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Abstract

The term Machine Learning (ML) was coined by Arthur Samuel in 1959. Since then,
more than sixty years have passed, and ML has evolved enormously, especially in the last
decade. From the early days of ML, when it was primarily a research topic, to today, when
we interact with ML systems on a daily basis, often without even realizing it, we have
come a long way. Although the explainability of these ML systems has been considered
since their inception, it has become more important than ever due to their integration into
our daily lives. Explainable ML addresses this issue, aiming to make predictive models
and their decisions understandable to humans.

There are several Explainable ML techniques, each with its own goals and scopes.
For example, the scope of a technique can be either global, addressing the entire model,
or local, focusing on a specific region of interest. While the choice of the technique
depends on several factors, the main driving factor is the user, specifically their cognitive
biases and what they expect from the system. These preferences and the different types of
explanations have been extensively studied in the social sciences. Among these techniques,
we emphasize counterfactuals and semifactuals, which have also been incorporated into
Explainable ML. They are a contrastive explanation where the user reasons about the
differences between the observation of interest and a hypothetical observation that led to
the same prediction (semifactual) or a different prediction (counterfactuals). However,
within the context of ML, they face some limitations. Both are mainly defined in a
classification context and lack a standardized mechanism to enforce user preferences.
Counterfactuals typically rely on a single observation, whereas semifactuals do not have
a general definition and are associated with different terms.

This thesis introduces the Explanation Set framework to address these limitations.
The Explanation Sets framework is an approach that unifies counterfactuals and semi-
factuals through similarity measures and provides users with mechanisms to specify their
preferences via a feasible set. Besides providing a unified framework, the definitions based
on similarity measures enable the seamless extension of counterfactuals and semifactuals
to other tasks, like regressions, by using appropriate similarities. A review of how various
techniques from the literature fit this framework is incorporated. The proposed approach
was successfully validated in regression and classification tasks, showing how different
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feasible sets and similarity measures produce different explanations.

We also introduce two methods to extract Explanation Sets: Anchor_ES and Random
Forest Optimal Counterfactual Set Extractor (RF-OCSE ). Anchor_ES expands upon the
Anchor method, allowing for user-defined similarity measures and including a feasible set.
On the other hand, RF-OCSE is a method to extract counterfactual Explanation Sets
from a Random Forest (RF ). It involves a partial fusion of Decision Trees (DT s) from
a RF into a single DT using a modification of the Classification and Regression Trees
(CART ) algorithm. The proposed extraction methods were validated through several
experiments against existing alternatives on several well-known datasets. The evaluation
metrics measure aspects correlated with the quality of the explanations, including the
percentage of valid counterfactuals, distance to the factual sample, method stability, and
counterfactual set quality. RF-OCSE was the only method supporting set explanations
that always yielded valid explanations and took, on average, significantly less time than
the alternatives. Conversely, Anchor_ES obtained a good compromise between the fi-
delity and the coverage, and it emerges as a viable alternative, especially when full access
to the model is not possible.

In conclusion, we introduce a novel explainability framework that empowers users to
tailor explanations to their preferences. Explanation Sets pave the way for incorporating
new preferences not currently recognized in the literature in a unified and standardized
manner. This simplifies their eventual incorporation into extraction methods. Regarding
the extraction methods, we noticed a significant disparity in quality between methods
that utilize the internal structure of the model and those that use models as black-boxes,
motivating the benefits of the former approach when possible.



Resumen

Antecedentes. El término ML, del inglés “Machine Learning” (Aprendizaje Automático),
fue acuñado por Arthur Samuel en 1959. Desde entonces, han pasado más de sesenta
años y el ML ha evolucionado enormemente, especialmente en la última década. Desde
los primeros días del ML, cuando era principalmente un tema de investigación, hasta hoy,
cuando interactuamos con sistemas de ML a diario, hemos recorrido un largo camino.
Aunque la explicabilidad de estos sistemas de ML ha sido considerada desde su creación,
hoy en día se ha vuelto más crucial que nunca debido a su integración en nuestra vida
cotidiana. El ML explicable es un campo que aborda la explicabilidad de estos sistemas,
con el objetivo de hacer que los modelos predictivos y sus decisiones sean comprensibles
para los humanos.

Existen varias técnicas de ML explicable, cada una con sus propios objetivos y ámbitos.
Por ejemplo, el ámbito de una técnica puede ser global, abordando el modelo completo,
o local, centrándose en una región específica de interés. Si bien la elección de la técnica
depende de varios factores, el principal es el usuario, específicamente sus sesgos cognitivos
y el objetivo que se busca con la explicación. Estas preferencias y los diferentes tipos de
explicación han sido ampliamente estudiados en las ciencias sociales. Entre estas técnicas,
destacamos los contrafácticos y semifácticos, que también tienen aplicaciones en el ML
explicable. Los contrafácticos son un tipo de explicación contrastiva que compara el
escenario real con un escenario hipotético en el cual el resultado esperado es diferente del
original. En cambio, los semifácticos también son explicaciones contrastivas, pero en este
caso, el resultado del escenario hipotético coincide con el escenario real. A pesar de la
similitud en sus representaciones, tienen un efecto diferente sobre nuestra percepción de
las explicaciones, y la elección entre usar contrafácticos, semifácticos o ambos, depende
del contexto particular.

Los contrafácticos y semifácticos presentan algunas limitaciones en el contexto de ML.
Ambos tipos de explicación están principalmente definidos en un contexto de clasificación
y carecen de un mecanismo estandarizado para expresar las preferencias del usuario.
Además, los semifácticos no tienen una definición estándar, y se denotan con diferentes
terminologías, lo que dificulta su adopción.
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Objetivos. El principal objetivo de esta tesis es estudiar técnicas de explicabilidad de ML,
extendiendo las técnicas de contrafácticos y semifácticos centrándonos en las preferencias
del usuario, y validar su utilidad y rendimiento. Para abordar este propósito se han
establecido los siguientes objetivos:

O1) Proporcionar una nueva metodología de explicabilidad que unifique contrafácticos y
semifácticos basada en medidas de similitud, enfatizando su complementariedad, así
como una metodología estándar para expresar las preferencias del usuario (conjunto
factible).

O2) Elaborar una taxonomía de las representaciones basadas en conjuntos de la literatura
para contrafácticos y semifácticos.

O3) Desarrollar un método agnóstico para extraer estas nuevas explicaciones basado en
Anchor.

O4) Desarrollar un método para extraer estas nuevas explicaciones de un Bosque Alea-
torio aprovechando su estructura interna y superficie de decisión paralela a los ejes.

O5) Validar la metodología de explicabilidad propuesta y comparar los métodos de ex-
tracción propuestos con alternativas en la literatura.

Metodología. Esta tesis introduce el marco de explicabilidad denominado Explanation
Sets con el objetivo de abordar las limitaciones presentes en contrafácticos y semifácticos.
El enfoque de Explanation Sets define contrafácticos y semifácticos mediante medidas de
similitud y proporciona a los usuarios herramientas para definir sus preferencias a través
de un conjunto factible (Objetivo O1). Las definiciones basadas en medidas de simili-
tud subrayan la complementariedad entre contrafácticos y semifácticos, motivando su uso
conjunto como método explicativo. La adaptabilidad de contrafácticos y semifácticos a
tareas como regresión o detección de anomalías es natural, siempre que se pueda estable-
cer una medida de similitud en la salida del modelo. Respecto al conjunto factible, se
proporcionan ejemplos de cómo diferentes preferencias de contrafácticos en la literatura
pueden expresarse mediante un método genérico de construcción de conjuntos factibles.
Asimismo, se ofrece una taxonomía de las representaciones de contrafácticos y semifácticos
según si imponen restricciones sobre la información a representar y si son aproximaciones
(Objetivo O2).

Dentro del marco Explanation Sets, se propone un método llamado Anchor_ES para
extraer conjuntos de contrafácticos y semifácticos basados en la técnica de explicabilidad
Anchor (Objetivo O3). Anchor está orientado a generar conjuntos de semifácticos, y esta
propuesta incorpora una adaptación para incluir restricciones del conjunto factible y dis-
tintas medidas de similitud. Para obtener conjuntos de contrafácticos, se añade un paso
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preliminar: primero, se extrae un contrafáctico utilizando técnicas de optimización baye-
sianas. Después, se emplea Anchor para producir una explicación para ese contrafáctico.
Gracias a la relación complementaria entre contrafácticos y semifácticos, el resultado es
un conjunto de contrafácticos.

Se introduce un método adicional, RF-OCSE, para extraer conjuntos de contrafácticos
de un Bosque Aleatorio (Objetivo O4). Esta técnica se basa en fusionar parcialmente un
Bosque Aleatorio en un Árbol de Decisión, aprovechando una adaptación del método
CART para construir Árboles de Decisión. Esta técnica garantiza la obtención de un
conjunto de contrafácticos que incluye el contrafáctico más cercano.

Finalmente, para evaluar el marco Explanation Sets y los métodos propuestos, se di-
señan dos secciones de experimentos (Objetivo O5). La primera sección valida el marco
a través de un caso de uso de regresión y otro de clasificación, empleando distintas prefe-
rencias para el conjunto factible. La segunda sección compara los métodos de extracción
propuestos con técnicas alternativas para la obtención de contrafácticos y conjuntos de
contrafácticos. Las métricas de evaluación incluyen el porcentaje de contrafácticos válidos,
la proximidad a la muestra factual, la calidad de los conjuntos contrafácticos (cobertura
y fidelidad), la estabilidad del método, y el tiempo requerido.

Resultados. En la primera sección de experimentos, se valida el marco de explicabilidad.
Estas pruebas nos permiten investigar el impacto de diferentes medidas de similitud y
conjuntos factibles. Se observa que la implementación de medidas de similitud puede
transformar el escenario en un problema de clasificación desbalanceado, y esto afecta de
manera notable a la calidad de las explicaciones. Esto no representa una limitación del
enfoque propuesto, pero la mayoría de los métodos y métricas de calidad están defini-
das para escenarios equilibrados. Otra observación interesante es que, dependiendo de la
medida de similitud seleccionada, a veces no es posible explicar un modelo mediante con-
trafácticos. En dicho caso, la ausencia de una explicación se convierte en la explicación en
sí. Además, se identifica una distinción clara en la calidad entre conjuntos de semifácticos
y conjuntos de contrafácticos generados por Anchor_ES. Esta diferencia radica en que
los conjuntos de contrafácticos se generan en dos pasos, y su calidad no se optimiza a lo
largo del proceso, a diferencia de lo que ocurre con los semifácticos.

En la segunda sección de experimentos, se compara la eficacia en la extracción de
contrafácticos de los métodos propuestas con técnicas ya establecidas, utilizando conjuntos
de datos reales. El método RF-OCSE destaca como el único enfoque basado en conjuntos
que siempre genera explicaciones válidas y, en promedio, toma significativamente menos
tiempo que las alternativas. En contraste, Anchor_ES logra un equilibrio entre fidelidad
y cobertura, presentándose como una opción factible, particularmente cuando no se tiene
acceso completo al modelo.
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Conclusiones. La presente tesis se enfoca en la explicabilidad de modelos, y en ella se
presenta un nuevo marco de explicabilidad denominado Explanation Sets. Este marco
permite a los usuarios adaptar las explicaciones a sus propias preferencias y presenta
además dos métodos específicos para extraer dichas explicaciones. Los Explanation Sets
abren las puertas para la incorporación de nuevas preferencias, no abordadas en la lite-
ratura actual, de manera unificada y estandarizada. También posibilitan la extensión de
contrafácticos y semifácticos a otros campos. Además, este enfoque unificado facilita su
integración en futuros métodos de extracción. En cuanto a los métodos de extracción, se
ha identificado una diferencia significativa entre los métodos que aprovechan la estructura
interna del modelo y los que tratan a los modelos como cajas negras. Este hallazgo des-
taca las ventajas del primer enfoque, siempre que sea aplicable. Finalmente, el método
que transforma Bosques Aleatorios en Árboles de Decisión destaca que los Árboles de
Decisión son directamente explicables solo cuando tienen una complejidad reducida.



Contents

Agradecimientos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Resumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

List of tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

List of acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xvii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1. Explanations in Machine Learning. . . . . . . . . . . . . . . . . . . . . . . 4

1.2. Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3. Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1. Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2. Machine Learning models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1. Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2. Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3. Counterfactuals and semifactuals . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1. Desirable preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2. Extraction methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3. Explanation Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1. Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

ix



x Contents

3.2. Counterfactuals and semifactuals based on similarity measures. . . . . . . . . 35

3.3. Feasible set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4. Explanation Sets representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5. Generic method to extract Explanation Sets . . . . . . . . . . . . . . . . . . . . 47

4. Random Forest Optimal Counterfactual Set extractor . . . . . . . . . . . . . . . . . 51

4.1. Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2. Fusion of Random Forest tree predictors . . . . . . . . . . . . . . . . . . . . . . 52

4.3. Partial Random Forest to Decision Tree fusion . . . . . . . . . . . . . . . . . . 55

4.4. Partial counterfactual set extraction . . . . . . . . . . . . . . . . . . . . . . . . . 57

5. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1. Explanation Sets experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.1. Regression case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.2. Classification case study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2. Counterfactual Explanation Sets in Random Forest. . . . . . . . . . . . . . . . 73

5.2.1. Experiments setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.2. Counterfactual evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.3. Counterfactual Explanation Sets evaluation . . . . . . . . . . . . . . . . . 77

6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1. Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2. Open questions and improvement opportunities . . . . . . . . . . . . . . . . . . 88

6.3. List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Appendix A. Explanation Set existence in Random Forest outside the label domain 91

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



List of Figures

1.1 Explainability requirements and questions faced by the different stakehold-
ers. Reproduction from (Belle & Papantonis, 2020). . . . . . . . . . . . . . 2

1.2 A taxonomy of Explainable Machine Learning techniques. Adapted from
Molnar (2018). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Visualization of a Decision Tree using the dtreeviz library. The Decision
Tree is displayed from left to right, based on the synthetic data discussed
in Section 3.3. Nodes with a yellow color represent the positive class, while
green ones represent the negative class. The terminal nodes, depicted as
circles, are pie charts indicating the class distribution within that leaf. Each
internal node specifies the feature used for the split (below the histogram)
and the corresponding threshold value (indicated below the triangle). . . . 13

3.1 Binary classification problem with synthetic data. The orange triangles are
the data from the positive class, while the blue squares are the data from
the negative class. Using a Bayes classifier, the orange and blue regions
are classified as positive and negative, respectively. The pink cross is the
factual sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 The contour plot illustrates the Manhattan distance to the factual sample
(pink cross). The color gradient from yellow (closest) to dark blue (furthest)
indicates the distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Actionability illustration example. Green regions denote areas where the
given restriction is satisfied, whereas gray-shaded areas indicate non-compliance.
The pink cross represents the factual sample. Each figure title details the
specific restriction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xi



xii List of Figures

3.4 Contour plot illustrating the diversity restriction. The pink cross represents
the factual sample. The points penalized are shown in the title, being
p1 = [5, 5], p2 = [1, 1], and p3 = [7, 5]. In the middle and right plots, the
penalization is the cumulative effect of the individual penalizations. The
color indicates the penalization value, from yellow (smallest penalization)
to dark blue (biggest penalization). . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Contour plot showing the data manifold closeness for the positive class.
It is estimated directly using the probability density function of the sam-
pling distribution. The color indicates the penalization value, from yellow
(smallest penalization) to dark blue (biggest penalization). . . . . . . . . . 42

3.6 Example of combining restrictions using the max and sum approaches.
The first row shows the sum approach, while the second corresponds to the
max approach. All figures incorporate both the base distance and manifold
closeness restrictions. Subsequently, they integrate the diversity restriction,
penalizing the points specified in the column title and the actionability
restriction indicated in the column title. The penalization points are from
the diversity example. The pink cross is the factual sample. . . . . . . . . 43

3.7 Tabular anchor example. Each row provides an anchor explanation. The
initial two rows correspond to instances where the number of rented bikes is
below the average, while the next two rows represent above-average cases.
Within each row, individual chunks signify restrictions on the features. The
color indicates the feature. For continuous features, the restriction is de-
noted by a range, whereas for categorical features, it asserts the categories.
The size of the chunk reflects the precision increment achieved by adding
that restriction. Reproduced from Molnar (2018). . . . . . . . . . . . . . . 44

3.8 Image anchors example. The left figure is the original image. The center
image is the image anchor, with non-white pixels indicating fixed values.
The white pixels can be changed, as shown in the right images, and the
prediction will likely still be a beagle. Reproduced from Ribeiro et al. (2018). 45

3.9 Pertinent positives and negatives example. The leftmost column displays
the original image, annotated with its prediction. The central column
presents the pertinent positive, highlighting essential pixels in light blue.
The rightmost column depicts the pertinent negative, marking in pink the
pixels that, if present, would alter the prediction along with its prediction
on top. Partial reproduction from Dhurandhar et al. (2018). . . . . . . . . 46



List of Figures xiii

3.10 Prototypes and criticisms example. The first row contains the prototypes,
which represent standard dog photographs. The bottom row showcases
criticisms, highlighting dog photographs that deviate from the dataset’s
norm. Reproduced from Kim et al. (2016). . . . . . . . . . . . . . . . . . . 46

3.11 Anchor_ES Explanation Set extraction workflow. In semifactual Expla-
nation Sets (red path), the modified Anchor approach is directly applied.
For counterfactual Explanation Sets (blue path), an intermediate stage in-
volving the extraction of a counterfactual instance is required. This coun-
terfactual instance is then used as input for the Anchor method to derive
the counterfactual Explanation Set. . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Example of a simple method to fuse a RF with two DT s (a) into a single
DT (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Simplified DT from the example in the Figure 4.1. The number in the
leaves indicates the origin of the leaves in the full DT . . . . . . . . . . . . 53

5.1 Semifactual Explanation Sets coverage, fidelity, and number of conditions
for each similarity. Higher values in coverage and fidelity are preferred, and
lower values in the number of conditions. . . . . . . . . . . . . . . . . . . . 63

5.2 Counterfactuals extracted with several dissimilarities without manifold re-
strictions. The value difference is between the factual sample prediction
and the counterfactual prediction. Actual is the factual sample prediction.
The sweet pink regions denote the regions of the space where the grouping
measure is met. For visualization purposes, the distance between the fac-
tual sample and the counterfactual is transformed using a quantile-based
transformation to make it uniform in the interval [0, 1]. . . . . . . . . . . . 66

