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A B S T R A C T

In this paper, we define a novel methodology for analyzing soccer matches and teams using spatial multilayer
networks. Departing from a segmentation of the pitch into ℎ × 𝑣 regions, we create 2-layer networks that
capture the exchange of ball possessions between teams throughout a match. To assess the significance of each
node, we employed eigenvector centrality measures within the constructed multilayer network. Furthermore,
we introduce three additional metrics, namely the leakage, recovery and switching factor, which quantify the
possession transitions between layers. Finally, we apply our methodology to analyze the performance of Spanish
soccer teams over an entire season, using the aforementioned multilayer parameters, and discuss the relation
with the playing style and ranking of soccer teams.
1. Introduction

Network Science has emerged as a powerful framework for un-
derstanding complex systems across various domains, including social
networks, biological networks, and technological networks [1]. Re-
cently, researchers have recognized the relevance and potential of
Network Science in the realm of sports analysis, where the study of
sports encompasses a myriad of interconnected components such as
team dynamics, player interactions, and strategic decision-making [2,
3]. These components can be effectively examined and understood
using network-based approaches, shedding light on the underlying
structures and dynamics that shape sporting events. In this way, net-
work science has become an increasingly important tool for studying
the dynamics of relational structures in sports teams during practice
and competition [4].

The application of network science in sports has led to the emer-
gence of new fields, such as network physiology of exercise (NPE),
which focuses on understanding how physiological states and func-
tions emerge and improve the efficacy of exercise in health and sport
performance [5]. Social network theory and analysis have also been
used to gain insights into advantageous techniques and insights that
can be offered in sport management and organizational behavior [6,7].
Furthermore, network analysis has allowed for the identification of re-
search hotspots in sports science and the exploration of the relationship
between knowledge networks and scientific performance [8].

∗ Corresponding author at: Complex Systems Group, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain.
E-mail address: javier.buldu@urjc.es (J.M. Buldú).

In the context of a soccer match, the dynamics and outcomes are
intricately intertwined with the interplay between two teams, repre-
senting two distinct networks. Hence, to comprehensively understand
team performance, it is crucial to analyze the passing network of a
team in conjunction with the network of the opposing team [3,9].
This approach allows for drawing insights into how a team adapts its
gameplay in response to the opponent and the topological structures
that contribute to superior outcomes. Notably, studies in other domains
focusing on network-of-networks have revealed that when networks
establish connections, essential properties of the ensemble system un-
dergo modifications [10,11]. However, a multilayer description of a
football match, encompassing the interaction of two layers representing
the internal passes of each team, remains absent. Such a framework
would be pivotal in unraveling the evolution and adaptability of teams
throughout a match, as these aspects cannot be comprehended with-
out considering the opponent’s responses. The competing nature of
the two team-networks, driven by the pursuit of a shared resource
and objectives that inherently entail interaction and competition with
other networks, suggests that Network Science can offer novel per-
spectives to comprehend and forecast optimal strategies [12]. Previous
research consistently demonstrates that ball possession cannot guaran-
tee winning in the game [13,14]. However, the team with organized
and continuous passing actions can be purposefully executing tactical
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objectives and setting the pace and rhythm of the game [15–17].
Furthermore, there has been an excessive focus on high-percentage
ball possession or low-percentage ball possession, while neglecting the
network spatial value of collective patterns of ball possession and
ball transitions [18–20]. Considering the game’s nature, team per-
formance during a match is influenced by the interactions between
the opposing sides. Traditional research has placed a high focus on
static performance indicators while overlooking the mechanisms of
mutual interaction within performance behaviors. In a soccer game, the
attacking team aims to create attacking space and scoring opportunities
through continuous team tactical actions, while the defending team
seeks to constantly restrict the opponent’s performance through off-
the-ball tactical actions. In pursuit of this goal, the tactical relationship
between the attacking and defending sides in a soccer match exhibits
the physical phenomenon of coupled oscillators [21,22]. The oppos-
ing sides engage in self-organizing activities, interacting with varying
intensity and across different temporal and spatial scales [23]. What
is even more significant is the oversight of the tactical behavioral
interaction during transition play in matches. Hence, the challenge for
coaches is how to train players and teams to understand the complexity
of the game and adapt their behaviors to the constantly changing and
unpredictable complex and dynamic match environment. Incorporating
a multilayer network perspective into football analysis holds promise
for advancing our understanding of team dynamics and enhancing
strategy development within the sport. With this target in mind, in
this paper, we introduce a novel methodology to construct and analyze
multilayer soccer networks. Departing from a spatial partition of the
pitch into ℎ × 𝑣 regions, we construct the pitch passing networks,

