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Abstract— Wearable strain sensors based on Poly (vinylidene 
fluoride-co-hexafluoropropylene) (PVDF-HFP) reinforced with 
carbon nanotubes (CNTs) dispersed with Triton surfactant by 
solvent casting are proposed. The analysis of the electrical 
response shows that the conductivity increases with CNT 
content, as expected, whereas the addition of a high content of 
surfactant is more efficient at low CNT contents as it forms a 
more efficient electrical network. An AC analysis with 
Electrochemical Impedance Spectroscopy was carried out, 
where the variation in Rint/Rtunnel ratio with CNT and surfactant 
content was analyzed. This ratio shows when the electrical 
pathway is saturated and the electrical transport occurs mainly 
through the aggregates, or when the tunneling mechanism starts 
to take relevance. Electromechanical analysis under tensile 
loading shows that the sensitivity increases with decreasing the 
CNT content, reaching gauge factor (GF) values of around 104 at 
80-90 % strain level, higher than most of the research found in the literature. Furthermore, the electrical response under cycling 
loading shows similar peak and base values between consecutive cycles in a medium-term response, highlighting the robustness of 
the sensors. Finally, the sensors are subjected to a proof-of-concept test for finger and elbow movement monitoring, where a good 
agreement between the electrical and mechanical response is observed, demonstrating the applicability of the proposed materials 
for monitoring medium and large human movements. 
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I.  Introduction 

HANKS to the advances in medicine achieved in recent 

decades, there are diagnostic tools for almost any disease 

or analyte that a doctor wants to measure or detect in a patient. 

In this regard, in recent years, the use of strain wearable sensors 

for human monitoring has attracted considerable attention due 

to factors such as affordability and ergonomics, and the 

capability of continuously monitoring the biometrics of an 

individual in a non-invasive or minimally invasive way. This 

makes it possible to detect small physiological changes from 

baseline values over time and provides a new tool for medical 

personnel to continuously obtain health-quality data from their 

patients [1].  

The strain wearable sensors can capture the motion state and 

posture of different parts of the human body which is crucial for 

rehabilitation therapy applications [2–7]. In this regard, 

piezoresistive sensors have been widely explored due to their 

low fabrication costs and ease of signal acquisition [8,9]. 

The wearable sensors must adapt to the non-planar surface of 

the human body. Conventional strain sensors based on metal or 
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semiconductors are becoming obsolete due to their poor 

stretchability, in addition to other factors such as their limited 

sensitivity (with a Gauge Factor of 2-3 at every strain level). In 

this regard, composite materials based on flexible polymeric 

matrices have emerged as the most suitable replacement [10]. 

These typically consist of three main components [11]: flexible 

matrix, active sensing element, and electrodes. The material 

matrix must be chosen carefully to provide good flexibility, 

stretchability, and long-term reliability. The active element is 

defined as the reinforcement that will grant the electrical 

behavior which defines the sensing mechanism. The electrodes 

must be well-designed for acquiring a robust and stable 

electrical signal. 

The selection of the polymer and reinforcement, coupled with 

an appropriate processing route, is challenging from a materials 

science point of view [12]. The main materials used for this 

purpose are polymers such as PDMS [13], PVDF [14–17], PET 

[18,19], TPU [20–22], etc.  

PVDF-HFP is one of the main copolymers of PVDF, showing 

the lowest Young Modulus, dielectric constant, and price. Its 

high chemical and thermal tolerance only increases its 

V. Diaz-Mena, Xoan F. Sánchez-Romate, D, Martínez-Díaz, M. 
Sánchez, and A. Ureña are with the Materials Science and Engineering 
Area, Escuela Superior de Ciencias Experimentales y Tecnología, 
Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles 
(Madrid), Spain. (e-mail: victor.diaz@urjc.es). 

M. Sánchez and A. Ureña are also with the  Instituto de Tecnologías 
para la Sostenibilidad, Universidad Rey Juan Carlos. 

