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Abstract—When facing graph signal processing tasks, it is
typically assumed that the graph describing the support of the
signals is known. However, in many relevant applications the
available graph suffers from observational errors and perturba-
tions. As a result, any method that relies on the graph topology
and ignores the presence of perturbations may yield suboptimal
results. Motivated by this, we propose a novel approach for
handling perturbations on the links of the graph and apply it
to the problem of robust graph filter (GF) identification from
input-output observations. Different from existing works, we
formulate a non-convex optimization problem that operates in
the vertex domain and jointly performs GF identification and
graph denoising. As a result, on top of learning the desired
GF, an estimate of the graph is obtained as a byproduct. To
handle the resulting bi-convex problem, we design an algorithm
that blends techniques from alternating optimization and ma-
jorization minimization, showing its convergence to a stationary
point. The second part of the paper i) generalizes the design
to a robust setup where several GFs are jointly estimated, and
ii) introduces an alternative algorithmic implementation that
reduces the computational complexity. Finally, the detrimental
influence of the perturbations and the benefits resulting from
the robust approach are numerically analyzed over synthetic and
real-world datasets, comparing them with other state-of-the-art
alternatives.

Index Terms—Graph Filter Identification, Graph Denoising,
Robust Graph Signal Processing, Graph Perturbations.

I. INTRODUCTION

NOWADAYS, a significant number of datasets are defined
over an irregular (heterogeneous) support that can be

conveniently represented by a graph. As a result, the data at
hand can be readily understood as graph signals (alternatively,
network processes) whose structure and properties depend on
the topology of the underlying graph. Illustrative examples
include measurements from power, communications, social,
biological, or financial networks, to name a few [1], [2],
[3], [4], [5]. Characterizing and modeling graph and network
processes entails a prevalent and relevant task that not only
enhances our understanding of the data at hand, but also opens
the door to more sophisticated processing and knowledge
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extraction schemes. A popular approach within the graph
signal processing (GSP) framework [4], [6], [7], [8], [9] is
to model the data defined over the graph as graph signals
generated by applying a (low-pass, smooth, bandlimited...)
graph filter (GF) to a simple (sparse, white, constant...) input.
GFs are topology-aware linear operators whose output can be
interpreted as the outcome of a network diffusion or spreading
process [10], [11], [12]. GFs can be expressed as polynomials
of the graph-shift operator (GSO), a matrix encoding the
topology of the graph, and on top of its theoretical interest,
the task of GF identification is practically relevant to, e.g.,
understanding the dynamics of network diffusion processes
[11], [13], [6], as well as explaining the structure of real-
world datasets [14], [15]. It is worth mentioning that, while
alternative definitions of GFs exist in the literature (see for
example ARMA, Chebyshev, or spectral GFs [16]), based
on the Cayley-Hamilton theorem [17], every GF can be
expressed as a polynomial of a sufficiently large degree of the
GSO, hence rendering the identification of polynomial GFs
particularly relevant.

Since GSP is a relatively recent area of research, it is not
surprising that most GSP works focus on how to harness the
graph structure while assuming that the topology of the graph
is perfectly known. Nevertheless, this assumption is unlikely
to hold in many practical setups, where graphs suffer from
imperfections and perturbations. When networks are given
explicitly, perturbations may be due to observational noise and
errors (e.g., link failures in power or wireless networks [18]).
When in lieu of physical entities, the graphs model (statistical)
pairwise relationships among the observed variables, they need
to be inferred from the data [19], [20], [21], [22], [23].
Since this is a challenging (oftentimes ill-posed) task, the
estimated graphs inherit the imperfections (limitations) of the
graph learning scheme adopted (e.g., the thresholding opera-
tion implemented in correlation networks [2]). Intuitively, the
presence of perturbations hinders any GSP scheme or GSP
tool applied to the data. While this is true regardless of the
task at hand, it is even more relevant for those involving
spectral transforms and GFs, since eigenvectors and high-order
matrix polynomials are more sensitive to errors in the matrix
codifying the graph.

To address these challenges, this paper investigates the
problem of estimating a GF from input-output signal pairs
assuming that both the signals and the supporting graph have
errors. The proposed approach is formulated in the vertex
domain, avoiding the numerical instability of computing large
polynomials and, at the same time, bypassing the challenges
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associated with robust spectral graph theory. We recast the
robust estimation as a joint optimization problem where the GF
identification objective is augmented with a graph-denoising
regularizer, so that, on top of the desired GF, we also obtain
an enhanced estimate of the supporting graph. The joint
formulation leads to a non-convex bi-convex optimization
problem, for which a provably-convergent efficient (alternating
minimization) algorithm able to find an approximate solution
is developed. Furthermore, to address scenarios where multiple
GFs are present (e.g., when dealing with vector autoregressive
(AR) spatio-temporal processes or in setups where nodes
collect multi-feature vector measurements), we generalize our
framework so that multiple GFs, all defined over the same
graph, are jointly identified.

Contributions and outline. After reviewing preliminary con-
cepts and results, we analyze the influence of edge perturba-
tions in polynomial GFs and state the robust GF identification
problem in Section III. Then, our main contributions are:

1) We elaborate on different types of edge perturbations
and propose appropriate functions to harness the relation
between the true and the perturbed GSO (Section III-A).

2) We formulate a non-convex optimization problem to
jointly estimate the GF and the graph topology, develop
an alternating optimization algorithm to solve it, and
prove its convergence to a stationary point (Section IV).

3) We address the more general problem of jointly learning
several GFs by leveraging the fact that they are polyno-
mials of the same GSO (Section V).

4) We introduce an efficient implementation of the robust
GF identification algorithm to handle graphs with a large
number of nodes (Section VI).

The algorithms are evaluated numerically in Section VII,
and some concluding remarks are provided in Section VIII.
Last but not least, while we focus on GF identification from
input-output pairs, the approach put forth in this paper can be
generalized to other GSP tasks, which is a research path we
plan to pursue in the near future.

A. Related works

Despite their theoretical and practical relevance, the number
of robust GSP works is limited, due in part to the challenges
emanating from the presence of graph perturbations.

Starting with the spectral domain, an initial approach con-
sidered in [24] employed a small perturbation analysis to
characterize the impact of perturbations in the spectrum of the
graph Laplacian. Similarly, [25], [26] studied the stability of
spectral GFs when a small number of edges were rewired,
upper-bounding the error stemming from the perturbations
in the GSO. More recently, [27] analyzed the influence of
rewiring a large number of edges, providing an enhanced
upper-bound at the expense of restricting the analysis to low-
pass GFs. While analyzing the influence of perturbations is
pertinent, these works do not offer a robust formulation to
handle perturbations, which is particularly relevant in the
context of GFs.

Moving on to the vertex domain, [28], [29] postulates a
graphon-based perturbation model and studies how pertur-

bations affect GFs. Unfortunately, the analysis is limited to
filters of order 1. Later on, [30] combines structural equation
models (SEMs) with total least squares (TLS) to jointly
infer signals and perturbations. Nonetheless, as shown in the
numerical evaluation (Section VII), this approach has limited
applicability due to the SEM assumption. Another alternative
is presented in [31], which, assuming that the support of the
graph is known, estimates the weights of the network topology
and the coefficients of the GF by solving a non-convex
optimization problem using a sequential convex programming
(SCP) algorithm. The main limitation is the assumption of
the support of the true GSO being known, which may not
be true in practical settings. In contrast with previous works,
the approach put forth in this paper considers more lenient
assumptions. We do not require perfect knowledge of the true
graph (although it can be incorporated when available), and
we consider that the observed data is explained through a GF
without any assumption of the particular filter type (other than
being a polynomial on the GSO), which includes the SEM as
a particular case and involves dealing with polynomials of
a perturbed matrix. In this direction is our preliminary work
from [32], which also studies the problem of GF identification
with imperfect topology knowledge. However, its contribution
is limited since it only considers one type of perturbation, does
not provide guarantees for the convergence of the optimization
method, does not consider settings with several GFs, and the
resulting method scales poorly with the size of the graph. All
the previous limitations are addressed in this paper.

Finally, the presence of perturbations has also been con-
sidered in non-linear GSP tasks. An alternative definition of
GFs robust to perturbations that replace the power of the
GSO by different neighborhoods is proposed in [33], and
the transferability of GFs when employed in graph neural
networks is studied in [34], [35], [36], [37].

II. GSP PRELIMINARIES

Graphs and graph signals. Consider a directed graph G =
(V, E) formed by the set of N nodes (vertices) collected in V
and the set of edges E ⊂ V ×V , such that (i, j) ∈ E if node i
is connected to node j. The topology of G can be represented
by the adjacency matrix A ∈ RN×N , a sparse matrix whose
elements Aij are non-zero if and only if (i, j) ∈ E . When G
is weighted, the entries Aij capture the strength of the link
between nodes i and j. Otherwise, the elements of A are
binary. Together with the graph G, we focus on modeling the
data as signals defined on the nodes in V . Formally, a (nodal)
graph signal is a function from the vertex set to the real field
x : V → R, which can be alternatively represented as an N -
dimensional vector x ∈ RN whose i-th entry xi denotes the
value of the signal at node i. The foundational assumption
of GSP is that incorporating the information of the graph G
provides an advantage when processing the signal x. While
a graph may capture any type of pair-wise relation, let us
consider the simple example where G captures the similarity
between nodes. Then a high value of Aij implies that the
values of xi and xj are expected to be akin to each other,
which can be exploited when processing graph signals.
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Graph-shift operator (GSO). The GSO associated with a
graph G of N nodes is as a generic matrix S ∈ RN×N
that: i) captures the topology of the underlying graph and
ii) represents a local and linear transformation that can be
applied to graph signals defined over G. The entries of S
satisfy Sij 6= 0 only if (i, j) ∈ E or i = j and, as a result,
the application of the GSO to a graph signal involves mixing
values among one-hop neighborhoods. Two typical choices for
the GSO are the adjacency matrix A and the graph Laplacian
L :=diag(A1)−A [4], [6], where diag(·) transforms a vector
into a diagonal matrix and 1 is the vector of all ones. We
assume that S is diagonalized as S = Vdiag(λ)V−1, where
the N × N matrix V collects N orthogonal eigenvectors
of S, and the vector λ collects the associated eigenvalues.
The matrix V−1 is commonly adopted as the Graph Fourier
Transform (GFT) for graph signals with x̃ = V−1x being the
graph frequency representation of x [5].