hich capture the structure of the passing patterns elaborated by each
eam [23]. For a given match, two pitch passing networks are obtained
one for each team), which correspond to each of the two layers of
multilayer network. Next, we include the inter-layer links detecting

he ball exchange between teams and finally analyze the structure of
he multilayer network with different centrality metrics. Importantly,
e introduce three new network parameters to evaluate the ability of

etaining and recovering the ball by each team.

. Materials and methods

.1. Dataset description

The dataset used were provided by Opta [24–26] and encompassed
omprehensive pass data of all teams participating in the Spanish
ational league (‘‘La Liga’’) during the 2018/2019 season. The dataset
omprises a total of 380 matches, with each of the 20 teams of the
ompetition playing 38 matches. The dataset encompasses vital infor-
ation of each pass made during the competition, including (i) the
layer responsible for executing the pass, (ii) the player who received
he pass, (iii) the positional coordinates representing the position of
he sender and receiver players and (iv) the timestamp indicating the
recise moment when the pass occurred.

.2. Multilayer network construction

We use the same methodology of [23] to create the pitch-passing
etworks of each team. We divide the pitch into 𝑁 = ℎ × 𝑣 patches;
here 𝑁 is the number of nodes (pitch areas), h is the number of
orizontal subdivisions (X direction) of the pitch and v is the number
f vertical subdivisions (Y direction). Without loss of generality, we set
= 4 and 𝑣 = 5, thus leading to a division of the pitch into 𝑁 = 20

egions. Each region will be a node of a network. A link from node 𝑖
o node 𝑗 is created when a pass is made from region 𝑖 to 𝑗 and we

assign a weight that quantifies the total number of completed passes
at each direction. In this way, we obtain weighted-directed networks
with an adjacency matrix that is not symmetric. Note that each team
has its own pitch network. Next, we assign the network of the home
2

team to be the layer-1 of a 2-layer multilayer network, while the away
eam’s pitch network is considered layer-2. It is crucial to label the
odes of the multilayer network adequately. The 𝑁 regions of each
itch network will be projected into the 2 × 𝑁 nodes of a 2-layer
etwork. In this multilayer network, the first 𝑁 nodes correspond to
he 𝑁 regions of the pitch where the home team has the ball (home
eam pitch network). Nodes ranging from 𝑁 + 1 to 2𝑁 correspond to
egions of the pitch where the possession belongs to the away team
away team pitch network). By defining the node number in this way,
ode 𝑖 and node 𝑁 + 𝑖 correspond to the same region of the pitch but
ith possessions to the home (𝑖) or away (𝑁 + 𝑖) teams. Finally, we

reate the inter-layer links by accounting for the actions where teams
ose possession, and the ball goes to the other team. For example, a
ass that is started from region 𝑖 by the home team and is intercepted
t region 𝑗 by the away team will create an inter-layer link from node
to node 𝑁 + 𝑗. In this way, intra-layer and inter-layer links constitute
he elements of G, a multilayer pitch passing network of a soccer match.
ote that the supra-adjacency matrix of G has size 2𝑁 × 2𝑁 and it is, by
onstruction, non-symmetrical. See Figs. 1–2 for two different examples
f multilayer pitch networks.