5.3 Comparison of the distance to the factual sample of the counterfactuals
extracted with and without manifold closeness restrictions for each dis-
similarity. For a given point, the x-axis and y-axis represent the sGower
distance from the counterfactual to the factual sample extracted with and
without manifold restrictions, respectively. The color indicates if the coun-
terfactual extracted without restrictions meets the manifold restrictions
(blue) or not (ruby). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Semifactual and counterfactual Explanation Sets extracted for a random
observation from the dataset. The prediction for this observation is 41.87.
The conditions from the root to a leaf denote an Explanation Set. The
leaves with value ≤ 41.87 are semifactual Explanation Sets, and the leaves
with value > 41.87 are counterfactual Explanation Sets. Only the leaves 2,
3, 5, and 6 are valid Explanation Sets (meet the fidelity requirement). . . . 69



xiv List of Figures

5.5 Counterfactual and semifactual Explanation Sets, and individual counter-
factual change patterns. The patterns (rows) indicate the percentage of
explanations sharing the same structure. The presence of blue and orange
squares indicates a change in that feature in counterfactual-based explana-
tions and a restriction over that value in semifactual-based explanations.
Orange rows indicate that the pattern belongs to the ≤ $50k class, and the
blue color is related to the > $50k class. . . . . . . . . . . . . . . . . . . . . 71



List of Tables

2.1 Methods for extracting counterfactuals, semifactuals, and both. The ap-
plicability denotes the target ML model of the extraction method, and the
strategy column details how the extraction problem is posed. In the validity
column, a ✓indicates that the method guarantees that the counterfactual
is valid. Similarly, a ✓denotes that the method returns more than one
counterfactual or semifactual in the multiple column. The target column
indicates if the method returns counterfactuals (C), semifactuals (S), or
both (C,S). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Explanation set quality metrics calculated for the semifactual and counter-
factual Explanation Sets explanations with the base and restricted feasible
set. The mean and standard deviation (in parenthesis) are calculated for
each explanation type, restriction setting, and label. . . . . . . . . . . . . . 72

5.2 Methods considered in the counterfactuals and counterfactual Explanation
Sets evaluation. A ✓in the valid column indicates if the method guarantees
that a counterfactual is always found (if it exists). In the set explanation
column, a ✓indicates that the method produces counterfactual Explanation
Sets. Model access indicates if the method uses the model internals (full)
or only makes predictions (black-box). Finally, any relevant parameter is
listed in the parameters column. . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Description of the datasets used in the experiments. . . . . . . . . . . . . . 74

5.4 Relative counterfactual improvement of RF-OCSE over the alternatives.
The percentage of valid counterfactuals is in parentheses in those methods
that do not always generate valid counterfactuals by design. NA implies
that the relative counterfactual improvement could not be calculated be-
cause there were no valid counterfactuals. The best relative counterfactual
improvement for each dataset is in bold. . . . . . . . . . . . . . . . . . . . 75

xv



xvi List of Tables

5.5 Average extraction time for each dataset and method in seconds. The best
extraction time for each dataset is in bold. . . . . . . . . . . . . . . . . . . 77

5.6 Average stability of the extraction method. The standard deviation is in
parenthesis right to the mean. Lower stability metric values (Local Lips-
chitz estimates) are desirable. The best stability is in bold. . . . . . . . . . 77

5.7 Counterfactual example extracted from the adult dataset for each method.
Only the changes over the factual sample are shown. In this example, the
counterfactuals extracted by FBT and LORE belong to the factual class
and are invalid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.8 Evaluation of counterfactual Explanation Sets extracted by Anchor_ES,
FBT, LORE, and RF-OCSE. The results of fidelity and coverage are the
average over the test samples. The percentage of explanations meeting the
fidelity restriction is next to the average fidelity. The populated percentage
is in parentheses, right to the coverage. The best result for each dataset
and metric is in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.9 Example of counterfactual set extracted by RF-OCSE and pseudo coun-
terfactual set from LORE and FBT for the Adult dataset. The conditions
that are not satisfied by the factual sample are in bold. The factual sample
is the same as in the example in Table 5.7. . . . . . . . . . . . . . . . . . . 80

5.10 Evaluation of the counterfactual Explanation Sets extracted by the rule
selection simplification in RF-OCSE. The number after RF-OCSE indi-
cates the probability threshold used in Algorithm 6, or if the approach is
dynamic. The results of fidelity and coverage are the average over the test
samples. The percentage of populated Counterfactual Explanation Sets is
in parentheses, right to the coverage. The best result for each dataset and
metric is in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



List of acronyms

AUC Area under the ROC Curve.

CART Classification and Regression Trees .

CLEAR Counterfactual Local Explanations for Any Classifier .

DT Decision Tree.

FBT Forest-based Tree.

FT Feature-Tweaking .

GAN Generative Adversarial Networks .

HS Hot Start .

ID3 Iterative Dichotomiser 3 .

LORE LOcal Rule-based Explanations .

MACE Model-Agnostic Counterfactual Explanation.

ML Machine Learning .

MO Minimum Observable.

RF-OCSE Random Forest Optimal Counterfactual Set Extractor .

RF Random Forest .

SHAP SHapley Additive exPlanations .

SVM Support Vector Machine.

TPE Tree Parzen Estimators .

XAI Explainable Artificial Intelligence.

YADT Yet Another Decision Tree builder .

xvii





Chapter 1

Introduction

In today’s data-driven society, Machine Learning (ML) plays an increasingly pivotal
role in our daily activities, supporting decisions and tasks such as advertisement selection,
route planning, and credit scoring. This automated decision-making has enhanced nu-
merous aspects of our lives but also brings some notable challenges (Pentland, 2013; Wolff
et al., 2016). Biases against minorities, objective mismatches, and opacity of ML systems
have raised concerns about their fairness and trustworthiness (Molnar, 2018; Doshi-Velez
& Kim, 2017).

These challenges become especially pronounced in domains such as healthcare, where
an incorrect prediction can have a significant impact. However, it also poses challenges in
ML systems that might initially seem harmless. In systems where the output of the ML
models affects the collected data, a phenomenon known as feedback loops might occur
(Van Giffen et al., 2022; Malik, 2020). These feedback loops can magnify initially small
biases, and sometimes, they can make the model overconfident because it is trained on
its predictions.

Numerous well-known cases highlight the consequences of deploying models without
first applying appropriate Explainable ML techniques. For example, Google’s image tag-
ger mistakenly classified black people as gorillas, Facebook’s advertisement model unin-
tentionally displayed offensive content, Amazon’s resume filter was found to be biased
against women, and a healthcare system widely used in the U.S. required black patients
to be significantly more ill to receive comparable care recommendations. These are just
a few examples, with many more potentially remaining undisclosed.

The field of Explainable ML provides the tools to address these concerns, aiming to
make ML models and their decisions comprehensible by humans (Arrieta et al., 2020; Zhu
et al., 2018). The benefits of Explainable ML impact all the people involved with these
systems, from those developing them to those using them (Belle & Papantonis, 2020). In
essence, the goal is to ensure these systems work as expected and act in our best interests.

1



2 Chapter 1. Introduction

Figure 1.1: Explainability requirements and questions faced by the different stakeholders.
Reproduction from (Belle & Papantonis, 2020).

This chapter is organized as follows. Section 1.1 provides the context and motivation
for this thesis. Section 1.2 introduces the objectives that this thesis addresses. Lastly,
Section 1.3 details the organization of this document.

1.1. Context and motivation

In the previous section, we showed examples where ML systems behave incorrectly
and unethically, motivating the need to understand ML models properly. This section
contextualizes how the different stakeholders can benefit from Explainable ML. Then, we
provide an overview of Explainable ML techniques.

Figure 1.1 shows an illustration of the main stakeholders involved with ML models and
the main question they wish to address by using Explainable ML (Belle & Papantonis,
2020). Data scientists, business owners, and model risk stakeholders are involved in the
life cycle of a data science project, from the design of the requirements and validation to
the actual development and testing of the system. The explainability goals can be aligned
with each phase of a data science project, taking as a reference the life cycle proposed by
Kelleher & Tierney (2018):

• Business understanding: It sets the problem and objectives and assesses the impact
of the ML models and possible risks. As such, it orchestrates the explainability
requirements for the other phases. For instance, these requirements might be based
on business field regulations.
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• Data preprocessing: It integrates and curates the data for the following tasks. Al-
though Explainable ML does not explicitly target this phase because there might
not be a model yet, certain data transformations might make it difficult to under-
stand the models. Also, the mitigation measures for problems detected in other
phases, like harmful biases, might be integrated here.

• Modeling: It builds ML models for the particular ML task. These models might be
restricted to being “simple” because of interpretability concerns or have explainabil-
ity constraints, for instance, in the training step (Plumb et al., 2019; Krishnan &
Wu, 2017). Also, explainability techniques can help to debug these models.

• Evaluation: It evaluates the models on unseen data using the metrics defined in
the business understanding phase. These metrics can consider the complexity of the
model, making a compromise between performance and explainability. For instance,
in a Decision Tree (DT ), it could be a trade-off between the depth of the DT and
its performance.

• Storytelling: It communicates the results from the data analysis and the ML model.
As such, it is the phase where Explainable ML shines. The target of this commu-
nication might not be technical people, and they are often the people who decide
when a model is production-ready or detect domain-related problems (Krishnan &
Wu, 2017), so this information must be conveyed appropriately and succinctly.

• Deployment: Is the integration of the ML model pipeline into production. Similar
to storytelling, appropriate explainable techniques should be used so that end-users
understand the output of the model and use it correctly. For instance, when the
end-users do not understand the meaning of the output, we could incur deployment
bias, where a model is optimized for a certain goal and then used to make unrelated
decisions (Collins, 2018; Larson et al., 2016).

Outside the data science life cycle, we have the remaining stakeholders: regulators
and end-users. The regulators define the rules these ML systems must adhere to. The
European Union is pioneering these regulations, proposing a legal framework on Artificial
Intelligence (European Commission, 2023). In this regulatory framework, they propose
a set of strict obligations that Artificial Intelligence systems must adhere to based on
their risk level. In this context, Explainable ML, or more generally, Explainable Artificial
Intelligence (XAI ), can check if a system adheres to a given regulation by inspecting
how the model works (Wachter et al., 2017), or fulfill the end-user right to understand
automated-decisions.

End-users are the actual people using the ML systems. Firstly, they have the right
to know that they interact with a ML system (European Commission, 2023). Then, end-
users should be able to understand the rationale behind an automated decision and not
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take it as given, particularly when the consequences are negative (Wachter et al., 2017).
Understanding these automated decisions can help them achieve better decision-making
or even complain if they prejudice them.

In some scenarios, users can use this understanding to game (deceive) the system,
“What do I have to change to obtain the outcome X?”, this is not a limitation of Explain-
able ML but the ML model itself (Molnar, 2018). If a ML model is gameable, it indicates
that it is relying on proxies (correlations) to make the predictions, not the actual causal
relation. Therefore, if the user changes some of these proxy measures upon examining the
explanation, it might lead to outcomes not aligned with the modeled process.

Recognizing the different necessities and goals of each stakeholder is crucial to provide
an appropriate explanation method. Among these necessities and goals are the domain,
education, or even the age of the target user. We have to emphasize that the goal of these
techniques is to communicate, and as such, the user should be part of this conversation.
An introduction to the most common explanation types to address this communication
is presented in the next section.

1.1.1. Explanations in Machine Learning

Before delving into the different types of explanations, we will try to answer the
question “What is an explanation in ML?”. An explanation in ML is a mechanism to
convey information about a ML model or how it operates in a particular scenario. It is
usually an answer to a “why” question, which is a contrastive explanation (Miller, 2018).
Research suggests that people do not explain the causes of why an event occurred (causal
attribution). Instead, they explain the causes relative to another, possibly similar, event
that did not occur (Miller, 2018).

The explanations often ought to answer the question: “Why P rather than Q?”, where
P is the fact, and Q is the foil (Lipton, 1990). For instance, “Why was the loan rejected
rather than accepted?”. This question, along with its answer, is called a counterfactual
explanation. In some cases, the foil is not explicitly stated: “Why P?”, “Why was the loan
rejected?”, in which the foil is all the available alternatives. Among these alternatives,
those similar to P will provide a better explanation. In a binary classification problem,
the choice is simple since we only have two classes, the foil is the class not predicted. In
a multi-class problem, it would make more sense to use those classes that obtained the
highest probability as foils (excluding the highest label, which would be the fact).

Another major finding from (Miller, 2018) is that users expect a small set of explana-
tions (causes) and iterate through them based on their own biases. In other words, we do
not generally expect all the causes leading to an event, but a few of them based on our
biases, and we consider them to be the explanation.

The last major finding from (Miller, 2018) is that explanations are social. They are
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a conversation between the explainer and the explainee (person receiving the explana-
tion). As such, the explainer must acknowledge the social context and target audience to
determine the content and how it is presented to the explainee. Regarding the content,
probability relationships to explain why an event occurred are unsatisfying unless they
include a causal explanation (Miller, 2018). More information is not always better, and
a few small explanations should be preferred (Molnar, 2018; Miller, 2018). However, in
some situations, complex explanations are needed, for instance, if the regulation requires
causal explanations.

Miller concludes these findings by stating that they converge to a single point, which
is the core of this thesis:

The explainee only cares about a small subset of explanations based on their pref-
erences and context, and explainer and explainee might interact through these ex-
planations.

These interactions might involve asking for more explanations or modifying the preferences
for those explanations, among others.

After emphasizing how each stakeholder requires different explanations and what ques-
tions these explanations usually address, we move to the Explainable ML methods. Up to
this point, it should bear no doubt that there is no one-size-fits-all solution for explaining
ML models (Arya et al., 2019). Each explanation method emphasizes different aspects of
ML models and has different use cases. It is crucial to note that Explainable ML tech-
niques work independently of the quality of such decisions. Thus, the accuracy of the
ML model is not a necessary condition for a “good” explainability of the model: we are
explaining the ML model independently of its accuracy (although it is desirable for ML
models to describe reality accurately).

Following the taxonomy presented by Molnar (2018), explainability in ML can be
approached on two levels: transparent models and post-hoc interpretability (see Figure
1.2 for a graphical depiction). For a more detailed taxonomy, we refer to (Arrieta et al.,
2020; Schwalbe & Finzel, 2023). Transparent models, the opposite of black-box models,
refer to models considered interpretable due to their simple structure, such as Linear
Regression, DT s, or Rule-based systems. However, transparent models become black-
boxes as their complexity grows (Molnar, 2018; Adhikari et al., 2019). On the other hand,
post-hoc techniques try to explain ML models. Based on their output type, they can be
categorized into surrogate models, feature statistics, or explanations based on examples.

Explanation techniques in ML can also be categorized based on three criteria (Molnar,
2018):

• Scope: Global or local. Global explanations target the whole model, and local
explanations target a region of the feature space.
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Figure 1.2: A taxonomy of Explainable Machine Learning techniques. Adapted from Mol-
nar (2018).

• Origin: Intrinsic or post-hoc. Intrinsic explanations imply that the model can be
directly understood (transparent models), and post-hoc explanations mean we use
extra tools to help explain it.

• Applicability: Agnostic or specific. Agnostic explanation techniques can be used for
any model, whereas specific explanation techniques target a specific model (or type
of ML model).

The scope and origin of the explanations are often correlated. Global explanations are
usually limited to transparent ML models, and local explanations are generally generated
using post-hoc techniques. The rationale behind this correlation is that as the complexity
of the ML model increases, it becomes harder to explain large regions of the input space,
and we focus on small regions. There are exceptions to this correlation, such as global
feature importance or global surrogates that approximate a complex ML model using a
simpler one. However, sometimes, these aggregations discard relevant information to some
(probably underrepresented) instances and generate misleading insights. Therefore, global
explanations should be used with caution when they are generated using approximations.
Examples of well-known post-hoc explanation techniques are:

• SHapley Additive exPlanations (SHAP) (Lundberg & Lee, 2017): SHAP explana-
tions quantify the contribution of the individual features on the output. Specifically,
Shapley values indicate how much a particular feature value deviates the output from
the average prediction. Thus, the sum of these deviations makes up the difference
between the prediction and the average prediction. SHAP is based on coopera-
tive game theory and offers a theoretically rigorous approach to explanations. In
addition, global (or group) explanations can be generated by combining individual
Shapley values. In the previous taxonomy, SHAP is a post-hoc feature statistic tech-
nique with global and local scopes. SHAP can be generated using model-agnostic
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methods, such as KernelShap (Lundberg & Lee, 2017), and model-specific like Tree-
Shap (Lundberg et al., 2018).

• Influential observations: They are observations that had a big effect on the ML mo-
dels. In other words, its absence in the training set would have changed the model
significantly. For instance, they might be outliers or errors. These influential obser-
vations help us to understand the model parameters through the data, make robust
models, and detect problems in the data. Examples of influential observation tech-
niques are the Cook’s distance (Cook, 1977) and influence functions (Koh & Liang,
2017). Cook’s distance is a technique specific to linear models, and it measures the
effect of removing an instance by retraining the model and comparing the output
with the original model. Influence functions are a technique specific to differen-
tiable models, which estimates the influence without retraining the model, making
it apt for larger models such as deep learning models. Influential observations are
an observation-based global post-hoc technique.

• Forest-based Tree (FBT) (Sagi & Rokach, 2020): FBT approximates a Random
Forest (RF ) with an interpretable DT , balancing between performance and ex-
plainability. It combines the conjunction sets (i.e., the rules) of each DT to form a
unified representation of the RF . This unified representation is then organized hi-
erarchically to yield a simplified and approximated DT . FBT is a global surrogate
specific to RF .

• Counterfactuals and semifactuals: They are two example-based techniques whose
goal is to explain the outcome of an observation of interest, often referred to as
factual sample, using other observations. These explanation techniques are based
on the comparison of the factual sample with another observation (or set of ob-
servations). In counterfactuals, the outcome for the factual sample and the other
observation(s) is different, and in semifactuals, it is the same. Counterfactuals
are one of the most widely used Explainable ML techniques because they resem-
ble the human-thinking process (Molnar, 2018; Adhikari et al., 2019). In contrast,
semifactual-based techniques (although not often directly referred to like that in
the ML literature) are gaining momentum (Dhurandhar et al., 2018; Ribeiro et al.,
2018). Techniques that combine both approaches also exist (Dhurandhar et al.,
2018; Guidotti et al., 2019).

This thesis focuses on counterfactuals and semifactuals because of their wide usage,
complementarity, and robust foundation in the social sciences. In particular, it seeks
to address existing limitations in their application. Most counterfactual explainability
approaches face the following limitations: 1) they use only one observation, and 2) they are
primarily defined in a classification context. In semifactuals, they lack a general definition
and are primarily defined in a classification context. In both cases, they lack a standard
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approach for users to express their preferences, and although definitions of other tasks,
such as regression, exist, they are ad-hoc (Stepin et al., 2021). These limitations motivate
the necessity of a user-oriented framework that formalizes counterfactuals and semifactuals
to other ML tasks in terms of similarity measures, supports multiple observations, and
enables users to express their preferences more effectively.