 

Novel smart wearable sensors based on PVDF 
reinforced with CNTs for human motion monitoring 

V. Díaz-Mena, Xoan F. Sánchez-Romate, D. Martinez-Diaz, M. Sánchez, A. Ureña 

T 

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3381550

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

mailto:victor.diaz@urjc.es


8  IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

 

attractiveness for sensing applications [23]. The main 

advantage of using thermoplastic polymers as matrix relies on 

the capability to recycle the sensor by melting down, thus 

representing an interesting variant for both scientific research 

and application at the industrial level [24].  

When adding conductive nanoparticles inside a dielectric 

polymer, its electrical conductivity is described by percolation 

theory in the vicinity of insulator-conductor transition [25], 

where the formation of electrical networks once a critical 

volume fraction, called the percolation threshold, is reached. 

The most studied active materials as nanofillers for these types 

of sensors have been carbon derivatives (graphene [26–29], 

carbon nanotubes [30–33], carbon black [34–36]), and metallic 

nanoparticles [8]. Among these, carbon derivatives are the ones 

that have been more widely investigated. Carbon nanotubes 

(CNTs) have attracted much attention because the percolation 

threshold of typical CNT-filled conducting nanocomposites is 

less than 1.0 wt. % due to its inherent high conductivity and 

high aspect ratios [37–39].  

However, the use of the CNTs as nano-reinforcement may be 

limited due to some difficulties associated with the dispersion 

of entangled CNTs during processing and the high cost of 

CNTs. As the surface area of a particle increases, so does the 

Van der Waals attractive forces between them this, together 

with the high flexibility of the CNTs, increases the possibility 

of entanglement and close packing [40]. This issue can be 

avoided by selecting an appropriate dispersion route when 

manufacturing the nanocomposites [41]. One of the main 

methods used is the addition of a surfactant when dispersing the 

CNTs [40]. R. Rastogi et al. [42] carried out a comparison study 

of CNT dispersion using four different surfactants (Triton X-

100, Tween 20, Tween 80, and sodium dodecyl sulfate), where 

the Triton X-100 showed the best-dispersing power due to its 

benzene ring. 

In this research, novel wearable piezoresistive sensors based on 

a thermoplastic matrix (PVDF-HFP) with carbon nanotubes and 

low percolation threshold for body motion applications are 

developed. 

First, in section II, the sensor manufacturing process by solvent 

casting and sonication will be described. Here, several 

conditions of CNTs and surfactant content (Triton X-100) will 

be manufactured to study the effect of both on the sensor’s 

response.  

In section III, the characterization of the sensors in terms of 

microstructure, electrical properties, and electromechanical 

response will be carried out. This will be carried out by a DC 

and AC electrical conductivity analysis and by strain sensing 

tests under tensile conditions and will focus on the differences 

found with the CNTs percentages added and the content of 

surfactant. One condition will be selected or a final step in 

characterization based on a proof-of-concept test of different 

body movements. 

Finally, section IV will summarize the man results obtained and 

the conclusions extracted about the wearable sensors 

manufactured and their possible future application in human 

health applications. 

II. MATERIALS AND METHODS 

A. Film preparation 

PVDF-HFP, as received from Byosynth®, was dissolved in N, 

N-Dimethylformamide (DMF), purchased from 

SigmaAldrich®, to form a PVDF-HFP solution with a ratio of 

1g of PVDF-HFP:10ml DMF. The solution was continuously 

stirred using a magnetic stirrer for 2h at 300 rpm at room 

temperature. Multi-Wall Carbon Nanotubes (MWCNTs, or 

CNTs hereinafter) NC7000, supplied by Nanocyl® (95% 

purity), were added to the solution in different concentrations 

(0.06, 0.1, 0.15, and 0.2 wt.%) with Triton X-100 as a surfactant 

purchased from DOW®, which was added 10 and 20 times the 

mass of CNT for each concentration mentioned to explore its 

effect on the dispersion of CNTs and thus on the created 

electrical network. 