.3. Parameter definition

efinition 1 (Eigenvector Centrality). A measure of the importance of a
ode in a network. It is based on the concept of eigenvectors, which are
special set of vectors that do not change direction when multiplied

y a matrix. In the context of networks, the eigenvector centrality of
node is proportional to the sum of the eigenvector centralities of its

eighbors (that is, nodes with high eigenvector centralities are those
hich are connected to important nodes which are, in turn, connected

o important nodes, and so on). The formal definition of eigenvector
entrality is given by the equation:

𝐱 = 𝜆𝐱 (1)

where 𝐀 is the adjacency matrix of the network, 𝐱 is the eigenvector
orresponding to the largest eigenvalue of 𝐀, and 𝜆 is the corresponding
igenvalue. In the context of our analysis, 𝐀 can be either the adjacency
atrices of the pitch passing networks of the home and away teams (𝐀𝟏

nd 𝐀𝟐, respectively) or the supra-adjacency matrix of the match, 𝐆.

efinition 2 (Leakage). Percentage of possessions that goes to the rival
eam at 𝑗th zone of the pitch:

𝑖
𝑗 =

𝑃 ∗𝑖
𝑜𝑢𝑡,𝑗

𝑃 𝑖
𝑖𝑛,𝑗

(2)

where 𝑃 𝑖
𝑖𝑛,𝑗 is the total in-degree of the area 𝑗 of layer 𝑖, with

𝑖 ∈ [1, 2], which joins (i) the inner in-degree of the layer of each zone
(that is the number of passes at zone 𝑗) plus (ii) the inter-layer in-degree
𝑃 ∗𝑖
𝑖𝑛,𝑗 accounting the balls that are regained from the rival team. 𝑃 ∗𝑖

𝑜𝑢𝑡,𝑗 is
he inter-layer out-degree of zone 𝑗 (the balls that are lost to the rival
eam).

efinition 3 (Recovery). Percentage of balls that have been recovered
rom the rival at 𝑗th zone of the pitch:

𝑖
𝑗 =

𝑃 ∗𝑖
𝑖𝑛,𝑗

𝑃 𝑖
𝑖𝑛,𝑗

(3)

where 𝑃 𝑖
𝑖𝑛,𝑗 is the total in-degree of the area 𝑗 of layer 𝑖 and 𝑃 ∗𝑖

𝑖𝑛,𝑗 is
he inter-layer in-degree of zone 𝑗 (the balls that are recovered from
he rival).

efinition 4 (Switching Factor). The relative influence of the leakage
and recovery of a team compared to the total number of passes:

⟨𝑆⟩𝑖 = 1
2
∑

(

𝑃 ∗𝑖
𝑖𝑛,𝑗 + 𝑃 ∗𝑖

𝑜𝑢𝑡,𝑗
𝑖

)

(4)

𝑗 𝑃𝑎𝑠𝑠𝑒𝑠𝑗
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Fig. 1. Multilayer network of the match between Real Madrid (home team, top layer) and Atlético de Madrid (away team, bottom layer). Inter-layer links account for the ball
losses between teams. Green inter-links indicate ball transfers from the away team (bottom) to the home team (top), while red inter-links represent the reverse direction. Node size
corresponds to their eigenvector centrality, and link width is proportional to the ball transfer between nodes, which can be either passes or changes of possession. The heatmap
on the left represents the leakage parameter of each zone of the pitch. On the right, the heatmap accounts for the recovery parameter. Arrows indicate the attacking direction. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
where 𝑃𝑎𝑠𝑠𝑒𝑠𝑖𝑗 stands for the in-degree of pitch zone 𝑗, and 𝑖 ∈ [1, 2]
indicates what team is considered, with 𝑖 = 2 for the home team and
𝑖 = 2 for the away team.

2.4. Statistical analysis

The z-score was employed to quantify the deviation of the parame-
ters observed for a specific team relative to the mean values observed
across all teams. In statistics, the z-score (also known as a standard
score) is a measure that describes a value’s relationship to the mean
of a group of values. It represents the number of standard deviations
a given data point is from the mean of the dataset. Z-scores are used
to compare data points from different datasets or to identify outliers
within a single dataset. The z-score is calculated using the following
formula:

𝑧 =
𝑥 − 𝜇
𝜎

Where 𝑧 is the z-score, 𝑥 is the value of the data point, 𝜇 is the mean
of the dataset and 𝜎 is the standard deviation of the dataset.