Graph filtering. GFs are topology-aware operators whose
inputs and outputs are graph signals. More specifically, GFs
implement a linear transformation that can be written as a
polynomial of S

H =
∑N−1
r=0 hrS

r = Vdiag(Ψh)V−1 =Vdiag(h̃)V−1, (1)

where h = [h0, ..., hN−1] is the vector collecting the GF
coefficients, and the second equality follows from the eigende-
composition of S. The N×N Vandermonde matrix Ψ defined
as Ψij := λj−1i represents the GFT for GFs, and thus, h̃ = Ψh
is the vector of size N representing the frequency response of
H [5], [11]. Since Sr encodes the r-hop neighborhood of the
graph, a graph signal given by y =

∑N−1
r=0 hrS

rx = Hx can
be interpreted as a version of the input signal x diffused across
N−1 neighborhoods with hr being the coefficients of the linear
combination [11]. Moreover, there are scenarios where hr = 0
for r ≥ R. In those cases, the order of the filter is R and, if
more convenient, h and Ψ can be redefined so that the number
of elements of h (columns of Ψ) is R in lieu of N .

Graph stationarity. A zero-mean random graph signal x is
said to be stationary on G if its covariance matrix Cx =
E[xx>] is a positive-semidefinite matrix that can be written
as a polynomial of the GSO [38]. In such a case, both Cx

and S have the same eigenvectors and, as a consequence,
the two matrices commute, i.e., SCx = CxS. A common
example of stationary graph signals arises when x is the
output of a linear graph diffusion process whose input (initial
condition) is a white signal ν and whose diffusion dynamics
can be accurately represented by a GF. Mathematically, if
we have that x = Hν with H being a GF [cf. (1)] and
Cν = E[νν>] = I, it follows that the covariance of x is
Cx = HH> =

∑N−1,N−1
r=0,r′=0 hrhr′S

r+r′ . Since the latter is a
polynomial of the GSO, it follows that x is stationary on G.

A. GF identification from input-output pairs

In the context of linear operators, let us consider that we
observe M input and output pairs X := [x1, ...,xM ] and Y :=
[y1, ...,yM ] whose relation is given by

Y = HX + W, (2)

with W being a zero-mean random matrix (typically assumed
to have i.i.d. entries) that accounts for noisy measurements and
model inaccuracies. Note that if the interest is in M signals
with F features described by the same H, this is equivalent
to considering MF different input-output pairs. Leveraging
(2), the GF identification task amounts to using the input-
output pairs to estimate H under the model in (1), which, if the
GSO S is known, boils down to estimating the GF coefficients
collected in h ∈ RN .

Hence, we can approach the GF identification task in the
node domain by solving the convex problem

min
h

∥∥Y −∑N−1
r=0 hrS

rX
∥∥2
F
. (3)

Leveraging the frequency definition of GFs in (1), we use the
GFT matrices V−1 and Ψ and the vectorization operation to
rewrite the least-squares (LS) cost in (3) and obtain its (closed-
form) solution as

ĥ = argminh‖vec(Y)− vec(Vdiag(Ψh)V−1X)‖22
= argminh‖vec(Y)− ((V−1X)> ⊗V)vec(diag(Ψh))‖22
= argminh‖vec(Y)− ((V−1X)> �V)Ψh‖22
= argminh‖vec(Y)−Θh‖22 = Θ†vec(Y), (4)

where vec(·) denotes the vectorization operation, ⊗ the Kro-
necker product, � the Khatri–Rao product, † the pseudoin-
verse, Θ is defined as the NM×N matrix ((V−1X)>�V)Ψ,
and we have used the property vec(ABC) = (CT ⊗
A)vec(B).

From (4) we observe that estimating H is straightforward
under the assumptions of: i) Θ being full rank (i.e., the
inputs are sufficiently rich) and ii) S being perfectly known.
However, the (critical) assumption in ii) does not hold in most
practical settings. The remainder of the paper approaches the
GF identification problem assuming imperfect knowledge of
the GSO.

III. GF IDENTIFICATION WITH IMPERFECT GRAPH
KNOWLEDGE

This section introduces and discusses the problem of es-
timating a GF H =

∑N−1
r=0 hrS

r from noisy input-output
signal pairs (X ∈ RN×M ,Y ∈ RN×M ) assuming that we
have access to an imperfect GSO S̄ ∈ RN×N , which can be
modeled as

S̄ = S + ∆, (5)

where S ∈ RN×N represents the true GSO and ∆ ∈ RN×N
is a perturbation matrix. Before discussing models for the
perturbation matrix, we find illustrative to demonstrate the
impact of ∆ on the GSP problem at hand.

As pointed out in the introduction, the presence of uncer-
tainties in the topology of G is particularly relevant when
dealing with GFs. Indeed, due to the polynomial definition
of H, even small perturbations can lead to significant errors
when S̄ (and not S) is used as the true GSO. To see this
more clearly, Figs. 1(a)-(c) provide an example that illustrates
how the errors encoded in ∆ propagate across different matrix
powers, demonstrating that the discrepancies between S̄r and
Sr increase swiftly as the power r grows. More rigorously, let
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Fig. 1: (a)-(c) Absolute error for different powers of the matrix S and its perturbed version S̄. The true GSO is the adjacency matrix of an
Erdős-Rényi (ER) graph with link probability of 0.15, and S̄ is perturbed by creating and destroying links independently with a probability of
0.05. (d) Error between H and H̄, which are polynomials of S and S̄ respectively, as the order of the filter increases. The graphs considered
are ER, Small World, and the Zachary Karate club graph [39]. We consider different perturbation probabilities ε and set h = 1.

C be a positive constant such that ‖S‖ ≤ C and ‖S̄‖ ≤ C,
and define H̄ :=

∑N−1
r=0 hrS̄

r. Then, according to [34], [35],
the error generated by the perturbations is upper-bounded by

‖H̄−H‖ ≤
N−1∑
r=1

|hr|‖S̄r − Sr‖ ≤
N−1∑
r=1

|hr|rCr−1‖∆‖, (6)

where ‖·‖ denotes any matrix norm (e.g., the Frobenius norm).
Put in words, the upper-bound of the error between the true H
and the perturbed H̄ increases exponentially with the degree of
the GF. Furthermore, as we show numerically in Fig. 1(d), not
only the upper-bound but the actual error ‖H̄−H‖F may also
grow exponentially with the filter order, a behavior observed
both in synthetic and real-world graphs.

From the previous discussion, it is not surprising that the
imperfect knowledge of the graph topology is also relevant
when estimating the filter coefficients. In fact, ignoring the
errors in ∆ and attempting to estimate h solving (4) when S̄
is used in lieu of the true (unknown) S leads to a poor solution,
as we illustrate numerically in Section VII. Motivated by this,
we approach the GF identification problem from a robust
perspective by taking into account the imperfect knowledge
of the GSO. The resultant robust estimation task is formally
stated next.

Problem 1: Let G be a graph with N nodes, let S ∈ RN×N
be the true (unknown) GSO, and let S̄ ∈ RN×N be the
perturbed (observed) GSO. Moreover, let X ∈ RN×M and
Y ∈ RN×M collect the M observed input and output signals
defined over G and related by the model in (2). Our goal is to
use the triplet (X,Y, S̄) to: i) learn the GF H that best fits
the model in (2) and ii) recover an enhanced estimation of S.
To that end, we make the following assumptions: (AS1) H is a
polynomial of S [cf. (1)]. (AS2) S and S̄ are close according
to some metric d(S, S̄), i.e., the observed perturbations are
“small” in some sense.

On top of the previous two assumptions, we also consider
that the norm of the noise observation matrix W in (2)
is small, which is a standard procedure when dealing with
noise in the observations. Similar to classical GF identification
approaches, (AS1) limits the degrees of freedom of the linear
operator in (2). However, the fact of the true S being unknown
adds uncertainty to the problem and, as a result, additional
signal observations are required to achieve an identification
performance comparable to the one obtained when S̄ = S.
Regarding the recovery of the true GSO, (AS2) accounts

for the hypothesis that S̄ is a perturbed observation of S
and, hence, matrices S and S̄ are not extremely different.
Intuitively, this guarantees that “some” information about the
true S is available, so that (AS1) can be effectively leveraged.
While not exploited in our formulation, additional assumptions
constraining the GSO could also be incorporated into the
problem. Finally, the metric d(·, ·) employed to quantify the
similarity between S and S̄ should depend on the model for
the perturbation ∆, a subject that is briefly discussed next.

A. Modeling graph perturbations

The development and analysis of graph perturbation models
that combine practical relevance and analytical tractability
constitutes an interesting yet challenging open line of re-
search [28], [29]. Due to its flexibility and tractability, this
paper considers an additive perturbation model [cf. (5)], so
that the focus is constrained to understanding the structural
(statistical) properties of the matrix ∆ = S̄− S.