1.2. Objectives

The main goal of this thesis is to study ML explainability techniques, extending coun-
terfactual and semifactual techniques with a focus on the target user, and validating their
utility and performance. Based on this, the following objectives have been set:

O1) To provide a new explanation methodology unifying counterfactuals and semifactu-
als based on similarity measures, emphasizing their complementarity and a standard
methodology to define the feasible sets.

O2) To provide a taxonomy of current set-based representations in the literature for
counterfactuals and semifactuals.

O3) To develop an agnostic method to extract these new explanations based on Anchor,
a well-known agnostic explanation method.

O4) To develop a method to extract these new explanations from a RF leveraging on its
internal structure and axis-parallel decision surface.

O5) To validate the proposed explanation methodology and compare the extraction me-
thods to alternatives in the literature.

From these goals arise the following research questions that we wish to address:

Q1) Can a RF be converted into a DT? Is it a valid mechanism to explain a RF?

Q2) From an explainability point of view, are sets of observations better than a single
observation?

Q3) How do different notions of similarity affect the extracted counterfactual and semi-
factual explanations?

Q4) Are full-access explanation techniques better than black-box techniques?
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1.3. Thesis organization

This document is organized into six chapters. The first two chapters introduce the
objectives, motivation, and background of this document. Chapters 3, 4, and 5 detail
how these objectives were addressed and their validation. The last chapter presents the
conclusions and research opportunities.

Chapter 2 provides the background knowledge necessary to understand the proposal.
It covers the notation, offers a brief introduction to RF and DT s, and presents a literature
review of counterfactuals and semifactuals. This chapter sets the foundation for Chapter
3, where the Explanation Set framework is introduced, which integrates counterfactuals
and semifactuals using user-defined similarity measures (Objective O1). It discusses the
benefits of this similarity-based definition and proposes a feasible set definition for coun-
terfactuals and semifactuals. In addition, it includes a taxonomy of representations from
the literature that can represent Explanation Sets (Objective O2). Lastly, it presents an
agnostic approach to extract Explanation Sets based on Anchor (Objective O3).

Chapter 4 presents Random Forest Optimal Counterfactual Set Extractor (RF-OCSE ),
a method for extracting counterfactual Explanation Sets from RF (Objective O4). The
extraction approach is based on the fusion of a RF into a DT . Due to the exponential
combinatory nature of this fusion, it introduces a partial fusion of the RF into a DT
restricted to a particular region to reduce runtime.

Chapter 5 details the experiments to validate the proposed methodology and extraction
techniques (Objective O5). It includes the evaluation of the Explanation Sets framework
and examines the effect of various similarities and feasible sets on the explanations. It
also compares the two proposed extraction techniques in counterfactual Explanation Sets
extraction with existing methods in the literature.

Chapter 6 concludes this thesis by addressing the research questions posed in Section
1.2, listing the main contributions, and highlighting future research opportunities. Finally,
a list of publications tied to this thesis is presented.





Chapter 2

Background

In this chapter, we lay the foundations for the proposed explanation methodology and
extraction techniques discussed in subsequent chapters. It is structured as follows. Sec-
tion 2.1 defines the notation conventions adopted throughout the document. Section 2.2
provides a brief introduction to Decision Trees (DT s) and Random Forest (RF ) Machine
Learning (ML) models, emphasizing their construction. This foundational knowledge is
crucial to understanding some counterfactual extraction methods, and it is the base for
the proposal in Chapter 4. Finally, Section 2.3 presents a review of counterfactual and
semifactual explanations in the literature, their desirable preferences, and methods to
extract them.

2.1. Notation

Throughout this document, we adopt the following notation. Let f be a ML model:

f : X → Y (2.1)

that maps observations from the feature space, X, to the output space, Y. This ML
model could represent various tasks such as classification, regression, clustering, anomaly
detection, and more, provided they adhere to the above definition.

Typically, the feature space is defined as the real space, X = Rp, where p denotes
the number of features. The output space of ML models is often either the real space
with a single output, Y = R, or a discrete space representing the problem’s labels (e.g.,
Y = {−1, 1} for binary classification or anomaly detection, or the identifier of each cluster
in clustering).

We assume that the ML model is constructed using a set of training samples X ⊆ X
that are independent and identically distributed. Note that more information might be

11
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needed to construct the model depending on the task, but we do not make assumptions
about the availability of such information. For instance, if the problem is supervised
classification, each element from the training set X has an associated label, such that the
training set is L = {(xi, yi) : i = 1, 2, . . . , n}. In such a case, these samples are drawn
independently and identically from the joint distribution (X,Y).

Finally, lets consider x̂ ∈ X as the sample whose explanation is of interest (factual
sample). For clarity, we will assume that the model f returns a scalar. Thus, we will use
ŷ = f (x̂) as the output of the model for the factual sample.

2.2. Machine Learning models

2.2.1. Decision Trees

DT s are one of the most well-known and used algorithms in the ML community.
They are conceptually simple yet powerful; even non-experts can understand their inner
workings. DT s provide a hierarchical structure where a split is made at each node based
on a single feature, resulting in two or more partitions. While two-way splits are the most
common, certain tree construction techniques allow multi-way trees. The objective of the
splits is to maximize the homogeneity of the training data in the resulting partitions. The
splitting process is repeated on the resulting partitions until a stopping criterion is met,
obtaining a terminal node. Terminal nodes, or leaves, contain the predictions of the DT .
For new instances, predictions are made by identifying the corresponding terminal node
based on the node conditions.

Figure 2.1 illustrates a DT . This DT is presented from left to right, with the leftmost
node being the root and the rightmost nodes representing the leaves (depicted as circles).
The root node divides the data using the f 1 ≤ 7.30 condition. Observations not satisfying
this condition (i.e., f 1 > 7.30) proceed to the subsequent branch below. Here, another
division occurs based on the feature f 1, specifically f 1 ≤ 7.75. Continuing with observa-
tions not meeting this latter condition, we arrive at the bottom circle, a leaf (or terminal)
node for the positive class. This implies that all observations following the described path
are categorized as positive. The same reasoning can be applied to the other branches.

Among the various algorithms available for DT construction, Iterative Dichotomiser 3
(ID3 ) (Quinlan, 1986), C4.5 (Quinlan, 2014), Yet Another Decision Tree builder (YADT )
(Ruggieri, 2004), and Classification and Regression Trees (CART ) (Breiman, 2017) are
the most well-known. While each algorithm has its strengths and weaknesses, we focus
on the CART algorithm due to its binary-splitting nature and its wide use in the field.

The CART algorithm starts with the entire training set and greedily searches for
the optimal way to split the training set. All potential split values, the average of two
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Figure 2.1: Visualization of a Decision Tree using the dtreeviz library. The Decision
Tree is displayed from left to right, based on the synthetic data discussed in Section 3.3.
Nodes with a yellow color represent the positive class, while green ones represent the
negative class. The terminal nodes, depicted as circles, are pie charts indicating the class
distribution within that leaf. Each internal node specifies the feature used for the split
(below the histogram) and the corresponding threshold value (indicated below the triangle).

consecutive values from the sorted set of feature values, are considered to find the best
split for a feature. Although the CART algorithm supports regression and classification
tasks, this chapter focuses only on classification. In classification, the goodness of a split
is calculated using the weighted average (by number of instances) of the Gini impurities
of each partition. The Gini impurity, G, for a partition is computed as:

G = 1 −
l∑

i=1

p2
i

where pi denotes the probability of an instance being classified into class i, and l denotes
the number of labels. This probability is determined by the relative frequency of the class
within the partition.

After determining the best split across all features, the data is split, and the process
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is recursively applied to each partition. This process is repeated until a stopping criterion
is met. The most common stopping criteria are:

• A node becomes pure (i.e., all instances from the same class).

• The number of instances in the partition falls below a certain threshold.

• A predefined maximum depth is reached.

• No significant improvement is observed in the splitting process.

Upon constructing the DT , a pruning step might be used to reduce its complexity. Given
the susceptibility of DT s to overfitting, pruning serves as a regularization mechanism.
Note that most of the current implementations are mixes of different construction me-
thods. For instance, other criteria, such as Information Gain, are also used. Also, they
do not usually perform an exhaustive search for the best split, resulting in less computing
time and reducing the overfitting risk.

2.2.2. Random Forest

RF (Breiman, 2001) is a bagging method based on DT s. This section specifically
addresses RF for classification. Essentially, a RF is defined as a set of DT s and a method
to aggregate the outcomes of the individual DT s into a single result. The primary goal
of using several DT s is to reduce the variance and the risk of overfitting inherent to DT s.

In the construction of a RF , multiple datasets are generated using bootstrapping on
the original data. Subsequently, a DT is trained on each dataset. The DT construction
sightly deviates from the CART approach. Instead of greedily evaluating all features
at each node, only a subset of m features is considered, being the most common option
⌈m =

√
p ⌉, where ⌈·⌉ is the ceiling function.

Another deviation is the stopping criteria. Individual DT s are grown to full depth
until either node purity is achieved or the minimum number of instances in the partition
is reached. Note that in most libraries, the maximum depth can also be specified.

These deviations ensure diversity among the DT s and can lead to overfitting of the
individual DT s. However, the aggregation method counteracts this, reducing variance
and enhancing the overall model performance (Aceña et al., 2022). The most common
aggregation methods are the most frequent class or the average probability, with the latter
a generalization over the former.
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2.3. Counterfactuals and semifactuals

In the previous chapter, we discussed the nature of an explanation, its desirable pref-
erences, and provided a brief overview of counterfactuals and semifactuals. This section
delves deeper into these topics. We begin by defining counterfactuals and semifactuals in
the ML context. Then, we address their desirable preferences and extraction methods.

Counterfactuals have been thoroughly studied in social sciences, whereas semifactuals
have gotten less attention (McCloy & Byrne, 2002). Both explanations share a similar
representation but differ in their cognitive impact. Counterfactuals are represented by
the conjecture “if only p, q” (e.g., study, pass the exam) and the presupposed fact “not-p,
not-q” (e.g., not study, not pass the exam). Semifactuals present the conjecture as “even
if p, not-q” and the presupposed fact “not-p, not-q” (e.g., not study, not pass the exam).
In these conjectures, “p” is the predicate, and “q” is the consequent, corresponding to the
observations and outcome in the ML literature.

According to McCloy & Byrne (2002), the inferences made about the relationship
between the antecedent and the consequent may trigger different emotional responses.
Counterfactuals amplify this response, and semifactuals reduce it. It has also been stated
that a combination of counterfactuals (how to avoid an event) and semifactuals (hypo-
thetical situations that would have led to the same event) help to evaluate the causal
structure of an event correctly (McCloy & Byrne, 2002; Sherman & McConnell, 1995).
Nevertheless, as previously mentioned, there is no silver bullet in explanation techniques,
and the choice of counterfactuals, semifactuals, both, or other techniques depends on the
problem and situation.

Similarly to the social sciences, counterfactuals have gotten more attention than semi-
factuals in the Explainable ML field. This is evidenced by the various terminologies that
use semifactual-based techniques:

• Anchors (Ribeiro et al., 2018): A sub-region (hyperbox) of the feature space around
the factual sample where the prediction does not change.

• Factual rules (Guidotti et al., 2019): The rule that classifies the factual sample from
a surrogate DT built in the neighborhood of the factual sample.

• Pertinent positives (Dhurandhar et al., 2018): Denote the minimum features needed
to ensure the prediction. The other (unset) features can change, defining a set of
observations where the minimum features are enforced, and the others can freely
vary.

• Prototypes (Bien & Tibshirani, 2011): A set of similar instances that obtains the
same classification. Also known as exemplars (Guidotti, 2022). They are not nec-
essarily tied to a model and can be used directly over the training set.
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Anchors and factual rules are conceptually the same: a hyperbox defined on the feature
space containing the factual sample whose prediction is mostly constant. They only differ
in their construction. In all these methods, the objective is the same: to draw inferences
about an outcome by comparing the factual sample with other instances whose prediction
is the same.

In contrast, most counterfactual-based techniques in the ML literature adhere to the
definition provided by (Wachter et al., 2018):

“Score ŷ was returned because variables x̂ had values (x̂1, x̂2, . . .) associated
with them. If x̂ instead had values (x′1, x

′
2, . . .), and all other variables had

remained constant, score y′ would have been returned.”

In this definition, x̂ is the observation whose explanation is of interest, and ŷ is the
prediction of a ML model f , such that f (x̂) = ŷ. The outcome ŷ is known as fact, which is
the event that occurs in the reality of the model f under the parameters x̂. The foil, y′, is
the event that did not occur and was the expected outcome. The parameters x′ represent
one of the possible scenarios where the outcome y′ would have occurred.

We propose to adapt this definition to semifactuals by having y′ = ŷ and replacing “if”
by “even if”:

“Score ŷ was returned because variables x̂ had values (x̂1, x̂2, . . .) associated
with them. Even if x̂ instead had values (x′1, x

′
2, . . .), and all other variables

had remained constant, score ŷ would have also been returned.”

The changes between the counterfactual and semifactual definitions are marked in
blue. Under this definition, a semifactual describes a scenario, x′, that is different from
the actual one, x̂, but leads to the same outcome, ŷ.

In ML, techniques similar to counterfactuals but with different goals also exist. The
most well-known instance is adversarial examples (Mittelstadt et al., 2019; Karimi et al.,
2020). While both aim to find observations close to the target but with a different pre-
dicted class, their purpose differs. The purpose of adversarial attacks is to make the model
misclassify the sample. In most cases, the difference between the observation of interest
and the adversarial attack is not easily perceptible by humans (e.g., one-pixel attacks in
images (Su et al., 2019; Alatalo et al., 2022)). Conversely, the purpose of counterfactuals
is to make the user reason about the difference between the observation of interest and the
counterfactual observation. This difference will help the user to understand the outcome
of the classifier and, therefore, should be noticeable to users.

Another technique similar to adversarial attacks is flip points (Yousefzadeh & O’Leary,
2019). They are defined as the points that lie on the decision surface (i.e., the positive and
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negative classes have the same score). Given that flip points lie on the decision surface,
whether this technique generates counterfactuals or semifactuals is determined by the
implementation of the ML models.

Though adversarial attacks and flip points can be viewed as counterfactuals, they
usually would not be helpful to explain the ML model. This explainability is achieved in
counterfactuals through a series of desirable preferences explained in the following section.

Similarly to the semifactual methods mentioned above, counterfactuals extend to
multi-instance scenarios. For instance, counterfactual rules (Guidotti et al., 2019) and
diverse counterfactuals (Dhurandhar et al., 2018). These methods are detailed in the
following sections.

2.3.1. Desirable preferences

In a ML model defined in a continuous input space, the number of potential counter-
factuals and semifactuals is usually infinite. For the sake of simplicity, we will refer to
counterfactuals and semifactuals as explanations throughout this section. Further, most
of them will not provide a satisfactory explanation, and we cannot consider all the al-
ternatives (McCloy & Byrne, 2002; Fernández et al., 2019). Consequently, the goal is to
provide a few explanations based on specific desirable preferences, allowing the user to
understand the problem from different perspectives.

Within the social sciences literature, the desirable preferences of counterfactuals have
been deeply explored. In contrast, semifactuals have gotten less attention (McCloy &
Byrne, 2002). Generally, certain factors in counterfactuals are seen as more mutable than
others (McCloy & Byrne, 2002). Examples of such mutability preferences are voluntary
over external changes, choosing actions over inactions, and prioritizing the most recent
event in a series of related events.

The goal of the individual influences these preferences (Roese & Epstude, 2017). Draw-
ing from (Roese & Epstude, 2017), even though the focus is on counterfactual thinking,
the study offers insights into these preferences. For instance, the goal structure plays a
significant role. Some people might be driven to feel better and, consequently, promote
downward counterfactuals (situations less preferable than the actual outcome) over up-
ward counterfactuals (situations better than the actual outcome) (K. White & Lehman,
2005; Roese & Epstude, 2017).

Another instance is the specific goal of the user. If the person seeks to improve the
outcome, upward counterfactuals are more common. In contrast, if the person aims to
maintain the status quo, downward counterfactuals are more fitting (Roese & Epstude,
2017). Also, if the user aims to achieve a goal, additive counterfactuals (adding new ele-
ments to the current scenario) are more common. Conversely, subtractive counterfactuals
(remove elements from the current scenario) are more dominant if the aim is to prevent
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something.

The main conclusion from these counterfactual preferences underscores what we have
emphasized throughout the document: the selection criteria for counterfactuals are deeply
connected with the domain and target user. The abovementioned preferences are not
quantifiable and thus cannot be implemented directly in the extraction methods. As a
result, several studies have proposed metrics and restrictions as a proxy for these desirable
preferences, ensuring that counterfactuals remain helpful. Metrics provide a quantifiable
magnitude about the extent to which a preference is met. On the other hand, restrictions
are binary, indicating whether a preference is met. We will use the term “preferences” to
jointly refer to metrics and restrictions for simplicity.

A comprehensive review of these preferences for counterfactuals is provided in (Guidotti,
2022), building upon the previously rigorous works in (Mothilal et al., 2020; Verma et al.,
2020). Since most preferences are defined for counterfactuals, we will indicate if the pref-
erence directly applies to semifactuals with (S✓) next to the preference name, (S✗) if it
does not, or (S?) if any remark is made about the adaptation. Besides, in some pref-
erences, we will discuss their relationship with the others. They discuss the following
preferences:

• Validity (S✓): The validity is not a restriction per se but rather the indication of
whether the observation is actually a counterfactual. In other words, it indicates
whether the definition of counterfactual holds independently of its quality. For a
given observation x ∈ X it involves checking that f (x) , f (x̂). For a semifactual to
be valid, it corresponds to checking that an observation different from the factual
sample x ∈ X ∩ {x̂} has the same prediction as the factual sample, f (x) = f (x̂).

• Similarity (S?): For a counterfactual to be useful, it should be similar to the factual
sample, as the explanation is based on the comparison between these two instances.
The conclusions are likely to be irrelevant if these instances present no resemblance.
As a proxy for the similarity, distance functions are considered. Thus, a closer
counterfactual should be preferred. The most common distances considered in the
literature are the Manhattan distance (L1 norm), the Euclidean distance (L2 norm),
the median absolute deviance, and the Gower distance (Gower, 1971):

Gower(x, x′) =
∑

i∈F disti(xi, x′i)
p

(2.2)

where F = {1, . . . , p|xi , x′i} represents the set of feature changes, p denotes the
number of features, and disti is a user-defined pairwise distance for the feature i,
bounded between 0 and 1.