The dispersion of CNTs in the PVDF solution was carried out 

by ultrasonication technique in a Hielscher Ultrasonic 

Processor UP400ST machine at 0.5 pulse cycles and 50 % 

amplitude for 30 minutes. 

Before depositing the solution, each substrate was cleaned with 

acetone in an ultrasonic bath for 10 minutes. Then, ~4ml of the 

solution was deposited on the flat glass substrates as shown in 

Fig. 1. Then, heat treatment was applied at 90ºC for 1h to 

evaporate the remaining solvent. Both the substrate and the 

solvent evaporation treatment were selected according to the 

literature [43–45]. The nanocomposite films with dimensions 

70 × 25 × 0.08 mm3 were extracted from the substrate after 

solvent evaporation treatment. All manufactured films are 

summarized in TABLE I with the nomenclature used for each 

one. 

 
Fig. 1. Visual scheme of the solution deposition on cleaned glass 

substrate process. 
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TABLE I 

SUMMARY OF NOMENCLATURE FOR THE DIFFERENT NANOCOMPOSITE FILMS 

PREPARED. 

 

Sample 

nomenclature 

wt. % 

CNTs 

Triton 

condition 

006CNT/x10T 0.06 x10 

01CNT/x10T 0.1 

015CNT/x10T 0.15 

02CNT/x10T 0.2 

006CNT/x20T 0.06 x20 

01CNT/x20T 0.1 

015CNT/x20T 0.15 

02CNT/x20T 0.2 

 

B. Characterization 

1) Microstructural characterization 

For the microstructural characterization, a Leica DMR optical 

microscope (OM) with ImagePro Plus image processing 

software was used. Due to the transparency of the PVDF-HFP 

and the low thickness of the manufactured sample probes, 

transmission mode was carried out on the films to analyze the 

dispersion of CNTs inside the matrix. 
2) Electrical characterization. 

Volumetric conductivity in direct current was evaluated using a 

KEITHLEY Source Meter Unit instrument (Series 2400 

SourceMeter® 1100 V to 1 µV voltage output range, 0.012% 

basic measure accuracy with 6½-digit resolution). The 

electrical resistance was determined by calculating the slope of 

the current–voltage characteristic curve within the range of 0–

100 V in case of an ohmic behavior, and three samples were 

tested per condition. For the test, two electrodes based on 

adhesive copper foil and copper wires were placed on the edges 

of each sample. 

AC tests were performed by Electrical Impedance Spectroscopy 

(EIS) by using an AUTOLAB potentiostat (PGSTAT302N 

station, with -10 V to 10 V output range, ± 0.2% ± 2 mV and ± 

0.2% ± 0.2% of voltage and current accuracy, 0.3 µV of 

potential resolution, and 1 MHz of maximum bandwidth) 

equipped with Nova 2.1 software for analysis with equivalent 

circuits. Measurements were taken between two electrodes in 

an arrangement like that of DC testing. The real and imaginary 

parts of electrical impedance (Z* = Z’+jZ’’) were measured in 

the frequency range of 0.1-105 Hz at 0.3 V voltage amplitude. 

Both configurations for DC and AC measurements are shown 

in Figure 2 along with a detailed schematic of the electrodes.  

 
Fig. 2. Visual schemes of the setups for (a) DC and (b) AC electrical 

behavior tests with a detailed image of the electrodes on the sample. 

C. Strain monitoring tests 

Quasi-static and cyclic tensile tests were performed on a Zwick 

universal tensile machine with a 500 N load cell (Materials 

Testing Machines ProLine Z100 with test loads from 500 N to 

100 kN, a measurement ranges up to 165% of Fmax). For these 

tests, three specimens of each condition were tested. For the 

cyclic tests, a speed of 10 mm/min was used, reaching a value 

of 5 and 10 % strain for 200 cycles. This last type of test was 

performed to analyze the repeatability of the measurement, a 

critical parameter when evaluating the robustness of strain 

sensors. 