Consider first the case where perturbations only create or
destroy links independently. If G is an unweighted graph,
a simple approach is to consider perturbations modeled as
independent Bernoulli variables with possibly different cre-
ation/destruction probabilities. In this case, the entries of ∆
would be

∆ij =

 1 if link (i, j) is created,
−1 if link (i, j) is destroyed,

0 otherwise.
(7)

Since ∆ models the creation and destruction of links, it is
worth noting that ∆ij=1 only if Sij=0 and ∆ij=−1 only if
Sij=1. In the more general case of G being a weighted graph,
∆ij =−Sij destroys an existing link while ∆ij = z creates a
new link. Here, z is a random value sampled from a particular
distribution (typically mimicking the weight distribution of the
true S). When facing this type of perturbations, a suitable
distance function is the `0 pseudonorm

d(S, S̄) = ‖S− S̄‖0, (8)

with the `1 norm ‖S− S̄‖1 being a prudent convex relaxation.
Alternatively, rather than creating or destroying links, per-

turbations may represent uncertainty over the edge weights.
This entails the support of matrix ∆ matching that of S
and S̄, and the non-zero entries of ∆ being sampled from
a distribution that models the observation noise. For example,



5

if the noise is zero-mean, Gaussian and white, it holds that
∆ij ∼ N (0, σ2) when Sij 6= 0 and ∆ij = 0 when Sij = 0.
Under this setting, an appropriate distance metric is given by

d(S, S̄) = ‖SE − S̄E‖22, (9)

where SE and S̄E are vectors containing the non-zero entries
(edges) in S and S̄. Additionally, one can have setups where
the two types of perturbations are present. That is, perturba-
tions may create and destroy links while the actual value of the
existing links is also uncertain. In such a case, a combination
of `1 and `2 norms like in elastic nets [40] is adequate.

The models described thus far assume that perturbations are
independent across edges, but in some scenarios perturbations
may be correlated. Consider for example a communication
network. If the power supply of a node stalls, the signal-
to-noise ratio of all its links will be poor, and hence, links
involving that node will be more likely to fail. Perturbations
dependent across links can be modeled by means of a mul-
tivariate correlated Bernoulli distribution, an Ising model, or
more sophisticated random graph models [41]. When prior
information about the dependence of the perturbations is avail-
able, it can be incorporated into the function d(S, S̄) to extract
the information encoded in S̄ more effectively. Additionally,
in applications where perturbations due to adversarial attacks
are a concern, this distance can be designed to minimize the
harmful influence of attackers.

IV. ROBUST GF IDENTIFICATION

This section presents the optimization problem and the
proposed algorithm to estimate H and S under the setting
described in Problem 1. Given the matrices X, Y, and S̄ (recall
that S̄ = S + ∆), we approach the robust GF identification
task by means of the following non-convex optimization

Ĥ, Ŝ = argminH,S ‖Y −HX‖2F + λd(S, S̄) + β‖S‖0
s. to : S ∈ S, SH = HS, (10)

where s. to stands for subject to and S represents a (desired)
family of GSOs such as the set of adjacency matrices with no
self-loops (S is the set of matrices with non-negative entries
whose diagonal entries are zero) or the set of combinatorial
graph Laplacians (matrices with non-positive off-diagonal
entries and zero row-sum). The first term in the objective
promotes the linear input-output relation in (2), encouraging
the norm of W = Y − HX to be small. The use of the
Frobenius norm is well-justified when the observation noise
is Gaussian and white, but other types of noise could be
accommodated by using a different norm. The second term
incorporates the assumption (AS2) as a regularizer to obtain
an estimate Ŝ that is related to the given GSO S̄. The `0
pseudonorm in the third term promotes the sparsity of Ŝ, a
canonical assumption when learning the graph topology [21],
[23]. Clearly, if additional information about S is available,
it can be incorporated into (10), either as a regularizer (e.g.,
a statistical prior quantifying the log-likelihood of a class of
GSOs) or as a constraint that must be satisfied (e.g., the GSO
being symmetric). The latter is indeed the role of S ∈ S in
(2). Finally, the (key) constraint SH = HS captures the fact

that H is a polynomial of the true S (AS1), which constitutes
the only assumption about the GF being estimated. Note first
that the constraint is pertinent, if H is a polynomial of S,
then H and S have the same eigenvectors and, as a result,
their product commutes [11]. More importantly for the GF-
identification at hand, when the GSO is perfectly known the
model

H = h0I + h1S + ...+ hN−1S
N−1 (11)

is linear in the unknown h. As a result, a formulation that
estimates h directly (as carried out in classical non-robust
approaches) is well-motivated. However, when both h and
S are unknown, the powers of S render the model highly
non-linear, challenging the development of a tractable solution
that jointly estimates h and S. Our formulation bypasses this
problem by recasting the optimization variables as H and S,
leading to the (more tractable) bilinear constraint in (10) and,
at the same time, harnessing the fact that H is a polynomial
of S. Nonetheless, if learning h is the ultimate goal, this can
be readily achieved from Ĥ and Ŝ by vectorizing (11) as

vec(H) =
(
vec(I), vec(S), ..., vec(SN−1)

)
h, (12)

and then finding the filter coefficients as

ĥ =
(
vec(I), vec(Ŝ), ..., vec(ŜN−1)

)†
vec(Ĥ). (13)

The approach put forth in (10) has two main advantages.
First, while most works formulate the recovery of the GF in
the spectral domain relying on the eigendecomposition of the
GSO, our formulation operates in the vertex domain. Working
on the spectral domain would imply, first of all, that the GSO
S is diagonalizable, which may not be the case for directed
graphs. It also requires finding the Vandermonde GFT matrix
Ψ. Since this matrix involves high-order polynomials of the
eigenvalues of the GSO, it is prone to numerical instability and
error accumulation [6]. Even if approaches that bypass this
issue by estimating the graph-frequency response h̃ = Ψh in
lieu of h are adopted, the estimation would still be challenging
since they require computing the eigenvectors V, which are
known to be highly sensitive to errors in the GSO (especially
those associated with small eigenvalues)[42], [24]. On top
of this, characterizing the spectral errors and incorporating
those to the optimization is not a trivial task. The second
advantage emanates from casting the true GSO S as an explicit
optimization variable. As already explained, this approach is
robust to error accumulation and facilitates the incorporation of
the (additive) effect of the perturbations into the optimization.
An additional benefit is that we obtain a denoised version (en-
hanced estimation) of the true GSO, which can be practically
relevant in most real-world applications.

In a nutshell, in the context of robust GF identification,
choosing a formulation that: i) works entirely in the vertex
domain, ii) considers S as an explicit optimization variable,
and iii) codifies the GF structure via the constraint HS = SH,
exhibits multiple advantages. However, it must be noted that
the number of optimization variables is larger than in classical
approaches (adding computational complexity), and the bilin-
ear filtering constraint HS = SH, while more tractable than
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its polynomial counterpart, is still non-convex. Alternatives to
deal with these issues are discussed in later sections.

A. Alternating minimization for robust GF identification

This section presents a systematic efficient approach to
find an approximate solution to (10). Since the goal is to
design specific algorithms, from this section onwards, we
particularize the GSO distance to d(S, S̄) = ‖S − S̄‖0, so
that, according to the discussion in Section III-A, the focus
is on graph perturbations that create and destroy links. In
addition to its practical relevance, the reason for choosing the
`0 pseudonorm as a distance is also motivated by its more
intricate (challenging) structure. Indeed, the algorithms pre-
sented next can be easily adapted to (more tractable) distances
associated with alternative perturbation models discussed in
Section III-A. Having clarified this, the main obstacle to
solving (10) is its lack of convexity, which emanates from two
different sources: (s1) the `0 pseudonorms in the objective,
and (s2) the bilinear constraint involving S and H. Next, we
explain the strategy adopted to solve (10) via a succession of
convex problems.
• Regarding (s1), it is customary to rely on the the `1 norm

as a convex surrogate to promote sparsity. However, in
relevant settings this norm may not be enough to obtain
sparse solutions [43], [44] and more sophisticated (non-
convex) alternatives may be preferred. The one chosen
in this paper is to approximate the `0 pseudonorm of a
generic matrix Z ∈ RI×J using the logarithmic penalty

‖Z‖0 ≈ rδ(Z) :=

I∑
i=1

J∑
j=1

log(|Zij |+ δ), (14)

with δ being a small positive constant [43]. The non-
convexity of the logarithm can be handled efficiently
by relying on a majorization-minimization approach
(MM) [45], which considers an iterative linear approx-
imation via a first order Taylor approximation, leading
to an iterative reweighted `1 norm. It is worth noting
that, since we will consider an iterative algorithm to
deal with the bilinearity of (10), the iterative nature of
the reweighted `1 norm will not impose a significant
computational burden. Details on the exact form of this
sparse regularizer will be provided soon (see equation
(18) in the graph denoising step).

• To deal with the bilinear terms in (s2), we adopt an
alternating optimization approach [46] resulting in an
iterative algorithm where the optimization variables H
and S are updated in two separate iterative steps. At each
step, we optimize over one of the optimization variables
with the other remaining fixed, resulting in two simpler
problems that can be solved efficiently. The details about
the specific steps will be provided shortly (see Step 1 and
Step 2 below and, in particular, equations (16) and (18)).

Taking into account these considerations, the first task to
implement our approach is to rewrite the problem in (10) as

min
S∈S,H

‖Y−HX‖2F+λrδ1(S−S̄)+βrδ2(S)+γ‖SH−HS‖2F , (15)

Algorithm 1: Robust GF id. with graph denoising.
Input: X, Y, S̄, γ, λ, β, δ1, δ2
Output: Ĥ, Ŝ.

1 Initialize S(0) as S(0) = S̄.
2 for t = 0 to tmax − 1 do
3 Compute H(t+1) by solving (17) fixing S(t).
4 Update Ω(t) and Ω̄(t) as in (19).
5 Compute S(t+1) by solving (18) using H(t+1), Ω(t), and

Ω̄(t).
6 end
7 Ĥ = H(tmax), Ŝ = S(tmax).

where we recall that rδ(·) was introduced in (14). Note that:
i) the logarithmic penalty has also been used to promote spar-
sity in the term S− S̄ since we selected the `0 pseudonorm as
the distance between S and S̄; and ii) the constraint SH = HS
was relaxed and rewritten as a regularizer, a formulation more
amenable to an alternating optimization approach.

The next task is to solve (15) by means of an iterative
algorithm that blends techniques from alternating optimization
and MM approaches. Specifically, for a maximum of tmax
iterations, we run the following two steps at each iteration
t = 0, ..., tmax − 1.