While the same reasoning holds for semifactuals, emphasizing other preferences,
such as diversity, becomes crucial to obtaining relevant instances in this scenario.
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Since the prediction of semifactuals is the same as the factual sample, generating a
semifactual observation near the factual observation is trivial, possibly with a high
plausibility value. However, it is not useful since it is basically the factual sample.

• Sparsity (S✓): The sparsity, often referred to as the number of changes, is the
number of features in which the counterfactual and the factual sample differ. A
high sparsity should be preferred since few changes are easier to understand and
less complex than a large number of changes.

However, it is more complex. A high sparsity should be preferred while keeping the
counterfactual closer to the factual sample. Otherwise, it is not useful. Consider
two counterfactuals: the first suggests increasing the net income from $50k to $10M,
while the second suggests reducing the expenses by 1% and increasing the net income
by $10k. Although the first has a higher sparsity, the second would be preferable in
most cases due to its more feasible changes.

To balance between the cost of the changes and sparsity, we can consider distances
such as the Manhattan distance and sGower (Fernández et al., 2019):

sGower(x, x′) =
∑

i∈F disti(xi, x′i)
1 + p − |F |

where F = {1, . . . , p|xi , x′i} represents the set of feature changes, p denotes the
number of features, | · | is the cardinality of the set, and disti is a user-defined
pairwise distance for the feature i, bounded between 0 and 1.

• Plausibility (S✓): Plausibility takes several names in the literature, such as feasi-
bility, reliability, and data manifold closeness. It is a measure of how realistic the
proposed counterfactual is. Counterfactual reasoning is similar to performing a sim-
ulation process on those hypothetical scenarios, so it makes sense to consider only
scenarios that could happen. This can be easily conceptualized through domain-
related restrictions (e.g., negative age or weight), which do not make sense in those
simulations.

Plausibility is mainly measured using the observed data (training set) and assump-
tions about the data distribution. Instances of methods to enforce plausibility in the
literature are: generative models (Barredo-Arrieta & Del Ser, 2020), autoencoders
(Dhurandhar et al., 2018), density estimation techniques (Artelt & Hammer, 2020;
Poyiadzi et al., 2020), and ϵ-chain distances (Laugel et al., 2019).

• Discriminative Power (S✗): The discriminative power is a proxy of the user’s abil-
ity to recognize the reasons for the counterfactual outcome (Guidotti et al., 2020;
Guidotti, 2022). Therefore, it measures how the cognitive biases of the user align
with the counterfactual. To be meaningful, discriminative power should be com-
bined with a similarity criteria. This is crucial since a counterfactual with high
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discriminative power but far from the factual sample is not useful in the compar-
ison process. Discriminative power is sometimes measured using a simpler model
that is expected to correlate with the user’s ability to recognize the counterfactuals
(Guidotti et al., 2020).

For semifactuals, this restriction is not directly applicable. The reason is that the
user would classify observations close to the factual sample as being of the same
class as the factual sample, and they do not help in the explanation process.

• Actionability (S✓): The actionability is a restriction over the counterfactual search
space and is often referred to as recourse (Ustun et al., 2019; Von Kügelgen et
al., 2022). Usually, a set of attributes is defined as non-actionable and cannot be
changed (e.g., age and race). It is a method to enforce preferences over what can
be mutated and what cannot. Under the same definition, actionability restrictions
can be inequality constraints rather than equality (e.g., the value of a feature can
only increase).

The selection of actionable features completely depends on the domain and user
preferences. For instance, age is usually mentioned as an instance of a non-actionable
feature. However, in a ML system to determine an individual’s eligibility for a
driver’s license, a relevant counterfactual might suggest that if the individual were
above the required driving age, they could obtain the license.

• Causality (S✓): This casualty restriction refers to the causal relationship among the
features, not between the input and the output (Guidotti, 2022). The counterfactu-
als should preserve any existent relationship between the features. This restriction
aligns with plausibility, as plausible instances inherently keep causal relationships
among the features.

To illustrate this concept, consider a ML system with three features, with the third
being the product of the first two. In this scenario, modifying the first feature in
the counterfactual search should reflect on the third feature to preserve the causal
relationship.

As a side note, the causal relationship between the input and output is essential
for a good counterfactual explanation. We assume the model provides a reliable
approximation of the underlying process. If this assumption does not hold, the
counterfactuals will not be useful to explain the underlying process.

Not all of these preferences are essential for a robust explanation; rather, they serve as
general guidelines that can be tailored based on the goal. Further, most research on these
preferences focuses on end-users, overlooking all users interacting with the system before
deployment. For instance, actionability restrictions might hide harmful biases in the ML
model. Another instance is plausibility. It could prevent us from identifying ill-defined
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regions in the ML model. If the goal is to reason about the ML model, minimizing the
biases in the explanation generation is crucial, or at least being aware of them.

Although the aforementioned preferences are defined for individual explanations, they
can be easily extended to a set of finite explanations. For instance, they can be calculated
for each observation and then aggregate their results using the mean or maximum. In
addition, we can define more preferences that relate to multiple instances (Guidotti, 2022):

• Size (S✓): It is the number of instances that contain the counterfactual set. The
number of counterfactuals should be moderate based on the domain and the target
user. Additionally, these instances should be diverse because otherwise, they do not
provide new insights. While it may seem intuitive that having a larger number of
counterfactuals would result in a better explanation, it could be counterproductive
by increasing the user’s cognitive load.

• Diversity (S✓): This metric quantifies the heterogeneity within a set of counterfac-
tuals. A set with higher diversity should be preferred because users can approach
counterfactual thinking from different perspectives. This also accounts for the pref-
erences of the user; a diverse set allows users to pick the counterfactuals that align
with their preferences and biases (Miller, 2018).

Given a finite set of counterfactuals C, the diversity can be measured as the average
pairwise distance between the counterfactuals (Guidotti, 2022; Mothilal et al., 2020):

divdist =
1
|C|2

∑
x,x′∈C

d(x, x′) (2.3)

and also can be measured as the average pairwise number of feature changes (Guidotti,
2022):

div f eat =
1

p(|C|2)

∑
x,x′∈C

ϕ(x, x′) (2.4)

where p denotes the number of features, ϕ : X × X 7→ N0 measures the number of
values in which the two vectors differ, and d is a user-defined distance.

Finally, some preferences are defined for explanations that delineate regions of the
space. The previous preferences are not directly applicable because these regions encom-
pass infinite observations. Another significant difference is that region-based explana-
tions often include non-valid observations. Thus, a counterfactual region might contain
non-valid counterfactuals, and semifactual regions might contain non-valid semifactuals.
These non-valid observations are considered exceptions and should be infrequent. Allow-
ing exceptions enables broader and more generic explanations that are usually easier to
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understand. Another reason is that ensuring that all explanations in a region are valid is
a challenging endeavor.

In contrast with the previous preferences, these preferences are used for counterfac-
tuals and semifactuals within the literature. Let C ⊆ X be the observations inside the
explanatory region. The region-based preferences are the following:

• Fidelity (S✓): The fidelity is the proportion of observations that are valid explana-
tions within the set C. If the explanation is a counterfactual, it is the proportion of
counterfactuals in the set C. A higher fidelity should be preferred since it indicates
that most observations, except for a few exceptions, are valid explanations.

Since the set C might contain infinite elements, the fidelity is often approximated
using sampling procedures. Specifically, we sample observations from the set C
obtaining the set C′, and then we estimate the fidelity as the average number of valid
explanations within these representative samples (Ribeiro et al., 2018; Guidotti et
al., 2018; Bodria et al., 2023):

f idelityx̂, f (C) =
1
|C|

∑
x′∈C

1[ f (x̂) , f (x′)] (2.5)

• Coverage (S✓): The coverage is the proportion of instances from the training set
that are contained in the set S :

coverage(S ) =
|X ∩C|
|X|

(2.6)

where | · | denotes the cardinality of the set. The coverage is a measure of the
genericity of the explanation. As a result, explanations with higher coverage tend
to be more comprehensible, provided that these instances are similar to the factual
sample.

This definition should not be mistaken with the coverage defined in (Mohammadi
et al., 2021), which refers to the number of cases where the method yielded a valid
counterfactual.

The previous preferences for individual explanations can be extended to region-based
explanations. In fact, the fidelity is the generalization of the valid restriction. Thus,
the preferences can be estimated by sampling observations within the region and then
aggregating the individual values. Note that the size preference does not make sense in
region-based explanations because the number of observations is infinite.

The preferences introduced are primarily implemented using ad-hoc approaches tai-
lored for each extraction method. The absence of a standardized methodology for rep-
resenting these preferences makes their reuse and incorporation into extraction methods
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difficult. Furthermore, it complicates the combination of multiple preferences, particularly
when they are metrics due to their continuous nature.

2.3.2. Extraction methods

After defining the preferences for counterfactual explanations in single, multi, and
region-based settings and their extensions and applicability to semifactuals, we turn our
attention to the extraction methods that enforce these preferences. In this section, we
use the term “cost” to denote the objective function optimized during counterfactual and
semifactual extraction. In most methods, this cost function incorporates the preferences
under consideration. For an extensive review of counterfactual extraction methods, we
refer to (Guidotti, 2022).

The extraction methods can be categorized based on their applicability (agnostic or
specific) (Adadi & Berrada, 2018) and their extraction strategy (Guidotti, 2022). While
this categorization is initially defined for counterfactuals, it is also applicable for semifac-
tuals. The most common extraction strategies are:

• Optimization (OPT): Represents the cost function using an existing optimization
framework and solves it.

• Heuristic Search Strategy (HSS): Uses local heuristics to minimize the cost function.

• Instance-Based (IB): Selects the instance from a dataset that minimizes the cost
function.

• Decision Tree (DT): Constructs a surrogate DT and then exploits its structure to
extract the counterfactual that minimizes the cost function.

The literature has also examined the preferences of counterfactual extraction methods.
These preferences help to narrow down the available techniques based on the problem at
hand (Guidotti, 2022). These preferences are directly applicable to semifactual extraction
methods. The preferences are the following:

• Efficiency: Measures the time the counterfactual extraction method takes. The me-
thod should be fast enough to ensure practical applicability in real-world scenarios.

• Stability: Measures the variability in the counterfactual extraction. Close observa-
tions with the same prediction should have closer counterfactuals. This term has
also been called robustness (Alvarez-Melis & Jaakkola, 2018).

A method to quantify the robustness based on a local definition for the Lipschitz
continuity is introduced in (Alvarez-Melis & Jaakkola, 2018). The robustness is
defined as the maximum difference between the explanation for the factual sample
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and other observations in a ϵ-ball near the factual sample. Small differences in
output imply more robust methods.

• Fairness: Promotes counterfactuals valid both in the “counterfactual world” and the
“actual world” (Guidotti, 2022). Fairness is not always a desirable preference, mainly
depending on the objective. For instance, if the aim is to understand the model from
a developer’s perspective, fairness constraints could complicate the debugging pro-
cess. However, when providing explanations to end-users, ensuring fairness becomes
imperative.

• Validity: Guarantees that a counterfactual can be found whenever it exists.

Method Aplicability Strategy Validity Multiple Target
Anchor (Ribeiro et al.,
2018)

Agnostic HSS ✓ S

(Barredo-Arrieta &
Del Ser, 2020)

Neural Networks HSS C

(Blanchart, 2021) Tree-based DT ✓ ✓ C
CLEAR (A. White &
Garcez, 2019)

Agnostic HSS ✓ C

FBT (Sagi & Rokach,
2020)

RF DT C

FT (Tolomei et al., 2017) RF DT C
Growing spheres (Laugel
et al., 2017)

Agnostic HSS ✓ C

LORE (Guidotti et al.,
2019)

Agnostic DT ✓ C,S

MACE (Karimi et al.,
2020)

Agnostic OPT ✓ C

MO Agnostic IB ✓ C,S

Table 2.1: Methods for extracting counterfactuals, semifactuals, and both. The applicabil-
ity denotes the target ML model of the extraction method, and the strategy column details
how the extraction problem is posed. In the validity column, a ✓indicates that the method
guarantees that the counterfactual is valid. Similarly, a ✓denotes that the method returns
more than one counterfactual or semifactual in the multiple column. The target column
indicates if the method returns counterfactuals (C), semifactuals (S), or both (C,S).

Table 2.1 introduces well-known methods from the literature for extracting counter-
factuals and semifactuals. We classify them using the taxonomy proposed by (Guidotti,
2022), including whether they offer validity guarantees and indicating if they produce
single or multiple explanations. Additionally, we specify whether these methods pro-
duce counterfactuals, semifactuals, or both. The inner workings of these methods will be
elaborated upon later.
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Methods specifically addressing semifactuals are not common, being Anchor its most
prominent example. Some methods target counterfactuals and semifactuals, such as LOcal
Rule-based Explanations (LORE ) and Minimum Observable (MO), frequently employed
as a baseline. Although not common, there are agnostic methods like Model-Agnostic
Counterfactual Explanation (MACE ) that come with validity guarantees.

DT -based approaches are common due to the relative simplicity of extracting coun-
terfactuals and semifactuals from them. The process involves selecting the nearest sample
from a rule whose prediction aligns with the desired outcome (Fernández et al., 2019).
Additionally, extracting multiple explanations is relatively easy, either by sampling obser-
vations from the rule or using the rule itself as an explanation. In addition, Tree-based
approaches are often the target of extraction techniques that capitalize on their rule-based
structures. We will provide a brief discussion about techniques to simplify RF to a DT
to extract explanations when discussing Forest-based Tree (FBT ).

In the following paragraphs, we will delve into each method, explaining their extraction
procedure and output explanation.

MO: It is the closest instance from a set of observations satisfying the counterfactual
or semifactual requirements. If these requirements only include validity, then MO is
always defined as long as at least one instance is correctly classified for each class. If
the observations are real (e.g., training set), then the method enforces plausibility and
causality by default. The sparsity and similarity quality depend on the set S , larger sets
are correlated with a higher quality.

Anchor: It is a method to extract semifactual sets, specifically, a hyperbox in the feature
space that contains the factual sample. The set of minimal features that define the hy-
perbox is called anchor, and it ensures that most instances in the anchor have the same
prediction. We use the term “Anchor ” to refer to the extraction method and “anchor”
to refer to the explanation. The construction of the anchor starts without restrictions
(whole feature space), and it iteratively adds restrictions until a fidelity requirement is
met (by default, 0.90). As a consequence of adding restrictions, the coverage is opti-
mized indirectly. Anchor is an agnostic method that uses the model in black-box setting.
Specifically, it uses the model to calculate the fidelity of the candidate anchors, using
a multi-armed bandit approach that enables the reduction of the number of predictions
made while having statistical guarantees.

(Barredo-Arrieta & Del Ser, 2020): It is a method to generate plausible image coun-
terfactuals. The generation involves training a Generative Adversarial Networks (GAN )
network, which is then used to generate new images based on a perturbation and at-
tribute vector. They use metaheuristics search algorithms such as NSGAII (Deb et al.,
2002) to generate counterfactual images (through the perturbation vector) balancing be-
tween the validity (adversarial success), similarity (the magnitude of the changes), and
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the plausibility in terms of Pareto optimality.

(Blanchart, 2021): It is a method that takes the set of regions that define the tree ensemble
(i.e., hyperboxes), and extracts the pure hyperboxes, regions where prediction is constant,
from the fused tree ensemble. This approach is impractical in large tree ensembles because
of the exponential combinatory nature of the process. Therefore, they propose a branch
and bound optimization for extracting counterfactuals that iteratively shrinks the region of
interest as closer counterfactuals are found. This optimization overcomes the exponential
combinatory problem and keeps the search space within a reasonable space. However,
the former only requires one conversion, while this approach is run for each new factual
sample. In addition, it generates counterfactual sets from the hyperbox that classifies the
closest counterfactual.

CLEAR: Counterfactual Local Explanations for Any Classifier (CLEAR) enriches ex-
planations by providing a b-counterfactual and the regressions coefficients that explain
a neighborhood that contains both the factual sample and the b-counterfactual. B-
counterfactuals (boundary counterfactuals) are counterfactuals close to the decision bound-
ary, similar to adversarial attacks and flip points. This technique improves LIME (Ribeiro
et al., 2016) and LEAFAGE (Adhikari et al., 2019) by providing more information (b-
counterfactual) and a better technique to generate the neighborhood. It improves existing
counterfactual methods by providing the regressions coefficients, which has proven helpful
in the literature (Ribeiro et al., 2016).

FBT: It simplifies a RF into an approximate DT , keeping a high predictive power and
resulting in a more interpretable model. From this DT , we can easily extract counter-
factuals by selecting the closest rule to the factual sample. This distance between a rule
and the factual sample is the smallest distance from the observations that satisfy the rule
to the factual sample. Counterfactual sets are easily generated by taking the rule that
classifies the counterfactual, similarly to LORE .

The approximation of the RF using a DT starts by pruning DT s from the RF based
on the Area under the ROC Curve (AUC ). Then, the DT are merged using a left fold
reduction (i.e., first with the second, then with the third, and so on). At each fold reduc-
tion step, only the top L conjunctions by probability are kept, avoiding the combinatory
explosion of the merging process. Then, the ruleset is combined into a single DT .

There are other similar methods that could be used in the same way to generate
counterfactuals:

• (Bastani et al., 2017): it greedily builds a DT similarly to the CART method using
active sampling to calculate the splits. Specifically, it samples from a mixture of
axis-aligned Gaussian fitted on the training data. It has convergence (to the target
model) guarantees on the limit.
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• (Deng, 2019): it is an evolved version of the work (Deng, 2014). It first extracts
the rules from each RF and reassigns their outcome based on the whole dataset.
Then, it applies a series of pre-processing steps: pruning based on the rule length,
coverage, and precision, selection (Deng et al., 2014; Deng & Runger, 2013), and
frequent pattern extraction. Finally, it summarizes the rule set into a rule-based
learner.

• (Zhou & Hooker, 2016): It is similar to the approach in (Bastani et al., 2017), but it
is specifically designed for RF . The major difference is that it only considers the split
points of the original RF for candidates in the split selection process, significantly
reducing the complexity of the method.

The quality of these techniques is mostly evaluated on the testing sets. While this
choice is normal, it might generate explanation disagreements, specifically in the case
of counterfactuals. Counterfactuals mostly live in the vicinity of the decision surface,
and two models might have different decision surfaces while providing the exact same
results in the testing set. This difference magnifies if the counterfactuals are extracted in
low-density regions of the feature space. However, we hypothesize that these differences
should be small if the counterfactuals are extracted with plausibility constraints because
the regions where the counterfactuals are extracted will likely contain observations from
the testing set. In summary, depending on the goal of the explanation, model-cloning
techniques should be used with caution.