3. Results

First, we obtained the networks 𝐺𝑖 for each of the 𝑖 matches of the
competition, with 1 ≤ 𝑖 ≤ 380, and computed the eigenvector centrality
of each node (region of the pitch) of the network and its correspond-
ing leakage, recovery and switching parameters. For example, Fig. 1
shows the multilayer network corresponding to the match between
Real Madrid and Atlético de Madrid. Layer 1 (top) corresponds to Real
Madrid (home team), and layer 2 (bottom) to Atlético (away team). The
width of the intra- and inter-layer links is proportional to the number
of passes between regions. Inter-links going from the bottom to the top
layer are plotted in green, while red inter-links go from the top to the
bottom layer. To ease the visualization of the network, only links with
a weight higher than one are plotted (i.e., with two or more passes).
The size of the nodes is proportional to their eigenvector centrality
(i.e., importance) in the multilayer network. Finally, the color of the
regions is proportional to either the leakage (Fig. 1, left) or the recovery
3

(Fig. 1, right) parameters, according to the color coding shown in the
color bars of Fig. 1.

We can observe how the top layer (Real Madrid) has more intra-
layer connections than the bottom one. Furthermore, the passing net-
work of Real Madrid is densely connected at regions close to the center
but over the opponent’s part of the pitch. All these signals reveal the
dominance of Real Madrid during that match, who accumulated 66%
of possession. We can also observe how the majority of balls lost by
Real Madrid were close to Atlético’s box, as indicated by the red links
going to the bottom layer. Reversely, Atlético’s losses of possession
were mainly distributed at regions of the pitch close to Real Madrid’s
box (green inter-layer links).

The eigenvector centrality reinforces the idea of Real Madrid’s dom-
inance. Node 24 is the one accumulating more centrality (importance),
but furthermore, we can observe how eigenvector centrality is basically
distributed over the nodes of the top layer. Concerning the leakage
parameter (colors over the pitch on the left plot), regions of the pitch
closer to the opponent’s goal are the ones accumulating more leakage.
While in general, the central regions of the pitch are the ones with
lower values. It is worth noting how in the case of Real Madrid, the
leakage at the center of the opponent’s goal is not that high. The reason
is the low number of passes that arrive into this region since when
the ball enters, it is controlled by Atlético in most cases. This fact is
captured by the recovery parameter (right plot), where we can see how
Atlético de Madrid has the highest value at the center of its box.

3.1. Multilayer networks and node centrality in soccer

Our first aim was to understand what regions of the pitch play a
crucial role in the multilayer passing networks obtained from soccer
datasets. With this objective in mind, we constructed the 𝐺𝑖 networks
of the 380 matches of the season and averaged them, considering all
teams. The result is shown in Fig. 2, where the top layer corresponds to
the home teams of the 380 matches, and the bottom layer contains the
away teams. We computed the eigenvector centrality of each region of
the pitch for the home and away teams and, second, the corresponding

leakage and recovery parameters (left and right plots, respectively).
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Fig. 2. Average multilayer networks encompassing all teams in the league. Dashed links are created when the possession of the ball changes from one team to another. Green
links indicate ball transfers from the away team (bottom layer) to the away team (top layer), while red links represent the reverse direction. Node size corresponds to eigenvector
centrality. The heatmap of the figure on the left represents the leakage parameter of each pitch zone. On the right, the heatmap accounts for the recovery parameter. Arrows
indicate the attacking direction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Average leakage (top plots) and recovery (bottom plots) parameters for all teams in the league. In the left plots, bars are sorted from the pitch zone with the highest
leakage/recovery to the lowest one. The right plot contains the color map of the leakage (top) and recovery (bottom) values.
Fig. 2 shows the nodes with a size that is proportional to their im-
portance (eigenvector centrality) in the multilayer network. We can
observe that regions at the pitch’s center accumulate more importance,
while regions at the corners and the lateral of the boxes are those
with the lowest importance. This result is somehow expected since the
number of passes in the lateral regions is lower. Interestingly, the region
where the goalkeeper stays the majority of the time also has a high
eigenvector centrality. This is due to the passes made by goalkeepers,
which normally begin in front of their goals. Another interesting result
of Fig. 2 is that the importance of the pitch regions is highly symmetric
with regard to the layers, indicating that the effect of playing at home
or away is not relevant in the distribution of eigenvector centrality.
4

The analysis of the leakage (left plot) indicates that the center of
the pitch is the place where the percentage of possession loss is the
lowest, as indicated by the bluish colors. The boxes on both sides
are the regions where the leakage shows intermediate values, while
the corners of the pitch are the places with the highest leakage. Note
that the leakage considers where the ball is lost but not where it is
recovered; for example, an uncompleted pass sent from the corner to
the box is lost at the corner by one team and recovered at the box
by the other team. The multilayer network containing the recovery
parameter (Fig. 2, right plot) shows how the closer to the box, the
higher the recovery parameter. This is expected, since the defending
players’ density increases as we get closer to the goal.