Simultaneously to both mechanical tests, the electrical response 

was recorded, by measuring the electrical resistance between 

the two copper wire electrodes with an Agilent test unit at an 

acquisition frequency of 10 Hz (34410A multimeter with a 100 

mV – 1000 V output range, 100 Ω – 1 GΩ measuring range, and 

3 Hz – 300 kHz acquisition frequency range). In this sense, the 

gauge factor (GF), defined as the change in normalized 

resistance divided by the applied strain, was calculated for each 

condition to evaluate the most sensitive sensor: 

𝐺𝐹 =
∆𝑅/𝑅0

𝜀
                               (1) 

Where ∆𝑅/𝑅0 is the change of the normalized electrical 

resistance, recorded by the Agilent hardware, and ε, the applied 

mechanical strain.  

D. Proof-of-concept tests 

To evaluate the sensors developed during this study, several 

human motion monitoring tests were performed. On the one 

hand, the performance of the strain sensor was evaluated in 

terms of finger motion monitoring. In this case, a nitrile glove 

with sensors attached to each finger was used for the proof.  

On the other hand, an elbow motion monitoring test was also 

performed by placing the sensor directly on the skin. In this 

case, several stretching and bending movements of the elbow 

were conducted to evaluate the robustness of the sensors.  

During the test, the electrical resistance variation was recorded 

using the Agilent 34410A module. The main author of the 

research paper gave his full consent to the development of these 

tests on the above-mentioned parts of his body. 
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III. RESULTS AND DISCUSSION 

In this section, firstly, an analysis of the dispersion of the CNTs 

inside the polymer matrix is carried out. Then, the electrical 

properties of PVDF-HFP/CNT films are studied by DC and AC 

measurements to better understand the effect of CNT dispersion 

and interactions on the electronic transport of these materials. 

Finally, their strain sensing capabilities are fully characterized 

by quasi-static and cyclic tests, and a proof-of-concept as 

wearable sensors is performed.  

A. Microstructural analysis 

Fig. S1. shows the dispersion of CNTs for each condition. Here, 

as the CNT content increases, the number of CNT aggregates 

also increases for both x10 and x20 Triton surfactant contents, 

as expected. For the lower CNT contents (0.06 and 0.1 wt. %), 

the amount of surfactant needed to coat the entire CNT surface 

is less, and its addition helps to homogenize the CNT 

distribution, leading to less CNT entanglement.  

Furthermore, the increased Triton content implies more 

effective dispersion of CNTs at lower nanoparticle contents 

[46,47],  helping to form CNT pathways throughout the 

material. However, at higher CNT contents, differences 

between the CNT dispersion with the amount of Triton are less 

prevalent. 

B. Analysis of electrical properties 

1) DC electrical conductivity tests 

Fig. 3. shows the DC electrical conductivity values for the 

different CNT and Triton contents. Firstly, it can be concluded 

that all the percentages of CNTs studied in this research have 

electrical conductivity, which means that with the production 

route carried out, a lower percolation threshold has been 

achieved than in other studies with this copolymer [23]. 

It can be observed that, at low CNT contents (below 0.15 wt. 

%), the samples with the highest amount of surfactant (x20T) 

show the highest electrical conductivities. However, the 

opposite trend is observed at higher CNT contents, where the 

higher electrical conductivity was achieved with the lowest 

amount of surfactant (x10T). Therefore, it can be concluded that 

the surfactant plays a crucial role in the electrical properties of 

the manufactured films.  

More specifically, at low nanofiller contents, CNTs are usually 

present in the form of small, isolated aggregates [48], as already 

mentioned in the microstructural analysis. As discussed, the 

more Triton is added for these lower contents of CNTs, the 

more electrical pathways are formed, leading to achieving a 

better electrical conductivity result. 

However, at high nanofiller contents, it was mentioned that 

Triton content hardly affects the dispersion of the CNTs, a 

higher Triton content would be necessary to observe a crucial 

difference between the dispersion. This is the reason why, for 

0.15 and 0.2 wt. % of CNTs, the electrical conductivity barely 

varies between the Triton conditions studied.  