Step 1: GF Identification. We estimate the block of N2

variables collected in H while the current estimate of the
GSO, denoted as S(t), remains fixed. This results in the convex
optimization problem

H(t+1) = arg min
H
‖Y−HX‖2F +γ‖S(t)H−HS(t)‖2F , (16)

an LS minimization whose closed-form solution is

vec(H(t+1))=
(
XX>⊗I+γ(SS>⊕S>S−S>⊗S>−S⊗S)

)−1
× (X⊗ I)vec(Y). (17)

Here, ⊗ is the Kronecker product, ⊕ is the Kronecker sum,
and I is the identity matrix of size N×N . Also note that (17)
omitted the iteration superscript in S(t) to alleviate notation.

Step 2: Graph Denoising. Following an MM scheme, we op-
timize an upper bound of (15) where the logarithmic penalties
are linearized. Then, we estimate the block of N2 variables
collected in S while the current estimate of the GF H(t+1)

remains fixed. This yields

S(t+1) = arg min
S∈S

N∑
i=1

N∑
j=1

(
λΩ̄

(t)
ij |Sij − S̄ij |+ βΩ

(t)
ij |Sij |

)
+ γ‖SH(t+1) −H(t+1)S‖2F , (18)

where Ω̄(t) and Ω(t) are the derivatives of the logarithm
function for the Taylor approximation. These are computed
in an entry-wise fashion based on the GSO estimate from the
previous iteration as

Ω̄
(t)
ij =

(
|S(t)
ij − S̄ij |+ δ1

)−1
, Ω

(t)
ij =

(
|S(t)
ij |+ δ2

)−1
, (19)

where δ1 and δ2 are small positive constants to prevent a
division by 0. Recall that if a different function d(S, S̄) were
considered then the terms related to the reweighted `1 norm
of S− S̄ would be replaced by the selected function.
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A relevant element in the proposed algorithm is the weight
γ. If γ is set to a value that is too large, the GF estimated in
the first iteration H(1) will be an (almost exact) polynomial
of S̄ so that the algorithm will converge quickly to the same
solution as that of the non-robust design [cf. (10) with S = S̄].
On the other hand, if γ is too close to zero the two problems
decouple and the solution converges quickly to that of the
two separated problems [cf. (16) and (18) with γ = 0]. In
this context, schemes that start with a small γ to encourage
the exploration during the warm-up phase, and then increase
γ as the iteration index grows to guarantee that the final Ĥ
and Ŝ commute are a suitable alternative for the setup at
hand. In any case, the value of the parameter must be chosen
carefully, paying attention both to the initial value of γ and to
the strategy followed to increase it. The approach that works
best is subject to the subtleties of the application at hand and,
in this work, we dealt with it as a hyperparameter tuning task.

The overall alternating algorithm is summarized in Alg. 1,
where a fixed number of iterations is considered. The al-
gorithm starts by initializing the GSO as S(0) = S̄ (other
options, such as setting S(0) to the all 1s matrix, could also
be used), and then, it iterates between Steps 1 and 2 for a fixed
number of epochs (or until some stopping criterion is met). In
this regard, a key feature of the algorithm is its guaranteed
convergence to a stationary point, as is formally stated next.

Theorem 1. Denote as f(H,S) the objective function in (15),
and let Z∗ be the set of stationary points of f . Let z(t) =
[vec(H(t))>, vec(S(t))>]> represent the solution provided by
Alg. 1 after t iterations. Assuming that i) the GSO does not
have repeated eigenvalues and ii) every row of X̃=V−1X has
at least one nonzero entry, then z(t) converges to a stationary
point of f as t goes to infinity, i.e.,

lim
t→∞

d(z(t) |Z∗) = 0,

with d(z |Z∗) := minz∗∈Z∗ ‖z− z∗‖2.

The proof relies on the convergence results shown in [47,
Th. 1b] and the details are provided in App. A. Note that
the convergence of the algorithm was not self-evident since
the original optimization problem in (15) is non-convex and
Step 2 is minimizing an upper-bound of the original objective
function. The sufficient conditions in i) and ii) guarantee that
every graph frequency is excited so that the GF is identifiable
and (16) has a unique solution, which is a requirement for
convergence (see Prop. 1 in App. A for details). Clearly,
condition ii) is fulfilled even for M = 1 if all the entries
of the vector x̃ = V−1x are nonzero. Alternatively, when
M > 1 and ii) is satisfied, condition i) can be relaxed (for
further details, see App. A).

Finally, one drawback of the proposed robust GF identi-
fication algorithm is that the optimization problems in (16)
and (18) may be slow when dealing with large graphs, since
its computational complexity scales with the number of nodes
as N7. However, we will mitigate this issue by introducing
an efficient implementation that reduces the computational
complexity of the overall algorithm (see Section VI).

B. Leveraging stationary observations

The alternating convex approximation in Alg. 1 exploits
the fact that X and Y are linearly related via H, which is a
polynomial of S. However, in setups where the perturbations
in S̄ are very large, obtaining accurate estimates of S and h
from Ĥ may still be challenging. One alternative to overcome
this issue is to leverage the additional structure potentially
present in our data. Indeed, as detailed in the introduction,
it is common to consider setups where the signals exhibit
additional properties depending on the supporting graph, with
notable examples including graph-bandlimited signals [4], [5],
diffused sparse graph signals [13], [14], or graph stationary
signals [38], [48], [22]. Clearly, incorporating such additional
information into the optimization problem would enhance its
estimation performance.

This section explores this path, restricting our attention to
the case where the observed signals are stationary on G. The
motivation for this decision is that, due to the tight connection
between graph-stationary signals and GFs (see Section II),
the formulation in (15) and Alg. 1 require relatively minor
modifications to incorporate the assumption of X and Y being
stationary on S, leaving the incorporation of additional signal
models as future work. To formulate the updated problem,
recall that the covariance matrix of a stationary graph signal
can be expressed as a polynomial of the GSO (see Section II)
and, as a consequence, both matrices commute. Therefore,
incorporating stationarity calls for modifying (15) as

min
S∈S,H

‖Y−HX‖2F + λrδ1(S−S̄) + βrδ2(S) + γ‖SH−HS‖2F
s. to : ‖CyS−SCy‖2F ≤εy, ‖CxS−SCx‖2F ≤εx, (20)

where Cy and Cx denote the covariance matrices of Y
and X, respectively. If the covariances are perfectly known,
then the corresponding parameters εy and εx are set to zero.
Alternatively, if the Cy and Cx are the sample estimates of
the true covariances, then the values of εy and εx must be
selected based on the quality of the estimators (accounting,
e.g., for the number of available observations M ).

The constraints in (20) capture the graph-stationarity as-
sumption by promoting the commutativity with the true GSO.
Therefore, such constraints are considered in the graph de-
noising step [cf. (18)]. In addition, since Cy, Cx and H
are all polynomials of S, the equalities CyH = HCy and
CxH = HCx must hold as well, so it is also possible
to augment the GF identification step [cf. (16)] with the
corresponding constraints. While in the interest of brevity,
we do not spell out all the possible formulations here, the
impact of several of these alternatives is numerically analyzed
in Section VII. Finally, it is important to note that, since the
stationarity constraints are quadratic and convex, the conver-
gence described in Theorem 1 also holds true for the iterative
algorithm associated with (20).

V. JOINT ROBUST IDENTIFICATION OF MULTIPLE GFS

In Section IV, we approached the problem of identifying
a single GF H defined over a single graph G. However,
in a variety of situations we encounter several signals (or
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signals with multiple features) whose dynamics are modeled
by different processes over the same graph G. Consider for
example a network of weather stations measuring the temper-
ature, humidity, and wind speed. Each of these measurements
corresponds to observations of a different process, all of them
taking place over a common graph. Intuitively, since all the
GFs are related by the underlying graph G, we propose a joint
GF identification approach that exploits this relationship to
enhance the quality of the estimation. We focus first on the
case where the input-output signals associated with each GF
(graph process) are observed separately. Later in the section,
we address a slightly more involved case where the GFs model
the (AR) dynamics of a time-varying graph signal and, as a
result, the observed signals are intertwined.

Consider a set of K unknown GFs {Hk}Kk=1, all represented
by N × N matrices and defined over the graph G. To be
consistent with Problem 1, we assume that: i) the true S is
unknown and only the perturbed version S̄ is available; ii) all
Hk are polynomials of the same GSO S; and iii) for each
k, matrices Xk ∈ RN×Mk and Yk ∈ RN×Mk collect the
observed input and output graph signals and are related via

Yk = HkXk + Wk, (21)

with Hk =
∑N−1
r=0 hr,kS

r and Wk being a white random
matrix capturing observation noise and model inaccuracies.
Then, we aim at estimating the GFs {Hk}Kk=1 in a joint fashion
while taking into account the inaccuracies in the topology of
G. This is summarized in the following problem statement.

Problem 2: Let G be a graph with N nodes, let S ∈ RN×N
be the true (unknown) GSO, and let S̄ ∈ RN×N be the
perturbed (observed) GSO. Moreover, let Xk ∈ RN×Mk and
Yk ∈ RN×Mk collect the Mk observed input and output
signals associated with k = 1, ...,K network processes, all de-
fined over G and adhering to the model in (21). Our goal is to
use {Xk}Kk=1, {Yk}Kk=1, and S̄ to learn the K GFs {Hk}Kk=1

that best fit the data, along with an enhanced estimation of
S. To that end, we make the following assumptions: (AS2)
S and S̄ are close according to some metric d(S, S̄), i.e.,
the observed perturbations are “small” in some sense. (AS3)
Every Hk is a polynomial of S.