FT: It is a model-specific approach that extracts counterfactuals from tree-based ensem-
bles using model internals. The counterfactual generation starts by first gathering all
counterfactual rules from the RF . Then, for each of those rules, they update the instance
to meet conditions. That is, for each condition not met in the rule, the feature value is set
to the node value and adding (>) or subtracting (≤) a small value ϵ. Then, they take the
closest counterfactuals (if any). In some cases, the method might not be able to return a
valid counterfactual (i.e., a counterfactual cannot be derived from a single rule).

Growing spheres: It is a method that searches counterfactuals within a sphere by shrinking
or expanding its radius. The search within the sphere is performed using the YPHL
algorithm (Harman & Lacko, 2010), which can efficiently sample within a sphere. Using
the sampled points, the method checks if any of them is a counterfactual. The algorithm
considers two cases, given a radius η. If a counterfactual is found in the η-ball centered
in the factual sample, the radius is reduced to η/2. This process is repeated until a
counterfactual is not found, returning the closest counterfactual. In the second case,
if a counterfactual is not found, the method considers the range (ηt, ηt+1], where ηt+1 =

ηt + η. The process is repeated until a counterfactual is found. In both cases, when a
counterfactual is found, the method uses an approach to maximize its sparsity and returns
it as the explanation.
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LORE: It builds a surrogate DT using the YaDT algorithm (Ruggieri, 2004) in the neigh-
borhood of the factual sample and then extracts a counterfactual by taking the closest
counterfactual rule. The method returns the counterfactual rule that satisfies the coun-
terfactual and also the factual rule, which is the rule that satisfies the factual sample, as
an explanation. In the construction of the DT , a genetic algorithm is used to efficiently
generate a representative dataset in the neighborhood of the factual sample. The genetic
algorithm is run separately for each class, ensuring that both classes are well-represented.

MACE: It represents the counterfactual extraction as a satisfiability problem and extracts
the closest counterfactual within an arbitrary tolerance. Both the model and the distance
are expressed as a logic formulae, checking if there is a counterfactual closer than η.
The process is repeated using a bisect method until the difference between the search
extremes is lower than a user-given tolerance. This method works with any distance or
convex combination of distances and has been tested using plausibility, actionability, and
diversity preferences. MACE is defined as an agnostic method, but it requires a specific
interface to encode the ML model into the formulae. Therefore, we argue that extensible
is a better fit than agnostic because it does not work off-the-shell in all ML models such
as Anchor or CLEAR. In their work, they provide such interfaces for RF , DT , logistic
regression, and neural networks.

Among all the explored methods, MACE is the only one designed to easily incorpo-
rate other preferences. MACE can generate single or finite sets of counterfactuals using
diversity preferences. However, no technique in the literature possesses such preference
flexibility in a region-based setting, motivating the research of such techniques.
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Explanation Sets

This chapter presents Explanation Sets, a framework that unifies counterfactuals and
semifactuals. Explanation Sets inherit the explanation properties of counterfactuals and
semifactuals, which have been thoroughly studied in the social sciences and provide mech-
anisms to adapt them to different scenarios and preferences. This chapter addresses the
following objectives:

O1) To provide a new explanation methodology unifying counterfactuals and semifactu-
als based on similarity measures, emphasizing their complementarity and a standard
methodology to define the feasible sets.

O2) To provide a taxonomy of current set-based representations in the literature for
counterfactuals and semifactuals.

O3) To develop an agnostic method to extract these new explanations based on Anchor,
a well-known agnostic explanation method.

The chapter is structured as follows. The core concepts of this proposal are introduced
in Section 3.1 (Objective O1). Section 3.2 includes examples of counterfactuals and semi-
factuals based on similarity measures. Section 3.3 elaborates on expressing explanation
preferences (feasible set) within this unified framework and provides examples of com-
mon preferences in the literature. Section 3.4 introduces a taxonomy of Explanation Sets
representations (Objective O2). Lastly, Section 3.5 outlines Anchor_ES, a method for
extracting Explanation Sets from Machine Learning (ML) models (Objective O3).

3.1. Concepts

In this section, an example-based explanation framework called Explanation Sets is
presented. Explanation Sets encompasses counterfactuals and semifactuals, and they are

29
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based on three fundamental ideas:

1. Define counterfactuals and semifactuals using user-defined similarities.

2. Specify a feasible set containing only the observations relevant to the user using a
standard methodology.

3. Employ a set of observations, rather than a single observation, to provide more
information.

We will explore these concepts individually before formally defining Explanation Sets.

Counterfactuals and semifactuals based on similarities.

Semifactuals are observations distinct from the factual sample that yield identical
predictions. In this definition, the notion of “identical” refers to the identity similarity (or
Kronecker delta):

δ(y, y′) =

1 if y = y′

0 otherwise
(3.1)

Thus, an observation x qualifies as a semifactual for the ML model, f , and factual sample
x̂ if:

x ∈ X ∩ {x̂} ; δ( f (x̂), f (x)) = 1 (3.2)

Conversely, counterfactuals require the outputs to be different. Using the identity simi-
larity, an observation x qualifies as counterfactual if:

x ∈ X ; δ( f (x̂), f (x)) = 0 (3.3)

Excluding the factual sample, any observation from the feature space can be categorized
as either a counterfactual or a semifactual. Thus, the set of all counterfactuals is comple-
mentary to the set of all semifactuals when the factual sample is excluded.

This relationship leads to two interesting scenarios. In the first scenario, consider a
constant model. In such a case, all observations except the factual sample are semifac-
tuals, leaving no counterfactuals. Second, consider a model where the factual sample is
classified as negative and all other observations as positive. Then, all observations ex-
cept the factual sample are counterfactuals, with no semifactuals present. In both cases,
the absence of counterfactuals or semifactuals, respectively, becomes the most significant
explanation. This interdependence between counterfactuals and semifactuals motivates
their generalization and combined use in explanations.

Alternatively, counterfactuals and semifactuals can be expressed in terms of dissimi-
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larities. For instance, the identity similarity can be transformed into a dissimilarity as:

δ′(y, y′) =

1 if δ(y, y′) = 0

0 if δ(y, y′) = 1
(3.4)

Then, the counterfactual definition can be reformulated as:

x ∈ X ; δ′( f (x̂), f (x)) = 1 (3.5)

The implicit usage of the identity similarity in counterfactuals and semifactuals is
a natural choice in problems like binary classification. However, alternative notions of
similarity can be employed for tasks with continuous outputs or multi-class/multi-label
problems. Consequently, custom similarity definitions tailored to specific problems and
user requirements can be used, extending semifactuals and counterfactuals to tasks where
a similarity can be defined in the output space.

To unify the definitions of counterfactuals and semifactuals, we introduce a surjective
mapping called the grouping measure, m : Y×Y 7→ {0, 1}, which can be either a similarity or
dissimilarity. This mapping indicates whether two elements should be grouped (1) or not
(0). Similarity-based grouping measures group similar observations, while dissimilarity-
based measures group dissimilar ones.

Similarity and dissimilarity measures can be adapted to meet the grouping measure
requirements by introducing a cut-off threshold. Let u be a similarity or dissimilarity, and
ϵ ∈ (0,∞) the cut-off threshold, then:

mϵ(y, y′) =

1 if u(y, y′) > ϵ

0 otherwise

Values above ϵ are considered equal in a similarity and distinct in a dissimilarity. Fur-
thermore, they offer a straightforward conversion between them, similar to Eq. 3.4.

Then, we can rewrite the previous counterfactual and semifactual definitions into a
single definition using the grouping measure m as follows:

x ∈ X ∩ {x̂} ; m( f (x̂), f (x)) = 1

In this definition, the choice between a similarity or a dissimilarity based grouping measure
determines the derivation of semifactuals or counterfactuals. Notice that the factual
sample is also excluded compared to the counterfactual definition. However, since a
dissimilarity between an entity and itself is 0, this exclusion does not impact the definition.

Section 3.2 offers examples of similarity and dissimilarity measures, highlighting their
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advantages, applications, and complementarity.

Feasible set.

The feasible set is introduced to express preferences over counterfactuals and semifac-
tuals. This helps to reduce the observations to those of interest (e.g., close instances) and
keep only those relevant to the domain (e.g., positive age and weight). The feasible set,
S , is a subset of the feature space:

S ⊆ X

Using the feasible set, we can rewrite our previous unified definition of counterfactuals
and semifactuals as follows:

x ∈ S ∩ {x̂} : m( f (x̂), f (x)) = 1

Only observations from the feasible set S , excluding the factual sample, are considered
candidates for semifactuals or counterfactuals.

Section 3.3 provides a compact representation for the feasible sets and illustrates how
various examples from the literature are expressed with this framework.

Employ a set of observations.

Finally, using sets of counterfactuals and semifactuals rather than a single observation.
The idea is simple: using more observations will provide more information than a single
observation. However, this only applies if this set of observations can be presented in an
easy-to-understand manner. Also, depending on the topology and representation of the
set, it could have more properties. For instance, rule-based representations contain infinite
observations using a simple representation (Guidotti et al., 2018; Ribeiro et al., 2018).
They are particularly useful when features have a high variability, such as luminosity and
temperature, or when referring to measurements like height or weight. Because of the
measurement noise, these features are more effectively represented using a range rather
than a fixed value.

These sets of observations might include observations that do not meet the grouping
measure criteria, but their inclusion result in a more generic explanation. We can think of
those non-compliant observations as a small group of exceptions that do not influence the
overall explanation. This approach is also considered in methods like Anchor (Ribeiro
et al., 2018) and LOcal Rule-based Explanations (LORE ) (Guidotti et al., 2018). To
quantify the proportion (which can also be expressed as a percentage) of these compliant
observations within a set, we can define a measure called fidelity as follows:

f idelitym,x̂,µ, f (U) =
µ({x ∈ U : m( f (x̂), f (x)) = 1})

µ(U)

where µ is a measure of U. The fidelity of an empty set is 0. Note that this definition is
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similar to Anchor fidelity.

A constant set is a set whose fidelity is either 0 or 1. Conversely, a ML is said to be
constant under the grouping measure m and factual sample x̂ if it is constant in the set X,
i.e., if f idelitym,x̂,µ, f (X) ∈ {0, 1}. When the grouping measure and factual sample are clear
from the context, we will use only the term constant ML model.

The calculation of the fidelity is often intractable because it involves sets with infinite
elements (e.g., a set represented by feature ranges with continuous variables). In such a
case, an alternative is to estimate the fidelity by sampling observations from the given
set. The fidelity is then calculated over this sampled set, with µ set as its cardinality.
As an alternative to this sampling process, we can estimate it using the training feasible
set, which is the intersection of the training set and the feasible set, or a hybrid approach
combining both methods.

Section 3.4 delves further into the representations of Explanation Sets using various
examples.

Explanation Set definition.

Now, we can move to the definition of Explanation Sets. An Explanation Set, Eα, is
a subset of the feasible set S , whose fidelity is equal or higher than a user-given value
α ∈ (0, 1]:

Eα ⊆ S : f idelitym,x̂,µ, f (E) ≥ α (3.6)

Explanation Sets are a technique for explaining the outcome of the model f for the ob-
servation x̂. They are defined as a subset of the feasible set, S , that contains observations
whose comparison with the sample x̂ might be illustrative to explain the outcome f (x̂).
The parameter α determines the maximum proportion of observations that do not meet
the grouping measure, m, in the Explanation Set. It is a trade-off between the size and
composition of the Explanation Set. A high value of α (e.g., 0.90) should be preferred
since it indicates that the explanation is faithful to its purpose. However, if the resulting
explanations are too specific, the α values could be slightly reduced (e.g., from 0.90 to
0.85). “Explanation Sets” where the fidelity requirement is not met are considered pseudo
Explanation Sets. An approach to generate Explanation Sets is described in Section 3.5.

If the grouping measure is a dissimilarity, then the Explanation Set is a Counterfactual
Explanation Set (in short, a counterfactual set). Conversely, if it is a similarity, it is a
Semifactual Explanation Set (in short, a semifactual set). Explanation Sets inherit the
properties of counterfactuals and semifactuals but also equip users with tools to refine
them based on their preferences (feasible set) and apply them to other tasks (similarities).
Utilizing sets facilitates considering multiple scenarios simultaneously, resulting in a more
informed decision-making and mitigating the influence of noisy regions of the feature
space. To utilize counterfactual and semifactual Explanation Sets, their existence is the
primary prerequisite. However, for more meaningful explanations, it is essential to check
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whether one of the two scenarios mentioned earlier applies: a constant ML model (yielding
only semifactuals) or if there are only counterfactuals. In these instances, the absence of
counterfactuals and semifactuals, respectively, becomes the most meaningful explanation.

Explanation Sets allow non-compliant (i.e., not meeting the grouping measure) ob-
servations for two main reasons. First, guaranteeing that all observations within a set
satisfy the grouping measure is complex and expensive when the number of observations
in the Explanation Set is infinite. For instance, in Explanation Sets represented by fea-
ture intervals in a tree-based ensemble, it could be calculated by modifying the approach
(Blanchart, 2021). However, this calculation might be impractical with models without
axis-parallel decision surfaces. Second, allowing a low (and controlled) number of non-
compliant observations results in broader and less specific explanations.

Consequently, the goal is usually to find an Explanation Set (or several Explanation
Sets) satisfying the requirements while providing a broad and simple explanation (simi-
larly to Anchor (Ribeiro et al., 2018)). For explanations that define regions of the input
space, the broadness can be measured by the coverage (Ribeiro et al., 2018; Guidotti et al.,
2018). This metric indicates the percentage of instances from the training set contained
in the region. Explanations with higher coverage are generally easier to understand as
they can be contrasted with more real observations from the dataset.

In certain situations, the methods to generate Explanation Sets (also referred to as
extraction methods) might yield an explanation that fails to meet the requirements. This
can happen for two reasons: either the feasible set is constant and does not contain the
required explanation (e.g., it contains only semifactuals, and we target counterfactuals),
or the method used to generate Explanation Sets cannot find a valid explanation.

To determine if we are in the first case, we can encode the problem requirements
into Model-Agnostic Counterfactual Explanation (MACE ) (Karimi et al., 2020). If we
extract counterfactuals, these requirements include the feasible set and the dissimilarity.
Conversely, if the target is semifactuals, the requirements are the feasible set and the
similarity. In both cases, if MACE identifies an explanation, the problem is related to the
extraction method because the feasible set is not constant. However, this approach has
some drawbacks: it requires full access to the ML model, is computationally expensive,
and is only available for some ML models.

In some cases, this verification can also be done manually using the properties of
the model. For example, a Random Forest (RF ) or Decision Tree (DT ) cannot make
predictions higher or lower than the maximum and minimum value of the label in the
training set, respectively (see proof in Annex A). In most other scenarios, determining
that we are in the first case is not currently feasible.

Determining the second case is trivial, for instance, checking if the explanation meets
the minimum fidelity constraint. In both cases, this outcome also gives us valuable infor-
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mation. First, the observations in the feasible set that satisfy the grouping measure are
rare (or sparse), or they do not exist. In the particular case when the grouping measure
is a similarity, this fact also suggests that the outcome of the factual sample is not a
common scenario. Second, the restrictions given by the user (grouping measure, feasible
set, or both) might be very restrictive and should be relaxed.

3.2. Counterfactuals and semifactuals based on similarity mea-
sures

This section delves into the advantages of utilizing similarity and dissimilarity mea-
sures to generalize counterfactuals and semifactuals, emphasizing their distinct explana-
tory properties. Through two illustrative examples, we aim to show the practical impli-
cations of these measures.

Example 1: House Price Estimation.

Consider a ML system designed to predict house prices. This system evaluates at-
tributes such as location, size, and the number of bedrooms. Given an estimated price of
v, a user might wonder why the house is worth v rather than more than v + o. For this
scenario, the dissimilarity measure gtb,o can be formulated as:

gtb,o(v, v′) =

0 : otherwise

1 : min(v, v′) ≤ b ∧max(v, v′) > b + o
(3.7)

Here, o > 0 and b (set to b = v) ensures symmetry in the dissimilarity. This dissimilarity is
1 when one of v or v′ is equal or less than b, and the other is greater than b+o. Otherwise,
the dissimilarity is 0. If symmetry is not required, the measure simplifies to:

gto(v, v′) =

0 : otherwise

1 : v′ > v + o
(3.8)

The simplified dissimilarity gto returns 1 when v′ is greater than v plus o, and 0 otherwise.
Since we rely on the order of the parameters, this dissimilarity is not symmetric.

Using this dissimilarity, counterfactual explanations will spotlight houses priced above
v + o. These insights can guide potential modifications to increase the price of the house.

Alternatively, if a user wishes to identify features that can be altered without deviating
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the price from the range [v − k, v + k], a similarity measure srk can be employed:

srk(v, v′) =

0 : otherwise

1 : |v − v′| ≤ k
(3.9)

The similarity srk returns 1 when the absolute difference |v − v′| is equal or less than
k and 0 otherwise. Semifactual explanations in this scenario might suggest actions like
selling the furniture, which might not significantly impact its valuation, or indicate that
the estimation is solely based on the location.

Example 2: Disease Risk Estimation.

Consider a ML system predicting the likelihood of contracting a specific disease based
on lifestyle and preventive measures. Upon receiving a risk estimation of r, a user might
ponder the rationale behind this assessment. Given that risk is a continuous metric,
equating r to r′ (another observation’s risk) might yield limited similar observations.
Hence, a similarity measure srisk is defined analogously to Eq. 3.9.

Semifactual explanations here can spotlight activities or precautions that do not influ-
ence the risk estimation, offering insights into potential lifestyle changes without altering
the risk. Conversely, counterfactual explanations highlight factors that could significantly
modify the risk, necessitating caution.

While counterfactual and semifactual could be interchangeably used in both exam-
ples, they are more apt for their respective scenarios. For instance, using semifactuals
in the first example might lead to discarding potential explanations, whereas counterfac-
tuals would directly provide them. The reverse logic applies to the second scenario. By
leveraging both types of explanations, we can comprehensively understand influential and
non-influential factors in predictions.

3.3. Feasible set

Explanation Sets are defined within a subset of the feature space, known as the feasible
set, which allows us to restrict the explanations to specific regions of the feature space. We
employ the term “restrictions” to describe the preferences from Section 2.3.1, regardless of
whether they are metrics or actual restrictions because they operate in a binary manner:
they are either met (belong to the feasible set) or not. As previously mentioned, these
preferences can serve various purposes, such as enforcing actionability, promoting sparsity,
ensuring data manifold closeness, enhancing diversity, and providing a local context (i.e.,
instances close under a given distance).