Considering the geometry of the sensor samples and the 

distance between contacts, electrical conductivities of 1.46 ± 

0.27 and 1.60 ± 0.39 S/m were measured for 0.2CNT x10 and 

x20 of Triton, respectively. 

 
Fig. 3. DC conductivities as a function of CNT contents. 

 

2) AC conductivity analysis 

For a better understanding of the electrical transport 

mechanisms inside the PVDF-HFP/CNT nanocomposite, an 

analysis of the complex impedance response was carried out. In 

this sense, Fig. 4. summarizes the variation of the real part (Z’) 

of the impedance as a function of the AC frequency.  

It can be observed that the samples with higher amounts of 

CNTs present a frequency-independent behavior of the real part 

for the measured frequency range. However, the samples with 

0.06 for both surfactant conditions, x10T and x20T, and with 

0.1 wt. % CNTs for x10T present a frequency-dependent 

behavior of the real part of the impedance at high frequencies.  

 
Fig. 4. Z’ plots as a function of AC frequency for (a) x10T and (b) x20T 

samples. 

 

This has been observed in other studies [49] and is explained by 

the fact that at higher CNT contents, the charge density carrier 

is high enough to travel through the material without any phase 

shift between the current and the voltage. However, at lower 

CNT contents, the charge carrier density is lower and, therefore, 

at high frequencies a lag is observed between applied voltage 

and current, which manifests in a variation of the real part with 

frequency. 

Fig. 5. shows the Nyquist plots of the different PVDF-

HFP/CNT samples showing the variation of the real (Z’) and 

imaginary (Z``) parts as a function of frequency. The dots show 

the data points extracted from the tests and the lines are the fit 

performed with equivalent circuits. It can be noticed that the 

EIS behavior of the samples with a frequency-dependent 
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electrical response is shown in a semicircle or a composition of 

different semicircles (Fig. 5. (a), (b)) in the Nyquist plot. This 

behavior has been observed in previous studies using different 

graphitic nanofillers: CNTs and GNPs [49,50]. More 

specifically, the variation of the real and imaginary parts can be 

modeled by an equivalent electrical circuit that can provide a 

more detailed view of the electrical transport mechanisms in 

this type of material.  

This electrical circuit consists of a series of resistors in parallel 

with a capacitor (RC) and a resistor in series with an inductance, 

and both in parallel with a capacitor element (LRC), as shown 

in the schematic of  Fig. 5. The RC element denotes electrical 

transport due to the tunneling effect between neighboring 

nanoparticles and the LRC one denotes electrical transport due 

to the intrinsic conductivity of the CNTs and conduction 

mechanisms through the aggregates. More specifically, in a 

previous study, capacitance terms were often replaced by 

constant phase elements (CPEs). A CPE is a nonideal resistive-

capacitive element that denotes energy dissipation through the 

resistive part, unlike a pure capacitor, which denotes effective 

conservation [51,52] Its impedance is defined by 𝑍 =
1 (𝑄𝑜(𝑗𝜔)𝑛)⁄ . A value of n=0 denotes a pure resistor, whereas 

a value of n=1 represents a pure capacitor.  

Therefore, the correlation between the experimental 

measurements and the fitted data by using the equivalent circuit 

of Fig. 6. (b) is also shown in the plots of Fig. 5. There is a good 

agreement between the measurements and the electrical circuit 

fit and, therefore, it can be concluded that the proposed 

equivalent circuit properly captures the main electrical transport 

mechanisms in this type of material. 

 
Fig. 5. Nyquist plots of (a) 0.06, (b) 0.1, (c) 0.15, and (d) 0.2 wt. % 

CNT samples where the solid symbols denote the x20T and the 

hollowed ones the x10T samples. 