Assumption (AS2), which was also considered in Problem
1, promotes the tractability of the problem by ensuring that S
and S̄ are related. As discussed in Section III-A, the distance
function d(·, ·) must be selected depending on the perturbation
model at hand. (AS3) captures the key fact that all the matrices
Hk are GFs of the same GSO, establishing a link that can
be leveraged via a joint estimation (optimization) of the K
GFs. Implementing an approach similar to that in Section IV
(i.e., working on the vertex domain, considering the true GSO
as an explicit optimization variable, accounting for the GF
structure via a commutativity constraint, and assuming that
the graph perturbations create and destroy links), the multi-

filter counterpart to (15) that codifies Problem 2 is

min
S∈S,{Hk}Kk=1

K∑
k=1

αk‖Yk −HkXk‖2F +λrδ1(S− S̄)

+ βrδ2(S) +

K∑
k=1

γ‖SHk−HkS‖2F . (22)

Ideally, the value of the positive weight αk must be selected
based on the norm of Wk (e.g., prior information on the
noise level and the number of signal pairs Mk). If none is
available, then αk = 1 for all k. Equally important, the fact of
pursuing a joint optimization implies that each Hk contributes
with a regularization term ‖SHk − HkS‖2F promoting the
commutativity of the k-th GF with the single S. Intuitively,
having the same S in all these terms couples the optimization
across k and contributes to reduce the uncertainty over S,
leading to enhanced estimates of both S and {Hk}Kk=1. As
a result, the joint GF identification approach is expected to
provide better results than estimating each Hk separately
by solving K instances of (15). We validate this hypothesis
numerically via the experiments in Section VII.

Following a motivation similar to that in the previous
section, we deal with the non-convex minimization in (22)
designing an alternating optimization algorithm that breaks
the bilinear terms SHk and HkS, and approximates the
logarithmic terms with a linear upper-bound. The resulting
algorithm solves iteratively the following two subproblems for
t = 1, ..., tmax iterations.

Step 1: Multiple GF Identification. Given the current es-
timate S(t), we solve the optimization problem in (22) with
respect to each H(k). This yields

H
(t+1)
k =argminHk

αk‖Yk−HkXk‖2F+γ‖S(t)Hk−HkS
(t)‖2F ,

(23)

whose closed-form solution can be found using (17) replacing
γ with γ/αk, X with Xk, and Y with Yk. Note that since
the only coupling across GFs is via the GSO, (23) estimates
each H

(t+1)
k separately from the other GFs, solving K LS

problems (each with N2 unknowns). Furthermore, if multiple
processors are available, (23) can be run in parallel across k.

Step 2: Graph Denoising. Given the current estimates of the
GFs {H(t+1)

k }Kk=1, we follow an MM scheme that, minimizing
a linear upper-bound of the logarithmic penalties, yields the
estimate of the GSO via

S(t+1) = argminS∈S

N∑
ij=1

(
λΩ̄

(t)
ij |Sij − S̄ij |+ βΩ

(t)
ij |Sij |

)
+

K∑
k=1

γ‖SH
(t+1)
k −H

(t+1)
k S‖2F , (24)

where Ω and Ω̄ are obtained as in (19).
The solution to Problem 2 is simply given by Ŝ = S(tmax)

and Ĥk = H
(tmax)
k for every k. Similar to (15), convergence

to a stationary point of (22) is guaranteed.
Corollary 1: Denote as f({Hk}Kk=1,S) the objective func-

tion in (22). If z(t) = [vec(H
(t)
1 )>, ..., vec(H

(t)
K )>, vec(S)>]>
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represents the solution provided by the iterative algorithm
(23)-(24) after t iterations and every Xk excites all graph
frequencies, then z(t) converges to a stationary point of f as
the number of iterations t goes to infinity.

The key to prove Theorem 1, which established the con-
vergence to a stationary point for the robust estimation of a
single GF, was to show that the optimization problem in (15)
and the proposed algorithm satisfied the conditions in [47,
Th. 1b]. The formulation we put forth for the multi-filter case
resembles closely that of the single-filter case, and, as a result,
it is not difficult to show that those conditions also hold true
for the problem in (22) (see App. A for details).

The discussion and formulations in Section IV-B dealing
with incorporating additional information about the input-
output signals into the optimization are also pertinent for the
setup in this section. The details of such a formulation are
omitted for brevity, but it will be explored in our simulations.

A. Joint GF identification for time series

A slightly different, practically relevant, setup where multi-
ple GFs need to be estimated is that of graph-based multivari-
ate time series. In that setup, each variable is associated with a
node of the graph and the multiple graph-signal observations
correspond to different instants of a time-varying graph signal.
AR and moving-average (MA) modeling of time series has
a long tradition, with common approaches to decrease the
degrees of freedom including limiting the memory of the series
and assuming that matrices of coefficients relating different
time instants are low rank [49]. In the context of graph signals
and network processes, a natural approach is to constrain the
matrices of coefficients to be GFs, all defined over the same
graph [50], [51]. This section introduces a variation of the
problem in (22) tailored to this setup.

To introduce the multiple-graph identification problem for-
mally, let Xκ and Yκ denote a collection of Mκ graph
signals corresponding to measurements of a network process
for κ = 1, ..., κmax time instants. Suppose now that Yκ can
be accurately modeled by an AR dynamics with memory K
so, at every instant κ, the observations Yκ satisfy the equation

Yκ =

K∑
k=1

HkYκ−k + Xκ, with Hk =

N−1∑
r=0

hr,kS
r, (25)

where Xκ is the exogenous input, and the GF Hk models the
influence that the signal observations from the time instant
κ− k exert on the (current) signal at time κ.

Suppose now that: i) we have access to an estimated (im-
perfect) graph S̄; ii) the value of the graph signals at different
time instants is available; and iii) our goal is to estimate the set
of matrices (GFs) {Hk}Kk=1 in (25) that describe the dynamics
of the multivariate time series. This can be accomplished as

min
S∈S,{Hk}Kk=1

κmax∑
κ=K+1

∥∥∥Yκ −Xκ −
K∑
k=1

HkYκ−k

∥∥∥2
F

+λrδ1(S− S̄)+βrδ2(S)+

K∑
k=1

γ‖SHk−HkS‖2F . (26)

The main difference relative to (22) is in the first term, which
accounts for the new observation model [cf. (21) vs. (25)].
Note that we assume that the exogenous input Xκ is observed.
If that were not the case, it would suffice to remove Xκ from
the objective (possibly updating the Frobenius norm in case
statistical knowledge about Xκ were available). Albeit the
differences, the problem in (26) is closely related to (22), with
the sources of non-convexities being the same. As a result, we
approach its solution with a modified version of Alg. 1 which,
at each iteration t, runs two steps. In the first one, we estimate
each of the K GFs by solving

H
(t+1)
k =argminHk

κmax∑
κ=K+1

∥∥∥Yκ−Xκ−HkYκ−k−
∑
k′<k

H
(t+1)
k′ Yκ−k′

−
∑
k′>k

H
(t)
k′ Yκ−k′

∥∥∥2
F

+

K∑
k=1

γ
∥∥∥S(t)Hk −HkS

(t)
∥∥∥2
F
, (27)

which is different from the previous GF identification step [cf.
(23)]. In contrast, the graph-denoising step in (24) remains the
same. Note that (27) updates each GF separately in a cyclic
way by solving an LS problem with N2 unknowns. Alternative
implementations include using H

(t)
k′ in lieu of H

(t+1)
k′ for all

k′ < k (so that a parallel implementation is enabled) as well
as considering a single LS problem with KN2 unknowns.

Finally, it is worth emphasizing that the formulation in-
troduced in this section can be used as a starting point to
design more general robust schemes for multivariate time
series defined over a graph. Dealing with both AR and MA
matrices, assuming that the memory of the system is unknown,
having only partial/statistical information on the exogenous
input, and observing the signals at only a subset of nodes
are all examples of setups of interest. Since our goal in this
section was to demonstrate the relevance of a robust multiple
GF formulation in the context of multivariate time series,
to facilitate exposition we restricted our discussion to the
relatively simple case in (25), but a variety of setups (including
those previously listed) will be subject of our future work.

VI. EFFICIENT IMPLEMENTATION OF THE ROBUST GF
IDENTIFICATION ALGORITHM

The algorithms proposed up to this point are able to find a
solution to the robust GF identification problem in polynomial
time. However, their computational complexity scales with
the number of nodes as N7. To facilitate the deployment in
setups where N is large, this section puts forth an efficient
implementation that reduces the number of operations.

The new algorithm (summarized in Alg. 2 ) preserves the
core structure of Alg. 1, with an outer loop that, at each
iteration, runs two steps: one involving the estimation of the
GF(s) and another one dealing with the estimation of the GSO.
The main difference is that now, instead of finding the exact
solution to those two problems, we obtain an approximate
solution. While the details, which are step-dependent, will be
specified in the next paragraphs, the overall idea is that for
each of the steps we run a few simple (gradient/proximal)
iterations. Although Alg. 2 involves two nested loops, the
complexity of the problems in the inner loop is cut down
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significantly, so that the overall computational overhead is
reduced.

To be specific, we describe next the two steps that, at each
iteration of the outer loop t=0, ..., tmax−1, Alg. 2 runs.

Step 1: Efficient GF Identification. Solving the GF-
identification step with the closed-form solution presented in
(17) involves inverting a matrix of size N2 × N2, which
requires O(N6) operations. To explain our alternative imple-
mentation, let f1(H|S(t)) denote the objective function in (16).
Since f1 is strictly convex and smooth, it can be efficiently
optimized using a gradient descent approach [52].

To that end, for each iteration t of the outer loop, we
define the inner iteration index τ as well as the sequence of
variables Ȟ(τ) with τ = 0, ..., τmax1

, which is initialized as
Ȟ(0) = H(t). With this notation at hand, at each iteration
τ = 0, ..., τmax1 − 1 of the inner loop, we update Ȟ(τ+1) via

Ȟ(τ+1) = Ȟ(τ) − µ∇f1(Ȟ(τ)|S(t)). (28)

Here, µ > 0 is the step size and ∇f1 denotes the gradient of
f1 with respect to H, which is given by

∇f1(H|S(t))=2
(
HXX>−YX>

)
+2γ

(
S(t)>(S(t)H−HS(t))−(S(t)H−HS(t))S(t)>

)
. (29)

When the τmax1
gradient updates are computed, we conclude

the GF-identification step by setting H(t+1) = Ȟ(τmax1 ).
Computing each gradient involves multiplying N ×N ma-

trices, leading to a computational complexity of O(τmax1
N3),

which may go down to O(τmax1N
2.4) if an efficient multi-

plication algorithm is employed [53]. For large values of N ,
this complexity is substantially smaller than that required to
find the inverse of an N2 ×N2 matrix.