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 178 (2024) 114355Á. Novillo et al.
Fig. 4. Real Madrid multilayer network (throughout the season). The top-layer corresponds to Real Madrid pitch passing network, while the bottom layer is the average of its
rivals. Dashed links indicate ball losses between teams. Green links reflect the average ball transfers from the rival teams to Real Madrid, while red links represent the reverse
direction. Node size is proportional to the eigenvector centrality, and edge width corresponds to link weight (number of ball transfers). The heatmap on the left is proportional to
the leakage parameter of each zone of the pitch. On the right, the heatmap represents the recovery parameter. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
This behavior can be better observed in Fig. 3, where we plot the
leakage and the recovery parameters of the home teams per region
together with a 2-dimensional color map (top layer). A similar plot
(not shown here) is obtained for the away teams. It is worth noting
that region 15, which is at the center of the opponent’s box, has a
low leakage parameter compared to the sides of the box. The reason
is that it is very difficult to complete passes inside this region. When a
pass sent from surrounding regions into region 15 is lost, the leakage is
assigned to the region from where the pass was sent and not to node 15.
However, as explained before, the recovery parameter accounts for the
passes recovered at each specific region, and we can see (Fig. 3, bottom
plots) that region 11 (the center of the box) is, together with the other
two regions of the box (16 and 11, respectively), the one accumulating
higher values (as one may expect).

3.2. From team to team

Using this methodology, we can analyze the multilayer passing
networks of specific soccer teams to unveil the properties of their
paying patterns. For example, Fig. 4 contains the average multilayer
networks of Real Madrid vs its rivals, computed for all matches played
during the season. We can observe how Real Madrid accumulates much
more centrality than its rivals, as indicated by the larger size of its
nodes (proportional to the eigenvector centrality). This is due to the
fact that Real Madrid normally has larger possessions than its rivals.
Furthermore, nodes on the left side of the pitch accumulate higher
eigenvector centralities, indicating a preference for attacking through
this side.

Concerning the distribution of leakage, we can see how Real Madrid’s
layer has lower values than its rivals, with the corners being the regions
with the highest leakage. It is also worth noting that the recovery
parameter has the highest values at its own box, accumulating low to
moderate values at the rest of the pitch (the lower, the closer to the
opponent’s goal).

Fig. 5 shows the same results for the average multilayer network of
FC Barcelona, calculated along the whole season. In general terms, re-
sults are qualitatively similar, despite FC Barcelona accumulates higher
5

centrality at the nodes placed at the center of the pitch and, further-
more, it does not show a preference in playing at one of the lateral
lanes.

However, not all teams have similar multilayer networks. For ex-
ample, Fig. 6 shows the networks obtained for Getafe CF, a team
characterized by a very direct pattern of play, with short possessions
and a very intense pressure after losing the ball. As a consequence,
the multilayer networks show a high density of inter-layer links, due
to the high number of possession exchanges. The size of the nodes,
proportional to their eigenvector centrality, shows how the rivals of
Getafe CF have longer possessions, as indicated by the small size of
Getafe’s nodes. It is worth noting how different is the distribution of
the leakage and recovery parameters of Getafe compared to those of
Real Madrid and FC Barcelona. Concerning the leakage (left network),
we can observe the high values it accumulates over all regions of the
pitch, indicating that Getafe loses the ball quite fast (and frequently),
probably due to its direct play. However, the recovery parameter (right
network) is much higher, overcoming both Real Madrid and Barcelona
and recollecting the ability of Getafe to recover the ball.

The comparison with the performance of other teams is better
unveiled by the z-score, which quantifies the deviation of the leak-
age/recovery parameters of each region of the Getafe’s pitch compared
with the average of all teams of the league. Values of z-score higher
than zero indicate positive deviations while negative values are ob-
tained when the parameter is below the average. In this way, Fig. 7
shows the regions of the pitch where Getafe is particularly strongest
at its leakage and recovery parameters. The yellowish and reddish
colors indicate that Getafe has a positive z-score both for the leakage
and recovery parameter, in some case close to two times the standard
deviation of both parameters. Appendix, containing the z-scores of Real
Madrid and FC Barcelona, shows that each team has its particular
distribution of z-scores.