We propose a unified approach to implementing these preferences using a “smaller
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than” inequality restriction. The restriction function, g, is defined as:

g : Rp × Rp 7→ R≥0

The first parameter of g corresponds to the factual sample, while the second parameter
is an observation we wish to evaluate against the feasible set.

The feasible set, denoted as S g,r, is defined using the “smaller than” inequality restric-
tion as follows:

S g,r = {g(x̂, x) < r : x ∈ X}

where x̂ is the factual sample, and r ∈ (0,∞) is the restriction value. All observations from
the feature space, X, whose restriction function against the factual sample is less than r,
belong to the feasible set. The decision to employ this type of inequality restriction arises
from the observation that most restrictions will be distances.

We propose a simple taxonomy of feasible sets in Explanation Sets based on the
type of restriction: user-defined or model-induced. A user-defined restriction can be any
restriction function. Model-induced restrictions are based on the properties of the ML
model. Examples of model-induced restrictions are the kernel in Support Vector Machines
(SVM s) and the proximity measure (Breiman, 2002) in RF . Model-induced restrictions
have the additional property of grouping similar individuals in the space where the ML
model projects the observations.

We hypothesize that model-induced restrictions are beneficial when debugging and
developing ML models. In this scenario, Explanation Sets contain individuals similar
under the model reality (model-induced metric) that should be grouped based on the
criteria of the user (grouping measure). Ideally, the grouping measure in this scenario
should group similar outcomes like the similarity in Eq. 3.9 for continuous outcomes or
the identity similarity for discrete outcomes. Thus, developers can determine if the way
the model projects the instances makes sense in the scenario defined by the grouping
measure. On the other hand, user-defined restrictions introduce a bias in the instance
selection process. Consequently, user-defined restrictions might group instances that are
not similar under the model perspective. This bias might provide better explanations
from a user perspective, but it might hide relevant details in other scenarios like model
debugging.

In the following paragraphs, we provide illustrative examples of these restrictions, in-
cluding actionability, sparsity, data manifold closeness, and diversity, to demonstrate their
practical applications and how they can be combined to form more complex constraints.
We will guide them through a synthetic binary classification example to illustrate the
restrictions better.

The dataset is sampled from three bivariate normal distributions,N1(µ1,Σ1),N2(µ2,Σ2),
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Figure 3.1: Binary classification problem with synthetic data. The orange triangles are
the data from the positive class, while the blue squares are the data from the negative
class. Using a Bayes classifier, the orange and blue regions are classified as positive and
negative, respectively. The pink cross is the factual sample.

N3(µ3,Σ3) . The data sampled from N1 belongs to the positive class, while the data from
N2 and N3 to the negative class. The data is generated with Python using the NumPy
package (Harris et al., 2020) with seed 1234. A total of 400 points is sampled from each
distribution, with parameters:

Σ1 =

2 −4
0 4

 , Σ2 =

2 0
0 1

 , Σ3 =

1 0
0 2

 , µ1 = [4, 6], µ2 = [0, 0], µ3 = [10, 6]

We consider an observation to be explained (factual sample), x̂ = [2.3, 2.1], located prox-
imate to the decision boundary. The observation is classified as positive (+). Figure 3.1
depicts the sampled data, the theoretical decision frontier, and the point to be explained.
The separation between the observations of each sampling distribution can be clearly seen
since they have minimal overlap. This separation accounts for the accurate classification
of most observations.

First, we consider a base restriction. In the literature, it is usually the Manhattan
distance (L1 norm). This distance is used to enforce sparsity (few feature changes), which
makes explanations easier to understand. Figure 3.2 shows the Manhattan distance to
the factual samples.
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Figure 3.2: The contour plot illustrates the Manhattan distance to the factual sample
(pink cross). The color gradient from yellow (closest) to dark blue (furthest) indicates the
distance.

Actionability restricts observations meeting a condition. Consequently, it can be mod-
eled as having the distance to those individuals that do not meet the condition higher
than the restriction value r. For instance, we could define g_lpi to restrict those instances
whose feature xi is equal or lower than ξ as follows:

g_lpi(x̂, x) =

−xi + 2ξ : if xi < ξ

0 : otherwise
(3.10)

or to restrict those whose feature xi is equal or greater than ξ, we could define g_gpi:

g_gpi(x̂, x) =

+xi − 2ξ : if xi > ξ

0 : otherwise
(3.11)

and then setting ξ ∈ (0,∞) as the restriction value. The expression −xi + 2ξ in the
g_lpi restriction yields a monotonically increasing restriction as the value progressively
gets smaller than ξ, which might be helpful when minimizing the restriction functions.
A similar reasoning applies to g_gpi. If the restriction feature is categorical, we could
define g_epi to restrict those instances whose feature xi is different than ν as follows:

g_epi(x̂, x) =

0 : if xi = ν

1 : otherwise
(3.12)

This restriction function yields 0 when xi = ν, and 1 otherwise. The restriction value in
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Figure 3.3: Actionability illustration example. Green regions denote areas where the given
restriction is satisfied, whereas gray-shaded areas indicate non-compliance. The pink cross
represents the factual sample. Each figure title details the specific restriction.

this case should be 1. Observe that these constraints can be made relative to the factual
sample by setting ξ or ν to the value associated with the factual sample (x̂i).

In Figure 3.3, we can see three different feasible sets that result from applying three
restrictions to the factual sample. The first restriction forces x̂1 ≥ 0, the second x̂0 ≤ 7.50,
and the third combines these two restrictions.

Diversity can be enforced by penalizing observations close to specific regions of the
input space (e.g., a region where an explanation was previously extracted). The diversity
could be defined as follows:

g_d(x̂, x) = ω(x) (3.13)

where ω is a function that penalizes observations close to a penalization point. Three
examples of diversity restrictions are shown in Figure 3.4. The penalization function is
the inverse of the Euclidean distance between an observation and a penalization point plus
one (Mothilal et al., 2020). The points used in penalization are p1 = [5, 5], p2 = [1, 1],
and p3 = [7, 5]. From left to right, the first plot penalizes instances close to p1, the second
to p1 and p2, and the third to p1, p2, and p3. It can be seen that the color darkens as
we approach the penalization points, with the penalization points themselves having the
maximum value. The central image shows two penalization points that are not close,
but their combination increases the penalization in the line between them compared to
surrounding regions (e.g., in opposite directions). The rightmost image demonstrates that
closely positioned penalization points amplify the penalization value within their vicinity.

Finally, data manifold closeness can be defined similarly to the diversity measure:

g_c(x̂, x) = ρ(x) (3.14)

where ρ is a function that penalizes observations that are not close to the observations in
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Figure 3.4: Contour plot illustrating the diversity restriction. The pink cross represents the
factual sample. The points penalized are shown in the title, being p1 = [5, 5], p2 = [1, 1],
and p3 = [7, 5]. In the middle and right plots, the penalization is the cumulative effect
of the individual penalizations. The color indicates the penalization value, from yellow
(smallest penalization) to dark blue (biggest penalization).

the training data. Examples of penalization functions in the literature are density esti-
mation techniques (Poyiadzi et al., 2020) and autoencoders (Dhurandhar et al., 2018). In
Figure 3.5, we show an example of data manifold closeness. Since we know the sampling
distributions, we can use them directly to provide a data manifold closeness measure.
Specifically, we use one minus the probability density function corresponding to the sam-
pling distribution of the factual class. It can be seen how the value increases as we get
far from the sampling distribution mean.

These previous definitions of restrictions make the composition of several restrictions
straightforward by combining their individual effects. For instance, we can combine them
by adding them together:

g_a(x̂, x) = g_b(x̂, x) + g_c(x̂, x) + g_gpi(x̂, x) + g_d(x̂, x) (3.15)

Another option is to combine them using the maximum:

gm(x̂, x) = max {g_b(x̂, x), g_c(x̂, x), g_gpi(x̂, x), g_d(x̂, x)}

which is equivalent to the intersection of their respective feasible sets. These combination
procedures assume that the restriction value of the individual restrictions is the same. If
it is different, this combination might yield unexpected results. To account for different
values, we can multiply each of the restrictions by a scaling factor:

α =
rnew

rold

where rold is the original restriction value of the restriction and rnew is the restriction value
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Figure 3.5: Contour plot showing the data manifold closeness for the positive class. It is
estimated directly using the probability density function of the sampling distribution. The
color indicates the penalization value, from yellow (smallest penalization) to dark blue
(biggest penalization).

upon combined. Note that other scaling methods might be used.

Figure 3.6 shows the combination of the individual restrictions with the sum and max
methods. All plots include the base distance and data manifold closeness restrictions. In
addition, they include the penalization and actionability restrictions with the parameters
in the column title.

The two approaches produce slightly different feasible sets. The sum combination, as
visualized in the figure, is generally more difficult to understand since the exclusion of a
point depends on the contributions of the individual restrictions. Conversely, a point is
excluded in the max combination when one or more restrictions exclude it. Consequently,
it is easier to understand and trace back to the individual restriction. In other words, it
is easy to guess the max combination by looking at the individual restrictions, but the
sum combination could be tricky.

Note that there is no one-size-fits-all solution. There are scenarios where the sum
combination is more appropriate. For example, when combining multiple diversity penal-
izations, the max approach might not be ideal since it does not consider the collective
effect of individual penalizations. In contrast, the sum combination does, as illustrated
in Figure 3.4.

The combination procedure presented earlier, along with the concepts of diversity,
actionability, and data manifold closeness, are examples to illustrate the benefits of the
methodology. Other combination procedures (e.g., weighting the restrictions), new re-
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Figure 3.6: Example of combining restrictions using the max and sum approaches. The
first row shows the sum approach, while the second corresponds to the max approach.
All figures incorporate both the base distance and manifold closeness restrictions. Sub-
sequently, they integrate the diversity restriction, penalizing the points specified in the
column title and the actionability restriction indicated in the column title. The penaliza-
tion points are from the diversity example. The pink cross is the factual sample.

strictions (e.g., transition penalization (Poyiadzi et al., 2020)), or other implementations
for diversity, actionability, and data manifold-closeness terms could be used.

3.4. Explanation Sets representation

There are different ways to represent the observations from an Explanation Set. For
instance, enumerating their elements, but it becomes impractical when the number of
elements is large or infinite. A more concise representation should be used for larger
sets, which may require the Explanation Set to meet specific properties. The choice of
representation depends on the problem at hand.

We present a simple taxonomy covering the representation of the current state-of-the-
art observation-based explanation methods. These representations offer a more compact
way of representing a set of observations than enumeration and can be used to represent
an Explanation Set. The taxonomy is defined as follows:

• Restrictive or non-restrictive: Restrictive representations require the Explanation
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Figure 3.7: Tabular anchor example. Each row provides an anchor explanation. The
initial two rows correspond to instances where the number of rented bikes is below the av-
erage, while the next two rows represent above-average cases. Within each row, individual
chunks signify restrictions on the features. The color indicates the feature. For continuous
features, the restriction is denoted by a range, whereas for categorical features, it asserts
the categories. The size of the chunk reflects the precision increment achieved by adding
that restriction. Reproduced from Molnar (2018).

Set to fulfill some properties (e.g., simply connected or restricted to a region of the
input space), whereas non-restrictive representations can apply to any Explanation
Set.

• Exact or approximate: Exact representations contain all the information to generate
the original observations of the Explanation Set, while approximate representations
do not.

Exact representations are often restrictive as they require the Explanation Set to sat-
isfy certain properties. For example, rule-based explanations require the explanations to
be represented by feature ranges, as seen in LORE (Guidotti et al., 2018) and Anchor
(Ribeiro et al., 2018). Enumerating the elements of an Explanation Set is an exact rep-
resentation that may be regarded as restrictive or non-restrictive, depending on whether
finiteness is considered a restriction. Notably, by lifting some constraints, exact and re-
strictive representations can morph into approximate ones. For instance, in rule-based
representations, the elements outside a rule can be discarded, or a rule that covers in-
stances not initially defined in the Explanation Set can be used.

Figure 3.7 shows an anchor explanation example. It displays four cases: two cases
where the number of bikes rented is below average and two above average. Taking as
an example the second case, the anchor includes observations where the temperature
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Figure 3.8: Image anchors example. The left figure is the original image. The center
image is the image anchor, with non-white pixels indicating fixed values. The white pixels
can be changed, as shown in the right images, and the prediction will likely still be a beagle.
Reproduced from Ribeiro et al. (2018).

falls within [7, 14) and the weather is bad, with no restrictions on the base feature. The
precision (fidelity) is above 0.90, and 1.40% of observations in the dataset met the rule.
The same reason can be applied to the other cases.

Image anchor (Ribeiro et al., 2018) is an exact and restrictive representation for image
explanations. In this method, some aspects of the image are fixed and cannot be changed,
while others can take any value. This representation includes all valid fixed-pixel trans-
lations if the image anchors are invariant under translation.

Figure 3.8 displays an example of an image anchor. The image on the right is the
original sample. The central image is the image anchor (center images), which shows the
pixels used by the model to determine that the original image contains a beagle. If this
image anchor is superimposed in a photograph, the model will predict “beagle” with high
confidence. This behavior is exemplified in the images on the right. Note that the images
might not make sense from our perspective, but the prediction remains the same.

Pertinent positives and pertinent negatives (Dhurandhar et al., 2018) is a representa-
tion similar to image anchors, but in addition to the fixed attributes, it defines restrictions
upon some unfixed attributes. The required factors to assert the outcome are pertinent
positives, and those whose absence is required are pertinent negatives. While this rep-
resentation can be defined with either a counterfactual Explanation Set or a semifactual
Explanation Set, it is best defined using a counterfactual Explanation Set for the per-
tinent positives and a semifactual Explanation Set for the pertinent negatives. Thus, a
single representation combines the information of two Explanation Sets.

Figure 3.9 showcases examples of pertinent positives and pertinent negatives. The
leftmost image displays the prediction label above. The central image highlights the
pertinent positive in light blue, representing the pixels required for the prediction. The
image on the right depicts the pertinent negative; if the pink pixels were present, the
prediction would change. For example, in the first row, the pixels of the pertinent positive
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Figure 3.9: Pertinent positives and negatives example. The leftmost column displays the
original image, annotated with its prediction. The central column presents the pertinent
positive, highlighting essential pixels in light blue. The rightmost column depicts the perti-
nent negative, marking in pink the pixels that, if present, would alter the prediction along
with its prediction on top. Partial reproduction from Dhurandhar et al. (2018).

Figure 3.10: Prototypes and criticisms example. The first row contains the prototypes,
which represent standard dog photographs. The bottom row showcases criticisms, high-
lighting dog photographs that deviate from the dataset’s norm. Reproduced from Kim et
al. (2016).

resemble the number 3, consistent with the prediction. Conversely, the pertinent negative
pixels alter the original image to appear like the number 5.

Prototypes and criticisms (Kim et al., 2016) are an example of non-restrictive and ap-
proximate representation. It explains a set of observations by providing the most average
instances (prototypes) and instances not well represented by the prototypes (criticisms).
This dual representation of data offers an enriching perspective, capturing both the central
tendencies and the outliers of the data.

To illustrate this concept, Figure 3.10 provides an example of prototypes and crit-
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Figure 3.11: Anchor_ES Explanation Set extraction workflow. In semifactual Explana-
tion Sets (red path), the modified Anchor approach is directly applied. For counterfactual
Explanation Sets (blue path), an intermediate stage involving the extraction of a coun-
terfactual instance is required. This counterfactual instance is then used as input for the
Anchor method to derive the counterfactual Explanation Set.

icisms. The first row shows the prototypes, typical photographs of dogs with standard
backgrounds. In contrast, the second row shows the criticisms, depicting dogs with partic-
ularities, such as black and white filters, accessories, or facing backward. These features
make these instances less common than the prototypes in the dataset.

3.5. Generic method to extract Explanation Sets

This section introduces a model-agnostic method to extract Explanation Sets, called
Anchor_ES. It is based on Anchor, recognized for its high-precision, model-agnostic ex-
planations for individual predictions. Following the convention from Section 2.3.1, we use
the term “Anchor ” to refer to the extraction method and “anchor” to refer to the expla-
nation. In essence, anchors define regions where predictions remain consistent with the
factual sample. Within the Explanation Sets framework, anchors are a case of semifactual
Explanation Sets: the grouping measure is the identity similarity and uses a rule-based
representation. Note that the precision measure of Anchor is similar to the fidelity of
Explanation Sets. Anchor does not specify restrictions for the feasible set (i.e., spans the
whole feature space).

Figure 3.11 shows the Anchor_ES extraction workflow. For semifactual Explanation
Sets, we directly apply the modified Anchor method, which will be explained in the
following paragraphs. In counterfactual Explanation Sets, an additional intermediate
step is required. We initiate the process by deriving a counterfactual x for the factual
sample x̂. Then, we obtain a semifactual Explanation Set, denoted as S ′, for this newly
generated x. Since counterfactuals and semifactuals are complementary, the semifactual
Explanation Set S ′ for x serves as a counterfactual Explanation Set for x̂.

First, we will outline the Anchor extraction method, highlighting potential modifica-
tions for the feature space restrictions (feasible set) and alternative similarity functions.
Using the described Anchor method, we will explain the methodology for extracting coun-
terfactual Explanation Sets later.
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The Anchor method starts with a specific instance that requires an explanation and
its prediction. First, it fits a discretizer with the training data. The data is discretized
because searching for anchors in a discrete space is much more efficient than in a con-
tinuous space. Then, Anchor does an iterative beam search with beam size b. Starting
with an empty rule (i.e., applies to all instances), the rules (candidates) are iteratively
improved until its precision (fidelity) is greater than a parameter τ (usually set to 0.95).

At each iteration, the best-performing previous candidates are extended by adding
one restriction per feature (e.g., age < 3 or sex = F). Subsequently, the best b candidates
with the highest precision are selected using a multi-armed bandit method. This method
reduces the number of predictions needed to estimate precision, generating perturbed
samples for the estimation only when necessary. These predictions are made using a
parameter called “prediction_fn”, which conceptually serves as a proxy for the ML model.
Upon the completion of this process, three possible scenarios arise:

1. If one or more rules exhibit precision greater than τ, the rule with the highest
coverage is returned.

2. If all features have been considered but the best anchor does not meet the precision
constraint, the method fails to identify an anchor.