Step 2: Efficient graph denoising. Since the optimization in
(18) involves N2 variables (the entries in S), using an off-
the-shelf convex solver incurs a computational complexity of
O(N7) [52]. Inspired by the Lasso regression algorithm [54],
we optimize individually over each entry Sij in an iterative
manner. The main idea is running multiple rounds of N2 effi-
cient scalar optimizations rather than dealing with a single but
demanding N2-dimensional problem. To provide the details of
the scheme developed to estimate S, we need to specify the set
of constraints S and introduce some definitions. Let us focus
on the set of adjacency matrices SA := {S|Sij ≥ 0, Sii = 0}
and define the vector s := vec(S), the vector s̄ := vec(S̄), and
the matrix Σ(t) := H(t+1)>⊕−H(t+1). With these definitions
in place, the minimization in (18) is equivalent to solving

min
s

N2∑
i=1

(
λω̄

(t)
i |si − s̄i|+ βω

(t)
i si

)
+ γ‖Σ(t)s‖22,

s. to : s ≥ 0, sD = 0, (30)

where sD collects the elements in the diagonal of S, and the
vectors ω̄(t) and ω(t) are computed according to (19) but with
s̄(t) and s(t) in lieu of S̄(t) and S(t). The constraint sD =
0, implies that only the N2 − N elements of s representing
the off-diagonal entries of S need to be optimized. The key

point to find those N2−N values is to leverage that the non-
differentiable part of the cost in (30) is separable across si,
postulate N2 −N scalar optimization problems (coupled via
the `2 term in the cost), and address the optimization following
a projected cyclic coordinate descent scheme.

To define clearly the operation of Step 2 at each iteration t
of the outer loop, we need to introduce some notation. First,
let us denote as τ the iteration index for the inner loop, define
the sequence of variables š(τ) where τ = 0, ..., τmax2 , and
initialize the sequence as š(0) = s(t). Moreover, with ` 6∈ D
denoting an index of the off-diagonal elements of the GSO, let
σ` ∈ RN2

denote the associated `-th column of Σ(t), ω` ≥
0 and ω̄` ≥ 0 the associated entries of ω(t) and ω̄(t), and
š
(τ)
` ∈ R the associated entry of š(τ) (note that dependence on
t was omitted to facilitate readability). Then, at every iteration
τ = 0, ..., τmax2 − 1 of the inner loop, Alg. 2 optimizes over
each š` separately in a cyclic (successive) way. The advantage
of this approach is that the solution to the scalar optimization
over š` is given in closed form by the following projected
soft-thresholding operation

š
(τ+1)
` =


(
−λ̄` + u

(τ)
`

)+
if s̄` < −λ̄` + u

(τ)
` ,(

λ̄` + u
(τ)
`

)+
if s̄` > λ̄` + u

(τ)
` ,

s̄` otherwise,

(31)

with λ̄` =
λω̄`

γσ>` σ`
and u

(τ)
` =

−βω` − γσ>` r
(τ)
`

γσ>` σ`
.

Here, (·)+ denotes the operation (x)+ = max(0, x), and

r
(τ)
` :=

∑
j<`

σj š
(τ+1)
j +

∑
j>`

σj š
(τ)
j . (32)

Note that (31) is a soft-thresholding operation with respect to
the term |si− s̄i|. Also, the constraints in SA are satisfied due
to the projection operator (·)+ := max{·,0}, and because we
do not optimize over the elements of the diagonal of S.

At first sight, computing each š` seems to require roughly
N2 operations, resulting in a computational complexity of
O(N4) for estimating the entire vector s. However, closer ex-
amination of vectors σ` reveals that at most 2N of their entries
are non-zero since they are the columns of the Kronecker sum
of two N × N matrices, resulting in a final computational
complexity of O(2τmax2N

3) for the graph denoising step.
The pseudocode describing the efficient implementation of

Steps 1 and 2 is provided in Alg. 2. The summary is as follows.
We postulate a nested algorithm with two loops. The outer loop
runs tmax iterations. The inner loop runs two steps: Step 1,
with τmax1

iterations, and Step 2, with τmax2
iterations. While

the complexity for Alg. 1 scaled as O(tmaxN
7), with tmax

being typically small, the overall computational complexity
of Alg. 2 is roughly O(tmax(τmax1 + τmax2)N3), which
is encouraging, since 2N2 variables are optimized and it
scales with N significantly better than Alg. 1. Moreover, note
that the operations required by the non-robust solution in
(4) is O(MN2), which is comparable to the computational
complexity of our robust algorithm when M ∝ N . Solving
Steps 1 and 2 optimally requires setting large values for τmax1

and τmax2
. Nonetheless, we observe that in most tested setups
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Algorithm 2: Reduced-complexity robust GF identifica-
tion.

Input: X, Y, S̄, γ, λ, β, δ1, δ2, µ
Output: Ĥ, Ŝ.

1 Initialize H(0) and S(0)

2 s̄ = vec(S̄)
3 for t = 0 to tmax − 1 do

// GF-identification step
4 Ȟ(0) = H(t)

5 for τ = 0 to τmax1 − 1 do
6 Ȟ(τ+1) = Ȟ(τ) + µ∇f1(Ȟ(τ)|S(t))
7 end
8 H(t+1) = Ȟ(τmax1

)

// Graph denoising step

9 [σ1, ...,σN2 ] = H(t+1)> ⊕H(t+1)

10 š(0) = vec(S(t))

11 Update ω̄(t), ω(t) via (19) using s̄ and š(0)

12 for i = 0 to τmax2 − 1 do
13 for ` 6∈ D do
14 Obtain r

(τ)
` via (32)

15 Obtain š(τ+1)
` via (31) using σ`, r

(τ)
` , ω`, ω̄`

16 end
17 end
18 S(t+1) = unvec(̌s(τmax2

))
19 end
20 Ĥ = H(tmax), Ŝ = S(tmax).
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Fig. 2: Error of the estimated filter coefficients ĥ as the order of the
filter increases for robust and non-robust GF identification methods.

the approach of setting small values for τmax1 and τmax2 (at
the cost of setting a slightly higher value for tmax) typically
yields a faster convergence. Finally, implementations where
the number of iterations is not fixed but selected based on
some convergence criterion are also sensible alternatives.

We close the section noting that we developed Alg. 2
for the setting described in Problem 1 because the notation
was simpler and facilitated the discussion. Nonetheless, an
analogous approach may be followed for the joint estimation
of K GFs (cf. Section V), resulting in an algorithm with
complexity per GF similar to that for Alg. 2.

VII. NUMERICAL RESULTS

This section discusses several numerical experiments to
gain insights and assess the performance of the robust GF
identification algorithms. Unless specified otherwise, for a
variable of interest Ξ, we report its normalized estimation error
defined as

nerr(Ξ̂,Ξ) := ‖Ξ̂−Ξ‖2F /‖Ξ‖2F , (33)

where Θ̂ and Θ denote the estimated and the true value,
respectively. The code implementing our algorithms and the
experiments presented next are available on GitHub (https://
github.com/reysam93/graph denoising). The interested reader
is referred there for additional details.

A. Synthetic experiments

We start by evaluating our algorithms with synthetic data,
which is key to gain intuition. Unless otherwise stated, graphs
are sampled from an Erdős-Rényi (ER) random graph model
with a link probability of p = 0.2 and N = 20 nodes; S̄
is obtained by randomly creating and destroying 10% of the
links in S; filter coefficients h are sampled independently
and uniformly at random from [−1, 1]; M = 50 signals xm
and ym, collected in the matrices X and Y, are generated
according to (2), with the columns of X being drawn from a
multivariate Gaussian distribution N (0, I), so the signals Y
are stationary on S; signals in Y are corrupted with white
Gaussian noise with a normalized power of ηW = 0.05; and
the reported error corresponds to the median of nerr across
64 realizations of graphs and graph signals.

Test case 1. The first experiment evaluates the influence of
perturbations as the order of the GF R increases. The number
of observed pairs of signals considered is M = 100 and 10%
of the edges in S are perturbed. Results are reported in Fig. 2,
where the x-axis represents R and the y-axis nerr(ĥ,h). The
algorithms considered are: (i) the GF identification algorithm
that ignores perturbations [see (4)], denoted as “FI”; (ii) the
robust GF identification algorithm from Alg. 1 (“RFI”); (iii) a
variation of “RFI” where the reweighted `1 norm is replaced
with the standard `1 norm (“RFI-`1”); and (iv) the robust
GF identification algorithm accounting for the stationarity of
Y (“RFI-ST”). First, we observe that the error of the “FI”
algorithm, while small for low values of R, increases rapidly
as R grows. This is aligned with the discussion of high-
order polynomials in Section III and illustrates the merits
of the robust algorithms. Moreover, “RFI-ST” presents the
best performance illustrating the importance of exploiting
additional structure when it is available. Finally, comparing
the error of “RFI” and “RFI-`1” showcases the benefits of
replacing the `1 norm with its reweighted version.