 
Fig. 6. Scheme of the equivalent circuit used for modeling the electrical 

behavior with the frequency where (a) is the equivalent circuit with 

capacitors and (b) is the equivalent circuit using CPEs instead of 

capacitors. 

More specifically, TABLE II summarizes the different fitting 

parameters of the samples, and Fig. 7. shows the correlation 

between the values of the electrical resistance associated with 

the RCPE element (tunneling transport) and the electrical 

resistance associated with the LRCPE (intrinsic and contact 

mechanisms).  

It can be observed that, at very low CNT contents (0.06 wt. %), 

the main conduction mechanism takes place through the 

aggregates, with a Rint/Rtunnel ratio higher than 1. This can be 

explained, as discussed above in the DC analysis because CNTs 

tend to be in the form of small and isolated aggregates at very 

low nanofiller contents. An increase in the Triton content 

promotes a reduction of the intrinsic mechanisms due to a better 

dispersion of CNTs, which would explain the higher 

conductivity values. However, by increasing the CNT content 

up to 0.15 wt. %, the Rint/Rtunnel ratio decreases as multiple 

CNT-CNT tunneling connections are created through the 

nanocomposite. This is reflected in a sudden increase in 

electrical conductivity and a more efficient electrical network. 

Finally, for higher CNT contents (0.2 wt. %), new CNT-CNT 

contacts are formed throughout the network and intrinsic and 

contact mechanisms start to dominate the electrical transport, 

which is reflected in an increase of the Rint/Rtunnel ratio, 

explaining the saturation of electrical conductivity previously 

observed.  

 
TABLE II 

ADJUSTMENT PARAMETERS (IN OHMS) FROM EQUIVALENT CIRCUIT MODELING 

SAMPLE BEHAVIOR. 

 Rin (Ω) Rtunnel (Ω) 
 

x10T x20T x10T x20T 

0.06 CNT 4.77E+07 1.34E+06 1.00E+07 1.10E+06 

0.1 CNT 2.30E+05 1.17E+04 3.19E+05 4.95E+04 

0.15 CNT 1.00E+04 1.50E+03 2.68E+04 2.40E+04 

0.2 CNT 5.00E+03 5.00E+03 7.49E+03 1.73E+04 

 
Rin/Rtunnel 

 
x10T x20T 

0.06 CNT 4.77E+00 1.22E+00 

0.1 CNT 7.21E-01 2.36E-01 

0.15 CNT 3.73E-01 6.25E-02 

0.2 CNT 6.68E-01 2.89E-01 
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Fig. 7. Correlation between the electrical resistance associated with the 

intrinsic/contact mechanisms and the tunneling effect for the different 

conditions. 

C. Electromechanical tests  

1) Quasi-static tests 

Fig. 8. shows the electrical response, in terms of normalized 

resistance variation, with tensile stress applied during the 

electromechanical tests. It should be noted that the resistivity of 

the sample 006CNT/x10T was outside of the range of the 

Agilent 34410A equipment used for these tests due to its low 

electrical conductivity, so no electrical response was recorded 

during the mechanical test. The 02CNT/x10T condition did not 

show a very prevalent exponential response with applied strain, 

as it did not lose electrical contact before breakage.  

The mechanical tests show an elastic behavior for all sensors up 

to a stress level of 20-25 MPa (yield stress) and then a constant 

plastic deformation up to 150 - 200% strain in almost all cases. 

The detail of the electrical response for low strain levels is 

shown in the enlarged plots of Fig. 8. for each Triton condition, 

where a more dominant linear dependence is observed. 

However, as the strain level increases, the exponential effects 

of the variation of the electrical resistance become more 

dominant. When strain levels close to the loss of electrical 

contact are reached, the electrical resistance increases sharply, 

reaching values high enough that the test system is unable to 

register it. 