3. When there are still features to consider and the precision is unmet, a new iteration
starts.

Only two modifications are needed to adapt this method. The first and most important is
the prediction function. Anchors contain mostly observations whose prediction is the same
as the factual sample. As previously mentioned, for the evaluation of these observations,
Anchor uses the prediction function, which is usually the model. However, we can provide
alternative prediction functions that include restrictions. Thus, we define a prediction
function that includes the feasible set and the grouping measure restrictions. The new
prediction function is:

prediction_ f n(x) : 1[m( f (x̂), f (x)) = 1 and x̂ ∈ S ]

where m is a similarity-based grouping measure and S the feasible set. The prediction
function equals 1 when the grouping measure is satisfied, and the observation resides
within the feasible set; otherwise, it returns 0. It is important to highlight that, by
definition, Anchor incorporates the factual sample in the explanation. Therefore, we
include the requirement that the feasible set must contain the factual sample for this
extraction method. Note that the factual sample meets both restrictions: the grouping
measure (because it is a similarity) and the feasible set (as it is a prerequisite for the
method).
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The second modification is a minor optimization. In the initial sampling (perturba-
tion), we filter out all observations that do not belong to the feasible set. In addition, if
the remaining observations are fewer than a value, the difference is filled with uniformly
sampled observations within the feasible set. This adjustment precedes the fitting of the
Anchor discretizer, ensuring that a substantial proportion of the bins reside within the
feasible set. Nonetheless, specific bins may lie outside the feasible set, necessitating the
feasible set verification step within the prediction function. This modification restricts
the search parameters for Anchor and minimizes the number of observations outside the
feasible set processed by the prediction function, ultimately reducing the runtime.

We now delve into the generation of counterfactual Explanation Sets using the previ-
ously described method. The task of counterfactual extraction is posed as an optimization
problem. The aim is to find an observation that meets the grouping measure (dissimilar-
ity) and is close to the factual sample. We seek to minimize the restriction function in
this method, which is usually the Manhattan distance. The objective function is defined
as follows: If the observation is not in the feasible set or the grouping measure criterion
is not met, the objective function yields a predetermined penalization value. Otherwise,
it returns the restriction function for the observation.

To address this optimization, we employ the Tree Parzen Estimators (TPE ) imple-
mentation from the Hyperopt library (Bergstra et al., 2013). The search space is uniformly
defined for both categorical and numerical variables. In this framework, categorical vari-
ables are specified by their respective categories, while numerical variables are defined by
their range. Both are tailored to align the search space closely with the feasible set. The
library also includes a warm-up dataset, wherein the perturbed dataset from Anchor and
their corresponding objective function evaluations are supplied. The optimization is exe-
cuted for 50 iterations using default parameters. Finally, the modified Anchor approach
is applied to the identified counterfactual, yielding the final counterfactual Explanation
Set.





Chapter 4

Random Forest Optimal Counterfactual Set
extractor

This chapter introduces Random Forest Optimal Counterfactual Set Extractor (RF-
OCSE ), a method to extract counterfactual Explanation Sets from a Random Forest (RF )
that contains the optimal (closest) counterfactual. The method is based on the partial
conversion of a RF into a single Decision Tree (DT ) by using a modified version of
the Classification and Regression Trees (CART ) algorithm. Within the Explanation Set
framework, RF-OCSE can consider restrictions (feasible set) based on the Manhattan,
Euclidean, Gower, and sGower (Fernández et al., 2019) distances. The grouping measure
is the identity similarity, and the representation of the counterfactual Explanation Sets is
rule-based. This chapter addresses the following objective:

O4) To develop a method to extract these new explanations from a RF leveraging on its
internal structure and axis-parallel decision surface.

Extracting counterfactuals from a DT is relatively simple. All leaves with a different
class from the factual class are considered counterfactuals. Since rules define the decision
surface of a DT , the optimal counterfactual can be obtained by searching for the rule
that belongs to the counterfactual class and has the smallest distance. To calculate the
distance between a sample and a rule, we determine the minimum distance between that
sample and all other samples that satisfy the rule. Also, we can define a counterfactual
Explanation Set using the rule that generates the counterfactual. If the counterfactual is
optimal, the counterfactual Explanation Set containing this counterfactual is considered
optimal.

This chapter is structured as follows. In Section 4.1, we introduce the notation needed
to understand the proposal. We present a method to convert a RF into a DT to extract
counterfactual Explanation Sets in Section 4.2. In Section 4.3, we describe how the
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fusion can be improved by pruning the resulting DT . Finally, Section 4.4 details how
counterfactual Explanation Sets can be extracted without fully fusing a RF .

4.1. Notation

The following notation will be used throughout the rest of this chapter. Let a RF be
defined as a set T of DT s. Let R be a set of rules of all DT s in a RF , that is, the paths
from the root of a DT to the leaves, and r a given rule. The set R has at least one rule
of each DT . A DT , t, is defined by a set of rules. Let t(R) be the subset of rules in the
set R that belongs to the DT t. Let L be the set of classes in the problem and l a given
class. A condition c is defined as a feature s(c), a comparison type cmp(c) (≤ or >) and a
threshold value v(c). Let r(c) be the rule that contains the condition c. Let C be the set
of all conditions. Let a rule r be defined as a set of conditions C(r) and the probability
pl(r) for each class l ∈ L. Let C(R) be the subset of conditions of C in the rules R, and let
Cs be the subset of conditions C whose feature is s. Finally, let f be a RF model and d
a distance function.

4.2. Fusion of Random Forest tree predictors

The fusion of the RF tree predictors aims to represent a RF as a single DT without
modifying the decision surface. The fusion procedure starts with a DT from the RF . Next,
every leaf of this tree is substituted with another DT from the RF . As this happens, the
leaves of the initial tree are propagated to the newly introduced leaves. In other words,
when a DT replaces a leaf, it is merged with each leaf of that DT . This iterative process
continues until all DT s from the RF are integrated. The predictions of the rules in the
resultant DT are determined by computing the average probability across the combined
leaves of that rule.

Figure 4.1 shows an example of this fusion method for a RF with two DT s. In the
fused DT , it can be seen that some leaves are unreachable because two conditions of their
rule are exclusive. The leaves 2, 3, 5, 6, 7, and 10 can not be reached because they have
two exclusive conditions, s1 ≤ 0 and s1 > 0. The simplified DT without the unreachable
paths is depicted in Figure 4.2.

As the number of DT s in a RF increases, the number of unreachable nodes increases
exponentially, increasing computational time and memory consumption. Moreover, the
sequence in which DT s are chosen can significantly influence the dimension of the resulting
DT , potentially rendering the problem intractable.

To minimize the dimensions of the resulting DT , a fusion method that leverages in a
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Figure 4.1: Example of a simple method to fuse a RF with two DTs (a) into a single DT
(b).

Figure 4.2: Simplified DT from the example in the Figure 4.1. The number in the leaves
indicates the origin of the leaves in the full DT.

variant of the CART algorithm has been proposed. This method takes as input a set of
DT s and outputs the corresponding DT .

Within this fusion framework, each observation symbolizes a rule extracted from the
DT s. Each feature within an observation corresponds to a set of conditions associated
with that feature. Such a set can be empty (no constraints on the feature), it could
comprise a singular condition (e.g., s1 ≤ 0 or s1 > 0), or even two conditions (e.g., s1 > 0
and s1 ≤ 1). The most restrictive condition is kept when a rule has multiple conditions
of a similar kind (like “less or equal than” and “greater than”). For instance, among the
conditions s0 > 0, s0 > 1, and s0 > 2, the condition s0 > 2 is deemed the most restrictive.

The splits are exclusive in the original CART algorithm, and consequently, an obser-
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Algorithm 1 partition_calculation
Require: (R, s, v)

Rl,Rr ← R
for c ∈ C(R)s do

if cmp(c) = '>' and v(c) ≤ v then
Rl ← Rl ∪ {r(c)}

else if cmp(c) ='≤' and v(c) > v then
Rr ← Rr − {r(c)}

end if
end for
Rl ← add_condition(Rl, s ≤ v)
Rr ← add_condition(Rr, s > v)
return Rl,Rr

vation can only belong to one partition. However, rules might not have a condition for
a feature, and certain conditions could be satisfied on both partition sides. For instance,
the condition s1 ≤ 2 is satisfied on both sides of the split s1 ≤ 1. Therefore, when using
rules as observations, the splits are not exclusive.

The partitions are determined using Algorithm 1. Taking the rules R from the current
partition, a feature s, and a threshold value v as inputs, the algorithm calculates the
resulting partition Rl and Rr (left and right sides, respectively). The algorithm initializes
by equating the resultant partitions Rl and Rr to the complete partition R. Subsequently,
the algorithm traverses all conditions within the partition for the specified feature C(R)s.
In the left partition, (s ≤ v), all rules with a condition c such that v(c) > v are filtered.
Conversely, on the right partition, (s > v), all rules with a condition c such that v(c) ≤
v are filtered. As highlighted earlier, any “less or equal than” condition with a value
surpassing the partition threshold is valid for both sides. The same applies to “greater
than” conditions with values beneath the threshold. Finally, the add_condition method
adds to every rule in Rl, the condition s ≤ v, and the condition s > v to each rule in Rr,
ensuring that the rules accurately define the partition boundaries.

The CART algorithm computes the Gini impurity based on the weighted average
of the Gini impurity of each partition, which is based on the class probabilities of the
partition. In our modified CART algorithm, the class probability of the partition needs
to be adapted to align with the aggregation method of the RF . Initially, we determine
the average probability associated with each DT within a partition:

Pl,t(R) =
∑

r∈t(R) pl(r)
#t(R)

(4.1)

Here, #t(R) denotes the number of rules in set R associated with the DT t. Given
that at least one rule from every DT exists within a partition, this probability is always
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Algorithm 2 select_split
Require: (R)

best_s, best_v
best_score← ∞
for c ∈ C(R) do

Rl,Rr ← partition_calculation(R, s(c), v(c))
score← gini_impurity(Rl,Rr,R)
if score < best_score then

best_score← score
best_s← s(c)
best_v← v(c)

end if
end for
return best_s, best_v

defined. Then, the overall probability estimation for the partition is derived as the mean
of the probabilities from all DT s:

Pl(R) =
∑

t∈T Pl,t(R)
#T

(4.2)

In this context, #T represents the number of DT s. Using this overall probability
estimation for the partition, the Gini impurity can be calculated like in a single DT .

The method for selecting splits, as outlined in Algorithm 2, employs an exhaustive
search strategy. For every condition present in the rules of the partition, the algorithm
divides the partition into Rl and Rr using Algorithm 1 and computes the Gini impurity.
The outcome of this algorithm is the split that yields the lowest Gini impurity.

The fusion method, detailed in Algorithm 3, mirrors the CART approach, adopting
a recursive partitioning mechanism. The termination criterion for recursion is only met
when a single rule from each DT is left, i.e., #R = #T . This scenario is always achievable
since the rules derived from a DT span the entire feature space and are inherently non-
overlapping. Hence, any chosen split from the rules in the partition (R) is always satisfied
by at least one rule of each DT . At every step, if the termination criterion is not met, the
algorithm selects a split using Algorithm 2. Then, the algorithm is invoked recursively
on the partitions (Rl and Rr) determined by Algorithm 1. The fusion method returns a
binary tree structure, representing the same decision surface as the input DT s.

4.3. Partial Random Forest to Decision Tree fusion

The primary limitation of the proposed fusion technique is the size of the resulting
DT . As the number of DT s in a RF and their depth grows, the number of nodes in the
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Algorithm 3 rf_to_dt
Require: (R)

if #R = #T then
node← {l = Pl(R) : l ∈ L}

else
s, v← select_split(R)
Rl,Rr ← partition_calculation(R, s, v)
nodel ← r f _to_dt(Rl)
noder ← r f _to_dt(Rr)
node← (s, v, nodel, noder)

end if
return node

converted DT increases exponentially. In the worst-case scenario, where the DT s have
no shared features, the corresponding DT for a RF with N DT s of depth m would have
a depth of N · m and 2N·m+1 − 1 nodes.

The fusion approach described in Algorithm 3 replicates the decision boundary and
probabilities of a RF . However, counterfactual extraction mechanisms only use the leaf
classes. To calculate the leaf classes, the fusion technique only requires a partial conversion
of the RF , significantly reducing the node count in the derived DT . This reduction can
be achieved by changing the stopping criterion and halting once the class is determined.
In such cases, adding further splits will not alter the class. This is evident when all rules
in the partition are of the same class or when most DT s have only a rule, with the other
DT s lacking the influence to alter the final decision.

The stopping criterion can employ a worst-case scenario for partitions with unset
DT s (a DT with multiple rules in the partition). The rule that defines this scenario is
calculated as follows:

r∗t,l,z(R) = arg max
r∈t(R)

(pz(r) − pl(r)) (4.3)

For a given DT , t, the worst-case rule denotes the maximum probability disparity
between a class z and the expected class l of the partition R.

The definition can be extended for a RF to represent the mean of the worst-case rule
probabilities across all DT s. Let

Wl,z(R) =

∑
t∈T pl(r∗t,l,z(R))

#T
(4.4)

be the mean probability of the worst-case rules for the expected class l against class
z within the partition R. The metric Wl,z(R) is a lower bound of the probability Pl(R′)
against class z, where R′ is a subset of R. Similarly to R, the subset R′ contains at least
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Algorithm 4 early_stop
Require: (R)

l← arg maxl∈L Pl(R)
for z ∈ L : z , l do

if Wl,z(R) ≤ Bz,l(R) then
return FALSE

end if
end for
return TRUE

one rule from each DT . Let

Bz,l(R) =

∑
t∈T pz(r∗t,l,z(R))

#T
(4.5)

be the mean probability of the best-case rules for another class z against the class l
within the partition R. Bz,l(R) acts as an upper bound for the probability Pz(R′) against
class l.

The early stop technique, described in Algorithm 4, checks if the partition class is pre-
determined, leveraging the worst and best case scenarios estimates previously discussed.
This method only checks the most likely class l in the partition. Consequently, only
the class with the highest likelihood of being the partition class undergoes evaluation,
reducing the execution time. For every class z where z , l, the method, under the worst-
case scenario, verifies that Wl,z(R) > Bz,l(R). If all tests are satisfied, the partition class is
deduced as l. If not, the partition class can not be estimated using the worst-case strategy.

4.4. Partial counterfactual set extraction

While the partial fusion technique does reduce the size of the resultant DT , it still
becomes intractable as the count and depth of DT s increase. Notice that each leaf with
a class different than the factual class qualifies as a counterfactual, establishing a direct
link between the size of the DT and the volume of counterfactuals. Typically, users
expect a few counterfactual explanations and iterate through them if they do not meet
their expectations. Thus, these counterfactuals are sorted to give users the most relevant
explanations according to a distance.

The counterfactual extraction technique extracts counterfactuals from the fused DT .
However, extracting counterfactuals during the RF merging process is feasible. Com-
bining the fusion and counterfactual extraction techniques can produce a counterfactual
whenever a partition class is determined and different from the factual class. This elim-
inates the need for an explicit memory representation of the fused DT , which could be
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memory-intensive. However, the order of the generated counterfactuals remains arbitrary
and does not adhere to the designated distance. Consequently, to sort them, the extrac-
tion method must compute all counterfactuals, leading to a full RF conversion and the
inherent size challenges of the fusion.

To avoid the computation of every potential counterfactual, the fusion method can be
adapted to prune paths where the distance to the factual sample surpasses the distance
to the nearest identified counterfactual (similarly to a branch and bound method). As a
result, the fusion becomes more restrictive as closer counterfactuals are identified, miti-
gating the size problem. A drawback of this approach is the need to partially merge the
RF for each counterfactual extraction, in contrast to a unique complete fusion. However,
only the former is feasible when working with large RF s.

For the estimation of the initial counterfactual, we consider two strategies:

• Minimum Observable (MO): Selects the closest instance in the training dataset
corresponding to a counterfactual class. It is the base strategy.

• Hot Start (HS): Performs the MO strategy in a dataset consisting of the union of
the training set, the closest counterfactuals found for other instances, and an arti-
ficial dataset. This artificial dataset comprises “perturb_size” instances artificially
generated by perturbing instances from the dataset. These instances are randomly
selected with replacement from the dataset. The perturbation involves adding noise
from a distribution N(0, σ) to “n_features” randomly selected features.

The performance of the proposed approach can be augmented by centering the fusion
on the factual sample. Rules whose distance to the factual sample exceeds a specified
threshold can be discarded. This distance is determined by measuring the proximity of the
nearest sample from the rule to the factual sample. Like path pruning, the threshold is the
distance to the nearest identified counterfactual. This strategy facilitates the construction
of a DT that locally replicates a RF , ensuring that rules defined within that locality
remain intact.

The extraction procedure, described in Algorithm 5, extracts a rule set that satisfies
the optimal counterfactual from a RF . The algorithm takes as input a rule set R, a RF
model f , a distance d that can be either the Manhattan, Euclidean, Gower, or sGower
distances, the factual sample x̂, the updated factual sample reflecting the current state x,
and the maximum allowable distance for the extraction of the counterfactual set, denoted
as max_d.

The RF-OCSE method starts by pruning rules, keeping only those in R that are within
a distance of max_d from the factual sample x̂, yielding Rprune. Subsequently, the method
employs the early_stop algorithm to check if the class has been determined. If so, the
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Algorithm 5 RF-OCSE
Require: (R, f , d, x̂, x,max_d)

R′, f ound ← {}, FALS E
Rprune ← prune_rules(R,max_d, x̂)
if early_stop(Rprune) and f (x̂) , f (x) and d(x̂, x) < max_d then

R′, f ound ← Rprune,TRUE
max_d ← d(x̂, x)

else
s, v← select_split(Rprune)
Rle f t,Rright ← partition_calculation(Rprune, s, v)
if xs ≤ v then

Rmeet,Rnot_meet ← Rle f t,Rright

else
Rmeet,Rnot_meet ← Rright,Rle f t

end if
R′,max_d, f ound ← RF-OCSE(Rmeet, f , d, x̂, x,max_d)
xnot_meet ← update(x, s, v)
if d(x̂, xnot_meet) ≤ max_d then

R′not_meet,max_d, f oundnot_meet ← RF-OCSE(Rnot_meet, f , d, x̂,
xnot_meet,max_d)

if f oundnot_meet then
R′, f ound ← R′not_meet,TRUE

end if
end if

end if
return R′,max_d, f ound

method verifies if it is a counterfactual and whether its distance is under the threshold
max_d. If these criteria are met, the rule set R′ that defines the counterfactual is returned.

If the class can not be determined, the method selects a split c, separating Rprune into
Rmeet (rules that meet) and Rnot_meet (those that do not). Given its proximity to the factual
sample, a recursive call is first made with Rmeet. The method then updates the distance
max_d and keeps the returned rule set in R′. The method modifies c not to meet the split,
resulting in cnot_meet, considering the feature type. The method then checks the distance
between cnot_meet and the factual sample against max_d. If it is lower, a recursive call
is made with Rnot_meet. If a valid counterfactual emerges from this, R′ is updated. The
method concludes by returning R′, max_d, and a flag indicating if a counterfactual was
found.