Test case 2. The next experiment tests the influence of
different types of perturbations in the robust and non-robust
GF identification algorithms. Fig. 3 illustrates the quality
of the estimated GF Ĥ and the denoised GSO Ŝ as the
ratio of perturbed links in S̄ increases. Graphs are sampled
from the small world [55] random graph model and S̄ is
obtained by creating new links, destroying existing links,
or simultaneously creating and destroying links, which are
respectively denoted as “C”, “D”, and “C/D” in the legend.
Analyzing the normalized error of Ĥ reported in Fig. 3(a),
we observe that the robust algorithm clearly outperforms
the non-robust “FI” alternative. Interestingly, the results also
demonstrate that destroying links has the most detrimental
effect. This observation is consistent with Figs. 3(b) and 3(c),
which respectively depict the normalized error and the fscore

https://github.com/reysam93/graph_denoising
https://github.com/reysam93/graph_denoising
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Fig. 3: Assessing the performance of different robust GF identification algorithms. The panels report: (a) the error of the estimated GF; (b)
the error of the estimated GSO; and (c) the fscore of the estimated GSO. In panels (b) and (c) “S̄-C”, “S̄-D”, and “S̄-C/D” report the
discrepancies between S and S̄ when perturbations create, destroy, or crate and destroy links.

of Ŝ and the perturbed S̄ for each perturbation type. Since
“FI” does not perform any graph-denoising step, the errors
between the true GSO and the perturbed S̄ are reported as
reference (see “S̄-C”, “S̄-D”, and “S̄-C/D” in the legend).
Specifically, the GSO estimated in the “RFI-D” case deteri-
orates faster as the proportion of perturbed links increases.
This can be attributed to the following reasons: i) “S̄-D” has
the lowest fscore, indicating that removing links poses a more
challenging scenario, as it implies removing ones in the entries
of S, which are elements from an underrepresented class since
graphs are sparse; and ii) only removing edges is prone to
produce disconnected graphs. Nevertheless, the results show
the resilience of the “RFI” algorithm, which provides low-
error estimates Ĥ and Ŝ even when more than 20% of the
links are perturbed.

Test case 3. Next, we compare the performance of our
algorithms with other robust alternatives. Fig. 4(a) reports,
for each algorithm, nerr(Ĥ,H) as the ratio of perturbed
links increases. The baselines considered are the TLS-SEM
algorithm from [30], and LLS-SCP from [31]. We note that
the TLS-SEM algorithm is tailored to graph signals adhering
to

Y = AY + X = (I−A)−1X, (34)

where the observations at the i-th node are represented by the
values of the neighbors of i and an exogenous input. As a
result, the TLS-SEM algorithm may not be well suited to deal
with signals generated according to the more general model
in (2). Taking this into account, to offer a more favorable
comparison we consider two types of graph signals: (i) signals
generated according to (34), denoted as “SEM”; and (ii)
signals generated according to (2), denoted as “H”. It is worth
noting that the “SEM” can be considered as a particular case of
the model “H” when the GF HSEM = (I−A)−1 is employed.

Analyzing the results in Fig. 4(a) yields the following
findings. When the “SEM” model is considered, “TLS-SEM”,
which is tailored for this setting, obtains the best performance
when the perturbation probability is small. However, when
the perturbation probability grows larger, the performance
of “TLS-SEM” and that of “RFI” become comparable. This
showcases that our algorithm is well suited to deal with a
large number of perturbed links. On the other hand, when the

“H” model is considered, we observe that the “RFI” algorithm
consistently outperforms the baselines in the presence of
perturbations. The good performance of the “RFI” algorithm
on both signal models highlights the flexibility of the proposed
formulation since any GF can be expressed as a polynomial
GFs.

Test case 4. Now, we compare the performance of the standard
and the efficient implementation of the robust identification
algorithm, as described in Algs. 1 and 2. The results are shown
in Figs. 4(b) and 4(c), where the figures depict the running
time measured in seconds and nerr(Ĥ,H) as N increases.
The legend identifies first the algorithm employed, then the
number of iterations of the outer loop (tmax), and finally
the iterations of the inner loops (with τmax1

= τmax2
). As

expected, Fig. 4(b) shows that Alg. 2 is remarkably faster than
Alg. 1 even with medium-sized graphs, achieving a running
time 103 times smaller when N = 100. On the other hand,
in Fig. 4(c) we observe that “Eff-5-50” has an error that is
close to the standard implementation (“Stand-5”) even though
it is considerably faster. Furthermore, the trade-off between
speed and estimation accuracy is also evident. “Eff-5-10” is
the fastest implementation but the quality of its estimated GF
may not be enough for graphs with more than 40 nodes.

Test case 5. To study the benefits of harnessing the information
available in the perturbed observation S̄, we compare the per-
formance of our algorithm with that of a least squares (“LS”)
approach that estimates the filter as arg minH ‖Y −HX‖2F .
Results are depicted in Fig. 5(a), where we report nerr(Ĥ,H)
as the normalized noise power increases. M = 50 input-output
pairs are available, graphs are drawn from an ER model, and
two different link probabilities (p = 0.2 and p = 0.5) are
considered. We observe that “RFI” consistently outperforms
“LS” even for low values of noise, showcasing the benefits
of leveraging the fact that H is a GF. We also observe that
“RFI-st”, which takes advantage of the stationarity of the data,
outperforms all the alternatives. Finally, RFI algorithms work
slightly better with sparser graphs.

Test case 6. The last experiment with synthetic data studies
the benefits of the joint GF estimation. All the GFs are
polynomials of the same S, and for each Hk we consider
Mk = 15 noisy observations with ηw = 0.01. Fig. 5(b) shows
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Fig. 4: Comparing the performance of several robust GF identification algorithms. (a) shows the error of Ĥ when estimated with the
proposed algorithm and with other baselines as the ratio of perturbed links increases. Different graph-signal models are considered. (b) and
(c) respectively show the running time and error of Ĥ using Alg. 1 and Alg. 2 as the number of nodes increases. Different values for the
maximum number of iterations of the inner loops are considered.

Models
1-Step 3-Step

τ=0,25 τ=0,5 τ=0,25 τ=0,5

LS 3.8e-3±3.7e-3 3.3e-3±3.7e-3 1.0e-2±1.0e-2 8.0e-3±1.0e-2
LS-GF 3.5e-3±4.2e-3 3.6e-3±4.2e-3 9.1e-3±1.0e-2 8.8e-3±1.1e-2

TLS-SEM 9.7e-2±3.1e-2 3.0e-2±1.6e-2 4.7e-1±4.2e-1 4.4e-2±3.4e-2
RFI 3.4e-3±4.1e-3 3.4e-3±4.2e-3 8.6e-3±1.0e-2 8.5e-3±1.1e-2

VAR-RFI 3.1e-3±3.7e-3 3.0e-3±3.6e-3 8.0e-3±9.4e-3 7.6e-3±9.8e-3

TABLE I: Error performance in predicting the temperature for 2
prediction horizons (1 and 3) and 2 values (25% and 50%) of τ .

the results, with the y-axis representing the normalized error
averaged across the K graphs, i.e., 1

K

∑K
k=1 nerr(Ĥk,Hk),

and the x-axis representing K. We compare the performance of
estimating the GFs jointly (marked as “J” in the legend) or sep-
arately for the three algorithms (“RFI-`1”, “RFI”, and “RFI-
st”) described in Test case 1. Note that “RFI-J” corresponds
to the formulation in (22). The first thing we observe from the
results in Fig. 5(b) is that the error decreases as K increases
when a joint algorithm is employed. This is aligned with the
discussion in Section V and illustrates the benefit of exploiting
the common structure. In addition, algorithms accounting for
the stationarity of Y outperform the non-stationary alternatives
even though we only have M = 15 signals to estimate the
covariance Ĉy.

B. Real-world datasets

To close the numerical evaluation, we test our robust GF
identification algorithms over two real-world datasets.

Weather station network. This test case evaluates the
ability of our algorithms to predict the temperature mea-
sured by a network of stations using the data from
previous days. The data comes from the “Global Sum-
mary of the Day” dataset of the National Centers for
Environmental Information (https://www.ncei.noaa.gov/data/
global-summary-of-the-day/archive/) and we used daily tem-
perature measurements from N = 19 stations in California
during 2017 & 2018. Specifically, with yκ ∈ RN col-
lecting the measurements of the 19 stations at day κ, we
consider an AR model without exogenous inputs, so that
yκ ≈

∑K
k=1 Hkyκ−k. The M measured signals were divided

into two subsets. The first τM samples (training) were used to
obtain the GFs Hk, where τ represents the fraction of samples
used for training. The remaining samples (evaluation) were
used to assess the performance and the generalization of the
estimated GFs. This non-random train-test split mimics a real
situation where we collect data for a specific continuous period
of time, infer the graph filter modeling the evolution of the
data, and then employ the estimated filters to infer the behavior
of unobserved signals. Also, the data is normalized so that the
signal at each station for all time samples has unitary norm.

The underlying G was constructed as the unweighted 5-
nearest neighbors graph, using the geographical distance be-
tween stations. Since temperature relations across stations are
likely to be due to a range of factors (including, e.g., alti-
tude), the considered adjacency (based only on geographical
positions) may be imperfect, rendering our robust algorithms
better suited for this task.

The estimation performance of the different algorithms
is reported in Table I. The metrics shown are the aver-
age and standard deviation of the normalized error at each
timestep 1

M

∑M
κ=1 nerr(ŷκ,yκ) for the test dataset. Because

the ground-truth GF is not known in this setting, we use the
error of the observed signals to evaluate the performance of our
algorithms. To build the prediction ŷκ for day κ, we use our
estimated filters Ĥk, k = 1, . . . ,K and the measurements for
the previous K days, and calculate ŷκ =

∑K
k=1 Ĥkyκ−h−k+1,

where h is our prediction horizon. Then, to assess the quality
of the schemes, we compare our prediction with the sig-
nal measurements calculating nerr(yκ, ŷκ). The algorithms
evaluated are “LS”, “LS-GF” (which postulates a GF with
coefficients ĥ = argminh‖Y −

∑
` h`S

`X‖2F ), “TLS-SEM”,
“RFI” (which assumes an AR(1) process where K = 1, so
that only one lag for a prediction horizon of h is considered
and the output estimate is given by ŷκ = Ĥyκ−h, leading
to the adoption of Alg. 1) and “AR(3)-RFI” (where K = 3
lags are considered). Two values of τ (0.25 and 0.50) and
two prediction horizons (1 and 3) are considered. The main
observation is that “AR(3)-RFI” yields the best performance
in all settings. Additionally, the results for τ=0.25 demonstrate
the benefits of considering the underlying graph in the low-
sample regime, since even “LS-GF”, which relies on the

https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/
https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/
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the data. (a) Evolution of the normalized filter error as we increase the power of the noise introduced to the data. P values given in the
legend represent the connection probability of the ER graphs. (b) Error performance when estimating K GFs using the separate and joint
approach for different values of K. (c) Performance of the algorithms predicting ozone levels in the AirData station network, as the time
horizon of the prediction increases.

imperfect S̄, outperforms “LS”.
Air quality station network. In this experiment we use 2018
& 2019 data from the United States Environmental Protec-
tion Agency (https://www.epa.gov/outdoor-air-quality-data) to
predict the ozone levels in a network of 17 outdoor stations
in California. The considered setup is similar to that of the
weather station data (signals are assumed to follow an AR
model and a nearest neighbor graph based on geographical
distances is used). The stations chosen were those with at
least 330 measurements each year for a selection of pollutants,
and missing data was filled via first-order interpolation. The
goal here is to analyze how the prediction horizon affects the
prediction error. The value of τ was set to 0.5, i.e. evalua-
tion data represented 50% of the samples. Fig. 5 shows the
performance of the algorithms when predicting ozone levels.
As a baseline, “LS-Eval-(LB)” shows the error measured
on the evaluation data when obtaining the GF also using
evaluation data, therefore representing a lower bound for the
LS error using AR models of order 1. Also, “Copy-Prev-
Day” represents the error obtained by the “identity GF”, which
copies the previous day’s measurement. As in the previous
example, the best performing algorithm is “AR(3)-RFI”, whose
performance is close to the baseline, followed by “RFI”.