Fig. 9. shows the variation of GF as a function of CNT content 

for both Triton conditions. The standard deviation is shown for 

each condition up to 40% strain, as at higher percentages the 

values would become meaningless as each sample tested per 

condition does not break at the same strain level. For the x10T 

condition, the maximum GF achieved is approximately 2.6·104 

at 90% of strain for the 0.15 wt.% CNT condition. Here it can 

be observed that lower CNT content generally gives higher GF 

for the same strain level. Therefore, for the same Triton content 

and process parameters, it can be said that the lower the CNT 

contents, the fewer electrical pathways are formed and the more 

severe effect of tunneling conductivity between isolated 

aggregates, resulting in an exponential variation of resistivity 

when the nanocomposite is deformed.  

When Triton content increases, as was mentioned before with 

the DC and AC analysis, further disaggregation of larger 

agglomerates occurs. For this condition, the GF for the sample 

with 0.1 wt. % of CNTs has a value of about 40 for 50% 

deformation, while the sample with 0.06 wt. % of CNTs reaches 

a GF of about 1100 for the same 50 % strain. This phenomenon 

confirms that, in this case, the amount of surfactant used in the 

0.06 wt. % CNT condition is high enough to promote a well-

dispersed network and, therefore, the electrical sensitivity to 

deformation is much higher, which is explained by the larger 

interparticle distance between neighboring CNTs. At this Triton 

content, the maximum GF is around 2.0·104 at a strain level of 

110% for the 0.1 wt.% CNT condition, which highlights the 

effectiveness of the tunneling transport mechanisms between 

neighboring CNTs in this condition.  

Fig. 10. shows a comparison between this work and other 

studies carried out by several researchers based on 

thermoplastic and thermoset nanocomposites, such as 

SEBS/CB [53], Ecoflex/CNT [54], Ecoflex/GNP [55],  

PDMS/CNT [56], TPU/CB [21,57,58], TPU/CNT [59], 

PVDF/CNF-IL [60], PVDF/CNT [61,62], PVDF/GNP [63],  

PET/GNP [64], PEDGE/GNP [65], PEDOT:PSS/PVA [66] and 

Ti3C2 MXene [67]. 02CNT/x10T material has the lowest GF 

value due to the phenomenon discussed above. All the other 

systems present competitive values with the Ecoflex/GNP 

system and well above the other studied systems.  

 
Fig.8. Electromechanical quasi-static tensile stress tests, where the 

electrical response with strain is observed for each sample for (a) x10T 

and (b) x20T conditions. 

 
Fig. 9. GF values as a function of applied strain for (a) x10T and (b) 

x20T conditions. 
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Fig. 10. Comparison of the relationships between gauge factors and 

strain values referenced in the literature and those obtained in this 

work. 

2) Cycling tests. 

Fig. 11. shows the electrical response with the number of cycles 

for 200 cycles under tensile conditions to study the medium-

term stability of the nanocomposites. These tests were 

performed for the two most sensitive conditions: 

0.06CNT/x20T and 0.1CNT/x10T since they would be the most 

suitable for strain detection purposes due to their high GF at low 

strains. Two facts should be noted. On the one hand, an increase 

in both peak and baseline electrical resistance values in the first 

cycle. This has been previously observed [68] and it is 

correlated to the irreversibility of the electrical paths generated 

between neighboring nanoparticles after the first stretch-

compressive cycle. However, after this increase, the electrical 

response between consecutive cycles does not change 

significantly over the 200 cycles, as can be seen in the 

magnified images in Fig. 11. with an increased sensitivity 

(defined as the variation of the electrical resistance in a single 

cycle) with applied strain, as expected.  

The electrical drift or hysteresis in the cyclic tests are 0.015 

(5%) and 0.008 (10%) for the 0.1CNT/x10T. For the 

006CNT/x20T conditions, the respective values are 0.041 (5%) 

and 0.011 (10%). These values have been calculated by 

subtracting the final ΔR/R0 measured (200 cycles) from the 

initial ΔR/R0 value at the first cycle. Figure 12 shows the ΔR/R0 

vs Displacement curves for the two conditions. The mentioned 

hysteresis value is marked in each graph in a yellow box. It can 

be concluded that the proposed sensors present a very robust 

electrical response under dynamic loads. 

