q[j] = f
(
q[i]

)
+ ξ[s] + u [i, s, j].

Computation of the safety function U :

- Initially set U0 [j] = 0, ∀j = 1 : N, k = 0.

while Uk+1 ̸= Uk do

for i = 1 to N do

for s = 1 to Mi do

for j = 1 to N do

u [i, s, j] =
∣∣∣ f

(
q[i]

)
+ ξ[s]− q [j]

∣∣∣ ◃ Distance between the disturbed image

f
(
q[i]

)
+ ξ[s] and the arrival point q [j].

Note that the u [i, s, j] values remain un-

changed every iteration of the while loop

so compute them once and save them.

u∗ [i, s, j] = max
j

(
u[i, s, j], Uk[j]

)

end for

u∗∗ [i, s] = min
j

(
u∗ [i, s, j]

)

end for

Uk+1[i] = max
s

(
u∗∗ [i, s]

)

end for

k = k + 1

end while

Compact formula: Uk+1[i] = max
1≤s≤Mi

(
min

1≤j≤N

(
max

j
( u[i, s, j], Uk[j] )

))
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