VIII. CONCLUDING REMARKS

This paper puts forth a framework dealing with estimation
problems in GSP where the information about (the links of)
the supporting graph is uncertain. Specifically, we addressed
the problem of estimating a GF (i.e., a polynomial of the
GSO) from input and output graph signals under the key
assumption that only a perturbed version of the true GSO was
available. In contrast to the majority of existing approaches
that operate on the spectral domain, we recast the true graph
as an additional estimation variable and formulated an opti-
mization problem that jointly estimated the GF and the true
(unknown) GSO. We focused first on the case where only
one GF needed to be estimated and, then, shifted to (multi-
feature and AR graph signal) setups where multiple GFs
have to be jointly identified. The formulated optimizations

operated completely in the vertex domain and bypassed the
problem of computing high-order polynomials, avoiding the
challenges of dealing with the influence of perturbations in the
graph spectrum as well as the numerical instability and error
propagation associated with high-order matrix polynomials.
While non-convex, upon blending techniques from alternating
optimization and MM, the proposed algorithm was shown
to be capable to find a stationary point in polynomial time.
This algorithm was later modified so that the scaling of the
computational complexity with respect to the number of nodes
in the graph is reduced. Future work includes delving into
the robust estimation of ARMA time-varying graph signals,
consideration of additional graph perturbation models, and
application of our robust estimation framework to other GSP
problems, to name a few.

APPENDIX A: PROOF OF TH. 1

The proof is based on the convergence of the Block Suc-
cessive Upper-bound Minimization (BSUM) algorithm [47].
In summary, BSUM algorithms tackle optimization problems
with an objective function f(z) by splitting the vector of
variables z into B blocks zb, with b = 1, ..., B, and then
sequentially minimizing an upper bound u(zb) of the original
objective function for each block of variables. Then, [47, Th.
1] proves that BSUM algorithms converge to a stationary point
when the following conditions are fulfilled:
(C1) Each function ub(zb) must be a global upper bound of
f(z) and the first-order behavior of ub(zb) and f(z) must be
the same.
(C2) f(z) must be regular (cf. [47]) at every point in Z∗.
(C3) The level set Z(0) = {z | f(z) ≤ f(z(0))} is compact.
(C4) At least one of the problems in (16) and (18) must have
a unique solution.
Since Alg. 1 falls into the BSUM framework, it suffices to

show that the previous conditions are met in our case. To
that end, recall that f(z) is the objective function in (15),
and let the B = 2 block of variables be given by z1 :=
vec(H) and z2 := vec(S). Moreover, note that at each step, the
function f(z) is approximated by u1(z1) and u2(z2), which

https://www.epa.gov/outdoor-air-quality-data
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respectively correspond to the objective functions in (16) and
(18) Next, we prove that Alg. 1 satisfies the four conditions.

Condition (C1) requires the surrogate functions ub(zb) to
be global upper bounds of f(z) and exhibit the same first-
order behavior. For the first block (b = 1), it readily follows
that u1(z1) is obtained from f(z) simply by dropping the
terms that depend on z2 (see (16) in Step 1), hence the
conditions are trivially satisfied. Regarding the second block,
we note that u2(z2) can be obtained from f(z) by dropping
the terms that only depend on z1, keeping the quadratic terms
that depend on z2, and replacing the logarithmic penalties
that depend on z2 by their first-order Taylor approximation.
This implies that: i) the first-order behavior of u2(z2) and
f(z) with respect to z2 is the same and ii) since the log is
a concave differentiable function, its Taylor series of order
one constitutes a global upper bound. As a result, u1(z1) and
u2(z2) satisfy the requirement, and hence, (C1) is met.

To prove (C2), according to [47], a function f(z) is regular
if its non-smooth components are separable across the different
blocks of variables. To show this, we decompose f as f =
gA + gB , with functions gA and gB being defined as

gA(H,S) = ‖Y −HX‖2F + γ‖HS− SH‖2F ,

gB(S) = λ

N∑
i,j=1

log(|Sij−S̄ij |+ δ2) + β

N∑
i,j=1

log(|Sij |+ δ1).

Since gA is a smooth function and the non-smooth function
gB only depends on the variables on the second block, z2 =
vec(S), it follows that f(z) is a regular function for the whole
feasible set of the optimization problem.

Next, we show that the level set Z(0) = {z | f(z) ≤
f(z(0))} is compact as required by (C3). We start by noting
that the entries of S are continuous subsets of R, (e.g.,
Sij ∈ R+ when S = A), and that H ∈ RN×N , so f(z)
is continuous. Moreover, f(z) ≤ f(z(0)) implies that the
functions ‖Y −HX‖2F and log(|Sij | + δ1) are all bounded,
rendering the domain of f(z) bounded. It follows then that
the level set Z(0) is compact.

Finally, we need to prove that either (16) or (18) have a
unique solution, so that (C4) is fulfilled. Prop. 1 (see below)
states that, under the two conditions required by Th. 1 (i.e., S
does not have repeated eigenvalues, and the graph signals X
excite every graph frequency), the solution to (16) is unique.
This confirms that (C4) is satisfied, concluding the proof.

Proposition 1. Let H ∈ RN×N , S = Vdiag(λ)V−1 ∈
RN×N , and X ∈ RN×M be the GF, the GSO, and the input
signals in (16). Then, (16) has a unique solution w.r.t. H if
the following conditions are satisfied:

1) λi 6= λi′ , for all i 6= i′ and (i, i′) ∈ {1, ..., N}2.
2) Every row of X̃ = V−1X has at least one non-zero entry.

Proof. To simplify exposition, we focus first on the (most
restrictive) setup of having only M = 1 input-output pairs.
Defining ĥ := vec(H), we can reformulate (16) as

minĥ∈RN2γ‖(I⊗S− S>⊗I)ĥ‖22 + ‖y − (x>⊗I)ĥ‖22, (35)

where lowercase symbols y and x are used to emphasize that
the output and input signals are a single N -dimensional vector.
Upon defining D := I⊗S−S>⊗I, and E := x>⊗I, solving
(35) is equivalent to solving

minĥ∈RN2

∥∥∥ [0N2

y

]
− Fĥ

∥∥∥2
2

with F :=

[
γD
E

]
(36)

To prove that (36) has a unique solution, it suffices to show that
F is full column rank, i.e. @ n ∈ RN2

such that Fn = 0N+N2 .
To show this, we first identify N (D), the null space of D, and
then show that En 6= 0N for all n ∈ N (D) \ {0N2}.

We start with the characterization of N (D). Given the
Kronecker structure of D, each of its N2 eigenvalues has
the form λk − λk′ , with (V−1)> ⊗ V being the associated
eigenvectors. Leveraging that λi 6= λi′ for i 6= i′, it follows
that only when i = i′ the eigenvalue of D is zero. As a result,
rank(D) = N2−N and dim(N (D)) = N . Equally important,
the N eigenvectors associated with the N zero eigenvalues
are given by (V−1)> � V, which, as a result, constitutes
a basis spanning N (D). More formally, we concluded that
N (D) = {((V−1)> �V)θ |∀ θ ∈ RN}.

Thus, to show that F in (36) is full column rank we just
need to prove that the only element n ∈ N (D) that renders
En = 0N is the all-zero vector 0N2 . To do so, we leverage
the characterization of N (D) and write En as

En = (x> ⊗ I)((V−1)> �V)θ = (x>(V−1)> �V)θ

= Vdiag(θ)(x>(V−1)>)> = Vdiag(θ)V−1x

= Vdiag(θ)x̃ = V(θ ◦ x̃), (37)

where ◦ represents the element-wise vector product (Hadamard
product) and we used the property (a⊗ b)(c� d) = ac� bd.
Since V is invertible, the first and last terms in (37) demon-
strate that En = 0N requires θ ◦ x̃ = 0N . However, condition
2) in Prop. 1 states that x̃i 6= 0 for all i; hence, θ ◦ x̃ = 0N
requires θ = 0N . This implies that the only element in N (D)
that renders En = 0N is n = (V−1)> � V)0N = 0N2 ,
concluding the proof.

The proof can be generalized for M > 1. In that case, E
has size MN × N2 and the counterpart to (37) establishes
that having En = 0 requires vec(diag(θ)X̃) = 0MN . Since
Prop. 1 assumes that each row of X̃ has at least one nonzero
entry, it follows that θ = 0MN , concluding the proof.

In other words, if the two conditions stated in Prop. 1 hold,
the result guarantees that the problem in (16) has a unique
solution. Please note that, if M > N (MN > N2) and
the samples are sufficiently rich (e.g., i.i.d.), E could be full
column rank and, as a consequence, F would be full column
rank as well. Therefore, we could omit the first condition in the
proposition (S having distinct eigenvalues) and the problem
would still have a unique solution. In the intermediate case
1 < M < N we could also relax condition 1, allowing some
eigenvalues to be repeated.
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