 

 
Fig.11. Electrical response during 200 cycles for (a) 0,06CNT/x20T 

and (b) 0,1CNT/x10T conditions. 

 
Fig. 13. Hysteresis loop for the two conditions tested under cyclic 

tests. Five cycles are presented for each condition. 

D. Proof of concept analysis 

As a last step as mentioned above, two proofs of concept were 

carried out to emulate a possible application of these sensors in 

the healthcare sector.  

Fig. 13. shows both proofs of concept. Fig. 13 (a). shows the 

electrical response associated with the movement of each finger 

during the first proof, where each finger was bent twice 

consecutively. For these tests, the 0.1CNT/x10T sensor was 

selected, as it showed high sensitivity, especially at low and 

medium strain levels with a suitable noise level. Here, it can be 

observed that the electrical response is in good agreement with 

the mechanical one, with an increase in the electrical resistance 

in each finger while bent. Since the change of the electrical 

resistance depends on the strain level of each finger, it can be 

observed that the thumb has the smallest variation of electrical 

resistance variation due to the smaller deformation associated 

with the movement of this finger compared with the rest. Fig. 

13 (b). also shows the electrical response when a finger 

combination of movements is carried out, where the electrical 

resistance changes according to the different finger 

displacements. Therefore, it is possible to monitor certain finger 

signs with the proposed sensors. 

Fig. 13 (c). shows the electrical response for the elbow tests, 

where the 3 different movements are marked in the figure and 

shown with the corresponding image. The sequence of the 

movements was performed 5 times during the analysis. In this 

case, it can be observed that the electrical resistance increases 

as the elbow is bent, like the finger movements. More 

specifically, it is possible to obtain simultaneous tracking of the 

elbow movement, as seen in the images of Fig. 13 (c)., where 

the marked point 1 corresponds to the relaxed posture, point 2 

to 90º elbow flexion, and point 3 to full elbow flexion. This 

sequence was repeated five times to demonstrate the robustness 

of the proposed sensor and the results showed that they can 

correctly monitor medium to large human movements. 
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Fig.13. Electrical response of each sensor during the proof-of-concept 

testing for (a) independent movement of each finger, (b) movement of 

two fingers at a time, and (c) elbow movements 

IV. CONCLUSION 

Flexible strain sensors based on PVDF reinforced with CNTs 

with very robust electrical response have been proposed.  

First, the electrical response under different CNT and surfactant 

conditions was analyzed, to understand the main electrical 

transport mechanisms properly. It is observed that the electrical 

conductivity increases with CNT content, as expected, due to the 

higher number of electrical pathways formed inside the 

nanocomposite. As for the effect of surfactant, it can be 

elucidated that higher surfactant contents improve CNT 

dispersion at low nanofiller contents by generating a more 

efficient electrical network, while the opposite effect is found at 

high CNT contents, where high amounts of surfactant can 

negatively affect the electrical transport between neighboring 

nanoparticles.  

Electromechanical tests under tensile conditions showed a higher 

sensitivity, defined by the GF, with decreasing the CNT content, 

due to a higher prevalence of tunneling mechanisms between 

neighboring nanoparticles, whereas the electrical transport is 

dominated by intrinsic and contact mechanisms at high CNT 

contents, which are less sensitive to mechanical strain. The 

maximum GF values were found around 104 at a strain level of 

80-90 demonstrating an enormous sensitivity to large 

deformations.  

Analysis of the electromechanical properties under cycling 

loading showed a very similar electrical response between 

consecutive cycles throughout the test, with very low variations 

in peak and baseline electrical resistance values, demonstrating 

the high robustness of the manufactured sensors.  

Finally, the proof-of-concept tests for fingers and elbow 

movements were successfully carried out, with a good agreement 

between the recorded electrical response and the human 

movements, demonstrating the high applicability of the proposed 

sensors for monitoring deformations of medium and large strain 

levels. 
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