3.3. Comparison between teams

Next, we compared the average values of all teams in the competi-
tion. Fig. 8 shows a box plot of the eigenvector centrality accumulated
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Fig. 5. FC Barcelona multilayer network. The top-layer corresponds to FC Barcelona pitch passing network, while the bottom layer is the average of its rivals. Inter-layer dashed
links indicate possession losses (red) and recoveries (green). Node size corresponds to eigenvector centrality, and edge width is proportional to the number of passes (intra-layer
links) or ball recoveries (inter-layer links). The heatmap on the left is proportional to the leakage parameter of each zone of the pitch. On the right, the heatmap represents the
recovery parameter. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Getafe CF multilayer network. The top-layer corresponds to Getafe pitch passing network, while the bottom layer is the average of its rivals. Inter-layer dashed links
indicate possession losses (red) and recoveries (green). Node size corresponds to eigenvector centrality, and edge width is proportional to the number of passes (intra-layer links)
or ball recoveries (inter-layer links). The heatmap on the left is proportional to the leakage parameter of each zone of the pitch. On the right, the heatmap represents the recovery
parameter. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
by all nodes of each team in the multilayer network of each match,
with teams ordered by their median and the boxes indicating the
25−75 percentage of the values. The accumulated eigenvector centrality
is a classical way of measuring what layer is dominating over the
other [12], in this case, with regard to the passing network. F.C.
Barcelona, Real Betis and Real Madrid are, respectively, the teams with
the highest eigenvector centrality due to a way of playing based on
retaining the possession of the ball. At the bottom of the distribution,
Real Valladolid, Getafe CF and Deportivo Alavés are the teams with
6

the lowest eigenvector centralities (see Table 1 for a summary of the
average values of each team).

Fig. 9 contains a similar box plot of the switching factor of each
team. In this case, Getafe CF is leading the ranking due to the high
alternance of possession during its matches thanks to a playing style
that combines high pressure on the opponent combined with a very
direct play. On the contrary, FC Barcelona and Real Madrid are the
teams with the lowest switching factor, both of them characterized by
long possessions.
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Fig. 7. Z-score of Getafe CF multilayer network. Nodes and links are obtained in the same way as Fig. 6 (see caption). Colors indicate the z-score of each region of Getafe’s pitch
compared with the rest of LaLiga’s teams. Yellowish and reddish colors indicate that Getafe has a positive z-score both for the leakage and recovery parameter (see colorbar on
the left of the networks), revealing that its values are higher than the average. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 8. Box plot of the accumulated eigenvector centralities of each team across all matches.
Finally, in Fig. 10, we have plotted the percentage of accumulated
eigenvector centrality as a function of the number of points of each
team at the end of the season. We can observe how Barcelona has
the highest percentage of eigenvector centrality and, at the same time,
the highest number of points. Despite being a positive correlation, the
accumulated eigenvector centrality is not a good indicator of the final
position in the ranking. This is due to the fact that there are teams,
such as Atlético de Madrid, which ranked second, whose style of play
is based on short possessions, leading to a ‘‘weak’’ passing network and,
therefore, accumulating low values of eigenvector centrality.

As a summary, Table 1 contains the average values of the accu-
mulated eigenvector centrality, the leakage and recovery parameters
and the switching factor of all teams, ordered by their corresponding
eigenvector centrality. It is worth noting how the accumulated eigen-
vector centrality negatively correlates with the rest of the parameters.
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However, the relation between them is not trivial, and we can see teams
like SD Eibar or Athletic Club departing from this correlation.

4. Discussion

The multilayer network framework in the analysis of soccer matches
introduces a parallel perspective for the exploration of team tactical
behaviors, offering a novel lens through which to comprehend team
dynamics by considering pitch spatial distribution and ball transi-
tions. From the average multilayer networks encompassing all teams
in the league, we observed that the central regions of the field hold
greater significance, with a substantial number of passing performance
behaviors associated with these areas [27]. This additional evidence
reinforces the importance of the midfield zone during the offensive
phase [28]. Conversely, regions situated at the corners and the sides
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Fig. 9. Box plot of the switching factor of each team across all matches.
Fig. 10. Scatter plot of the average eigenvector centrality vs the total points accumulated at the end of the season.
f the penalty boxes exhibit the lowest importance. This indicates that
hese areas are closer to the opponent’s defensive third, resulting in
ewer opportunities for sustained passing sequences.

Examining the situation from a different vantage point, an analysis
f the leakage indicator reveals that within the central areas of the
itch, all teams exhibit a propensity for high-quality and continuous
assing organization, resulting in reduced instances of possession loss.
n the flip side, as the ball approaches the corner kick areas, these

egions manifest the highest leakage rates (Node 25, 5), albeit with-
ut a corresponding increase in possession recovery. This observation
mplies that, excluding the factor of returning the ball in the opposite
irection in the corner kick area, securing precise passing in this area
emonstrates a considerable challenge.

We have seen that, taking into consideration the team’s penalty
rea regions, due to the typically dense presence of defenders and the
umerical advantage in the penalty area, they tend to be a region with
higher success rate in regaining possession [29]. At the same time, for
ttacking players, the penalty area is a challenging place to engage in
ustained passing actions because entering the penalty area often leads
8

irectly to a shooting opportunity [30,31].
The multilayer passing networks also capture the distinct playing
styles and passing patterns of LaLiga teams. Real Madrid comprises
a higher proportion of high-level players, many of whom exhibit ex-
ceptional individual ball control skills, particularly in terms of their
capacity to create space through individual skill. Consequently, Real
Madrid often commands a superior ball possession rate compared to
their adversaries in matches. Moreover, an analysis of Real Madrid’s
multilayer networks reveals a conspicuous pattern of increased passing
activities in the left midfield region, characterized by nodes 23, 24,
and 18. Additionally, they demonstrate a proficient utilization of the
lateral spaces, frequently exhibiting a proclivity for attacking down
the left flank, thus establishing a discernible offensive advantage. On
the other hand, FC Barcelona has consistently adhered to a possession
style, particularly evident in their high passing linkages in the mid-
field and the opponent’s half. These passing connections extend across
most areas in the middle and attacking thirds of the pitch, with each
region generally displaying a strong centrality. Barcelona boasts the
highest percentage of eigenvector centrality in the league, concurrently
achieving the highest position at the final ranking. This illustrates FC
Barcelona’s adeptness in controlling the speed and rhythm of the game

effectively. Concerning the switching factor, FC Barcelona and Real
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Fig. 11. Real Madrid multilayer network (throughout the season). The top-layer corresponds to Real Madrid’s pitch passing network, while the bottom layer is the average of its
rivals. Dashed links indicate ball losses between teams. Green links reflect the average ball transfers from the rival teams to Real Madrid, while red links represent the reverse
direction. Node size is proportional to the eigenvector centrality, and edge width corresponds to link weight (number of ball transfers). The heatmap on the left is proportional
to the z-score of the leakage parameter of each zone of the pitch. On the right, the heatmap represents the z-score of the recovery parameter. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
.

Table 1
Comparison of the average values of the eigenvector centrality, leakage parameter,
recovery parameter and switching factor for the teams in LaLiga during the season
2018/2019. Teams are ordered by a decreasing raking of their eigenvector centralities

Team Eigenvector
centrality (%)

Leakage (%) Recovery (%) Switching
factor (%)

Barcelona 90.2% 16.3% 14.7% 14.5%
Real Betis 88.3% 19.5% 15.9% 17.4%
Real Madrid 79.7% 18.6% 16.3% 16.7%
Eibar 67.0% 33.8% 31.1% 39.7%
Real Sociedad 57.1% 25.4% 20.8% 27.6%
Sevilla 56.9% 26.1% 21.9% 27.9%
Celta de Vigo 52.0% 24.6% 21.4% 25.6%
Athletic Club 51.5% 28.9% 26.1% 32.5%
Atlético de Madrid 46.2% 25.6% 23.5% 26.4%
Rayo Vallecano 45.5% 27.1% 23.4% 31.3%
Girona 44.7% 28.9% 22.6% 30.9%
Espanyol 44.4% 24.8% 21.3% 28.0%
Villarreal 44.4% 25.4% 23.1% 27.8%
Real Valladolid 35.9% 30.0% 24.7% 33.8%
Valencia CF 35.9% 26.4% 24.0% 28.7%
Levante 35.9% 30.6% 26.0% 35.6%
Leganés 34.7% 32.9% 29.1% 40.8%
Huesca 34.3% 32.8% 28.4% 39.6%
Alavés 28.5% 34.8% 30.5% 45.6%
Getafe 26.8% 38.0% 37.8% 59.3%

Madrid register the lowest values during the league, signifying that
both teams are known for their extended periods of ball possession and
a higher frequency of passing actions.

Besides, some teams employ different tactical styles. For instance,
Atlético de Madrid and Getafe leans toward a ‘‘direct play’’ approach
with lower eigenvector centrality, aiming to advance quickly with
fewer touches into the opponent’s half or attacking third. Long passes
are a prominent feature of this style [32]. However, such long passes or
any rapid long-distance offensive progression often entail a lower pass
success rate [13,33]. This lower ball possession rate can lead to more
frequent transitions between attack and defense [34,35].

Additionally, it is interesting to note that Getafe simultaneously
exhibits higher positive leakage and recovery parameters, which are
evident across all regions of the pitch. This can be attributed to their
playing style, which involves applying high pressure on the ball and
9

employing a highly direct approach. As a result, the team excels in
defensive actions during transition play, displaying both effectiveness
and intensity in this aspect of the game.

From the perspective of intra-layer connections, this refers to the
passing patterns between the different pitch areas during the attacking
phase, which are primarily determined by a central aggregation of the
collective passing actions [3,23]. The pattern of connectivity can aid in
disclosing how the team coordinates and cooperates in different areas
within the same layer. Elite soccer teams have different playing styles
with small tactical groups specializing in different offensive purposes or
game strategy. For instance, some teams tend to initiate their attacks
from the flanks, while others excel in finding opportunities for central
penetration in possession play. Different network spatial connectivity
characteristics reflect the dominance and trends in a team’s offensive
tactics [36].

From the perspective of inter-layer connections, this focuses on the
process of possession exchanges. The leakage, recovery and switching
factors include the spatial features of the offensive actions transforming
into a defensive action, as well as the spatial features of the defensive
actions transforming into offensive actions. In the realm of modern
football, the competition for dominance over temporal and spatial
dimensions during the phases of transition has exhibited a marked
intensification. The spatial distribution and frequency of transitions
between teams reveal critical playing style of a game strategy [37,38].

In view of all, the multilayer network framework method, as a
novel approach in sports performance analysis, represents a significant
advancement building upon the foundation of passing networks [3]. It
introduces spatial 2-layer networks to delve into the intricate dynamics
of offensive and defensive transitions between competing teams. More-
over, it extends and innovates by proposing three additional metrics
leakage, recovery, and switching factor aimed at quantifying the extent
of possession transitions between layers. This approach offers a novel
perspective and research dimensions for studying the complex, interac-
tive, and dynamic collective behaviors in football matches. However,
it is also worth noting that when applying the multilayer network
framework to explain team’s final position in the league ranking,
one must carefully consider the consequences of the different teams’
playing styles. It is not a matter of maximizing/minimizing any of
the multilayer network parameters, such as the leakage, recovery of
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Fig. 12. FC Barcelona multilayer network (throughout the season). The top-layer corresponds to Barcelona’s pitch passing network, while the bottom layer is the average of its
rivals. Dashed links indicate ball losses between teams. Green links reflect the average ball transfers from the rival teams to Real Madrid, while red links represent the reverse
direction. Node size is proportional to the eigenvector centrality, and edge width corresponds to link weight (number of ball transfers). The heatmap on the left is proportional
to the z-score of the leakage parameter of each zone of the pitch. On the right, the heatmap represents the z-score of the recovery parameter. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
switching factor, but to understand how opponents perform in these pa-
rameters and adapt to have an marginal advantage to increase winning
probability.
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Z-score of the average networks of Real Madrid (Fig. 11) and F.C.
Barcelona (Fig. 12) in terms of the leakage (left networks) and recovery
(right networks) parameters.
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