The optimal counterfactual Explanation Set is derived by combining rules R′ present
when the optimal counterfactual was found. This combination requires selecting the most
restrictive conditions from the rules for every feature. Notably, while the early stop
method can determine a class even with multiple active rules in a tree, an observation
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Algorithm 6 greedy-rule-selection
Require: (R, pc, y′)

R′ ← {}
Rs ← R sorted by descending py′(r)

i← 0
accprob ← 0
while i < #Rs and accprob < pc do

accprob ← accprob + py′(Rs[i]) / #Rs

R′ ← R′ ∪ {Rs[i]}
i← i + 1

end while
return R′

can only meet a singular rule in each tree. Hence, rules not aligning with the optimal
counterfactual are omitted from the rule combination.

In order to provide broader counterfactual Explanation Sets (higher coverage), the
number of rules considered in the rule combination process can be reduced. As men-
tioned in Section 3.1, a higher coverage results in easier-to-understand explanations. The
goal is to consider the least number of rules that guarantee the outcome matches the
counterfactual class. A greedy-selection strategy, detailed in Algorithm 6, is considered.
This algorithm takes the returned rule set from the RF-OCSE extraction, which the op-
timal counterfactual x′ satisfies, alongside the desired probability threshold pc and the
counterfactual class y′, where y′ = f (x′).

The method greedy-rule-selection starts by arranging the rules r in R in a descending
sequence based on their probability for the label y′. Sequentially, it traverses the sorted
rules, incorporating them into the resultant rule set, R′, until the cumulative probability
surpasses the threshold pc. The output of the method is R′. The probability threshold pc

is typically designated as 0.50, the minimum probability that ensures the label prediction.
Nonetheless, other thresholds can be explored. This is particularly relevant in scenarios
like multi-class or imbalanced classification. Moreover, if pc is set below 0.50, it can be
employed to generate counterfactual Explanation Sets whose fidelity is lower than 1.



Chapter 5

Experiments

This chapter evaluates the proposed explanation methodology, Explanation Sets, and
explanation extraction methods, Anchor_ES and Random Forest Optimal Counterfactual
Set Extractor (RF-OCSE ). The evaluation comprises two main sections. Section 5.1
details how the Explanation Set methodology can enhance existing counterfactual and
semifactual explanations through two use cases. These explanations are extracted using
Anchor_ES. Then, Section 5.2 compares Anchor_ES and RF-OCSE against state-of-the-
art alternatives in counterfactual Explanation Set extraction, highlighting the benefits of
the proposed methodology. This chapter addresses the following objective:

O5) To validate the proposed explanation methodology and compare the extraction me-
thods to alternatives in the literature.

Explanation Sets are validated with several metrics calculated using 10-fold cross-
validation. The explanations and their associated quality metrics are generated in the
test partitions, simulating explanations on unseen instances. For clarity, we will refer
to counterfactual Explanation Sets with one element as counterfactuals in this chapter.
The metrics listed below are common to all experiments, though specific metrics will be
detailed.

• Coverage: The coverage is the percentage of observations from the training fea-
sible set (i.e., the intersection between the training set and feasible set) included
in the Explanation Set. A higher coverage is desirable because it implies that the
explanation is more generic and aligned with a higher data manifold closeness.

• Fidelity: The fidelity is estimated as the proportion of samples in the Explanation
Set that meet the grouping measure. Higher fidelities are also preferred because
otherwise, the explanation would not be faithful. The fidelity is estimated using
uniformly sampled data.

61



62 Chapter 5. Experiments

• Distance: Individual counterfactuals are evaluated in terms of distance to the factual
sample. A smaller distance is preferred since it indicates that the observations are
more similar and, consequently, easier to understand.

5.1. Explanation Sets experiments

Besides the base metrics specified previously (fidelity and coverage), the complexity of
the explanations is evaluated through their number of conditions. This metric is defined as
the number of features with restrictions in the explanation. A lower number of conditions
is desirable because the explanation will be easier to understand and, generally, have a
higher coverage. Finally, individual counterfactuals are evaluated in terms of number of
changes. This measure is the number of features that differ between the factual sample and
another observation. Similarly to the number of conditions, it measures the complexity of
the explanation. Counterfactuals with few feature changes (high sparsity) are preferred
because they are easier to understand.

5.1.1. Regression case study

In this case study, we consider the Concrete Compressive Strength dataset (Yeh, 2007)
from the UCI repository (Dua & Graff, 2017). This dataset consists of 1030 instances. The
goal is to estimate the concrete compressive strength (MPa), a highly nonlinear function
of its age and ingredients. The dataset includes the age (days) and seven ingredients (kg
in a m3 mixture). The output variable, the concrete compressive strength, ranges from
2.30 to 82.60 MPa. We will refer to the compressive strength of the factual sample as ĥ
and the compressive strength of any other observation as h′.

The primary objective of this case study is to demonstrate the extension of semi-
factuals and counterfactuals to other tasks, specifically regression, and to show how the
explanations vary depending on the selected grouping measure. The representations con-
sidered in this experiment for counterfactual and semifactual Explanation Sets (following
the taxonomy in Section 3.4) are rule-based (restrictive and approximate), a combination
of rule-based explanations (restrictive and approximate), and finite enumeration (exact
and non-restrictive).

Two feasible sets definitions are considered. The restriction function of the base fea-
sible set is the sGower distance (Fernández et al., 2019) parametrized with the Manhat-
tan distance for numeric variables and simple-matching for categorical variables. The
second feasible set includes a combination of the sGower distance and a data manifold
closeness restriction. This restriction uses the one-class Support Vector Machine (SVM )
implementation from Scikit-Learn (Pedregosa et al., 2011) with default parameters. Only
observations not classified as outliers belong to the feasible set. Specifically, the restric-



5.1. Explanation Sets experiments 63

tion function evaluates non-outliers as 0 and a value greater than the restriction value for
outliers. The restrictions are combined using the sum method (the max method would
produce the same results in this case) outlined in Section 3.3.

The restriction function is minimized to extract individual counterfactuals (i.e., the
closest non-outlier counterfactual). This process is analogous to iteratively reducing the
restriction value each time a counterfactual is found until no further counterfactuals can
be identified.

First, we evaluate semifactual Explanation Sets explanations. These explanations are
extracted using a similarity, srk(ĥ, h′), that considers two compressive strengths, ĥ and h′,
to be equal when their absolute difference is less than k (see Eq. 3.9).

The explanations are extracted using k = 5 and k = 10. It is worth noting that in prob-
lems with a real-valued output (e.g., regression or probabilities), it does not make sense
to group only elements whose prediction is identical (i.e., identity similarity). Besides,
there might be no difference between two close predictions from the user’s perspective, or
the Machine Learning (ML) model might not be sensitive enough to discriminate at such
precision. For instance, in this use case, where the average gap between the sorted target
output is 0.07, there is probably no noticeable difference between 50.01 and 50.005. The
models obtained an average mean squared error over all folds of 18.44, and consequently,
it is not sensitive enough to discriminate at such precision or even a few units.

Figure 5.1: Semifactual Explanation Sets coverage, fidelity, and number of conditions for
each similarity. Higher values in coverage and fidelity are preferred, and lower values in
the number of conditions.

Figure 5.1 shows a box plot for each metric and similarity. It can be seen that the
semifactual-based explanations using k = 10 are better in all metrics than those obtained
using k = 5 . These results are not unexpected because the set of all semifactuals using
sr5 is a subset of sr10. Thus, the results using sr10 should be at least as good as sr5. The
percentage of valid explanations (meeting the fidelity requirement) is low, 74.17% and
44.76%, for sr10 and sr5, respectively. The low success rate can be attributed to the very
restrictive nature of the grouping measure and the limitations of Anchor in imbalanced
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problems that will be mentioned in Section 5.1.2.

The average coverage is low, 2.02% and 0.67% for sr10 and sr5, respectively. However,
the average coverage in real-valued problems will be far smaller than that of a binary
classification problem. Consider the maximum theoretical coverage in the dataset, which
is 32.34% and 15.96% for sr10 and sr5, respectively. Conversely, in a balanced classification
problem using the identity similarity, the maximum theoretical coverage is 50.00%. This
difference might be even bigger if a lower radius is required or the label distribution is
more spread.

The low maximum theoretical coverage also has implications on the high variance
of the fidelity and the number of conditions. Given the factual sample, x̂, the grouping
measure transforms the ML model in a binary classifier, where an observation x is grouped
with x̂ if its prediction is 1 or not grouped if 0. Thus, a low maximum theoretical coverage
implies more 0s than 1s. Consequently, the problem is imbalanced, which occurs when the
number of instances across the labels is unequal. The degree of imbalance can be measured
using the imbalance ratio, which is the number of instances of the majority class divided
by the number of instances of the minority class. A high imbalance ratio, where the
minority class is the grouping class (1), affects the quality of the explanation extracted
with the current Explanation Set extraction method based on Anchor. This problem
could be partially addressed using an imbalance-aware sampling procedure, generating
new observations for the minority class using synthetic methods, or increasing the bin
count in the Anchor discretizer.

Regarding the number of conditions, having low coverage indicates that it is likely
that the number of conditions is high or that the conditions are very restrictive. This
dependence arises from high coverages being only achievable when the rules are broad
and cover several instances from the dataset.

Note that higher values across all metrics do not necessarily imply that these expla-
nations are better from the perspective of the user because it depends on which is an
acceptable k for the similarity. The choice of the k parameter depends on the domain and
the accuracy of the model.

The representation for the semifactual Explanation Sets is rule-based. As an example,
we present an explanation for the observation with values: cement=540.00, blast furnace
slag = 0.00, fly ash = 0.00, water = 162.00, superplasticizer = 2.50, coarse aggregate =
1040.00, fine aggregate = 676.00, and age = 28.00. The rule-based semifactual Explana-
tion Set using the similarity sr5 is the following: cement > 350.00, water ≤ 164.90, age
> 7.00, fine aggregate ≤ 734.15 and 0.00 < superplasticizer ≤ 6.50. Using the similarity
sr10, the explanation is: cement > 349.00, water ≤ 165.60, age > 14.00, fine aggregate
≤ 733.50, 0.00 < superplasticizer ≤ 6.30, and fly ash ≤ 0.00.

Then, we evaluate counterfactual explanations without manifold restrictions. These
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explanations are represented using finite enumeration and extracted with two dissimilari-
ties. First, we consider the similarities sr5 and sr10 converted into dissimilarities, sr′5 and
sr′10, similarly to Eq. 3.4. Then, we consider a dissimilarity, gtvo(ĥ, h′), where a element h′

is grouped with ĥ if h′ is greater than ĥ plus a value o (see Eq. 3.7).

The dissimilarity gtvo is considered with o = 0 and o = 5. Figure 5.2 depicts the
distance and the difference in the prediction between the factual sample and the counter-
factuals extracted for each dissimilarity. Thus, we can visually determine if the extracted
counterfactuals are valid and if there is a correlation between the actual prediction, the
prediction difference, and the distance. The method extracted counterfactuals in all cases
except 10 instances using the dissimilarity gtv,5 and one in gtv,0. The prediction of the
factual samples corresponding to the invalid counterfactuals is contained in the range
[76.84, 80.52], close to the maximum value in the dataset 82.60. The method did not
generate valid counterfactuals because predicting values higher than the maximum value
in the training set might be hard or even impossible (e.g., Decision Tree (DT ) or Random
Forest (RF )).

Consequently, counterfactual explanations might not always be possible for a given
observation and dissimilarity measure. If a counterfactual cannot be found, then the ML
model is constant (because, in this case, the feasible set is the feature space). Thus, their
respective semifactual Explanation Sets (converting the dissimilarity into a similarity) are
not helpful. Rather, the most significant explanation is the absence of counterfactuals. In
all other instances where counterfactuals were generated successfully, their corresponding
semifactual Explanation Sets are meaningful explanations.

There is a slight downward trend in the counterfactuals extracted using the dissimilar-
ities sr′5 and sr′10. Thus, the counterfactuals extracted from observations with high values
tend to have a lower value, and those with low values have a high value. This is explained
by the fact that it is easier to find observations whose prediction is closer to the mean
of the labels because its distribution is bell-shaped. A similar phenomenon can be seen
in the counterfactuals extracted using the dissimilarities gtv,0 and gtv,5. However, since
the prediction of the counterfactuals should be higher than that of the factual sample,
the observations with higher predictions cannot have counterfactuals with lower values.
Therefore, the value difference is as close to the valid frontier as possible. Regarding
the counterfactual distance to the factual sample, there does not seem to be a relation
between the actual value, counterfactual value, and their distance.

Next, using the previous dissimilarities, we compare the counterfactuals extracted with
and without manifold closeness restrictions. For clarity, the counterfactuals extracted
without manifold closeness restrictions will be referred to as base counterfactuals. Figure
5.3 shows the comparison between the distances of the extracted counterfactuals for each
dissimilarity. It can be seen that all observations lie above the diagonal, which is expected
because base counterfactuals are always closer to the factual sample. The 52.59% of
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Figure 5.2: Counterfactuals extracted with several dissimilarities without manifold restric-
tions. The value difference is between the factual sample prediction and the counterfac-
tual prediction. Actual is the factual sample prediction. The sweet pink regions denote
the regions of the space where the grouping measure is met. For visualization purposes,
the distance between the factual sample and the counterfactual is transformed using a
quantile-based transformation to make it uniform in the interval [0, 1].

the base counterfactuals meet the manifold closeness restrictions and mostly lie in the
diagonal.

On the other hand, when the base counterfactuals do not meet the manifold restric-
tions, the distance for the counterfactual extracted with manifold restrictions increases.
This arrangement implies that the extraction method using manifold restrictions can find
counterfactuals comparable to the base counterfactuals when possible. The main finding
in this comparison is that the difference in distance between the base and restricted coun-
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Figure 5.3: Comparison of the distance to the factual sample of the counterfactuals ex-
tracted with and without manifold closeness restrictions for each dissimilarity. For a given
point, the x-axis and y-axis represent the sGower distance from the counterfactual to the
factual sample extracted with and without manifold restrictions, respectively. The color in-
dicates if the counterfactual extracted without restrictions meets the manifold restrictions
(blue) or not (ruby).

terfactuals is minimal in most cases. Consequently, a realistic counterfactual can usually
be selected with a small distance penalization.

There is a notable difference between the distances in a small set of cases, especially
using the dissimilarities gtv,0 and gtv,5. However, this is not a limitation of the extraction
method, and it might provide valuable information for understanding the ML method
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with the help of domain experts. For instance, it could imply that there are mixtures
not represented in the dataset that yield a better compressive strength. Conversely, it
could also indicate that the model is not well-defined in those regions. Nonetheless, both
scenarios require domain experts to assess their validity and draw conclusions.

Finally, we show an explanation based on semifactual and counterfactual Explanation
Sets for a random observation from the dataset. The observation has the following values:
cement=332.50, blast furnace slag = 142.50, fly ash = 0.00, water = 228.00, superplas-
ticizer = 0.00, coarse aggregate = 932.00, fine aggregate 594.00, and age 270.00. The
prediction for this observation is 41.87. The grouping measure is gtv,0. A new binary
target is calculated using the grouping measure over all the samples from the training set
to create this explanation. Then, a DT classifier with a maximum depth of 3 was trained
on this data. Figure 5.4 shows the resulting DT . We can obtain 8 Explanation Sets from
this tree, one for each leaf. Thus, the representation is a combination of several rule-based
counterfactual and semifactual Explanation Sets. The choice of the maximum depth is a
trade-off between Explanation Set specificity and fidelity. The number of leaves is posi-
tively correlated with the depth of the Decision Tree. Thus, a large depth produces a large
number of Explanation Sets that are too specific (low coverage) and have a high fidelity.
In contrast, a low depth produces broader Explanation Sets with lower fidelity but higher
fidelity. The choice of a maximum depth completely depends on the requirements of the
domain, and in this example, it was chosen low for visualization purposes.

In the resulting DT , the leftmost leaf represents a pseudo counterfactual Explanation
Set because 41.87 is not greater than itself, and it is defined as age ≤ 42.00, cement ≤
266.10, water ≤ 156.20. This pseudo counterfactual Explanation Set has a coverage
of 2.46% and a fidelity of 76.47% (lower than the required 90.00%). The second leaf,
also classified as > 41.87 has a fidelity of 98.77% and, consequently, represents a valid
counterfactual Explanation Set. These two leaves can be joined by removing their last
condition, resulting in a valid counterfactual Explanation Set with a bigger coverage. On
the other hand, the last orange leaf represents a semifactual Explanation Set defined as
age > 42.00, superplasticizer > 6.30, and coarse agg. ≤ 1087.54. Its fidelity is 97.22%,
and the coverage is 6.99%.

5.1.2. Classification case study

The proposed framework is evaluated in a classification task in the second case study.
For this purpose, the Adult dataset (Dua & Graff, 2017) has been selected. The goal
of the dataset is to estimate if a person earns less or more than $50k. The data is
based on census data and dates to 1994. The dataset contains 29170 instances and 12
features. The features are numerical: age, capital gain, capital loss, and hours per week,
and categorical: work class, education, marital status, occupation, relationship, race, sex,
and country. The dataset is slightly imbalanced. Approximately 80% of the observations
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Figure 5.4: Semifactual and counterfactual Explanation Sets extracted for a random ob-
servation from the dataset. The prediction for this observation is 41.87. The conditions
from the root to a leaf denote an Explanation Set. The leaves with value ≤ 41.87 are
semifactual Explanation Sets, and the leaves with value > 41.87 are counterfactual Expla-
nation Sets. Only the leaves 2, 3, 5, and 6 are valid Explanation Sets (meet the fidelity
requirement).

belong to the ≤ $50k group, and the remaining 20% belong to the > $50k group. The
dataset is preprocessed similarly to Model-Agnostic Counterfactual Explanation (MACE )
experiments (Karimi et al., 2020).

The focus of this case study is the effects of using different feasible sets. Specifically,
we compare explanations obtained without restrictions to those extracted with various
actionability restrictions. Additionally, we examine through an example the effect on the
distance of implementing a diversity penalization. The grouping measure employed is the
identity similarity for semifactuals and its complementary (see Eq. 3.4) for counterfac-
tuals. The representations (see taxonomy in Section 3.4) are rule-based (restrictive and
approximate) and finite enumeration (exact and non-restrictive).

First, we evaluate the pattern of the changes in semifactual and counterfactual Ex-
planation Sets and the individual counterfactuals used to generate the counterfactual
Explanation Sets. These explanations are extracted using two feasible sets:

• Base feasible set: The restriction function is the sGower distance (Fernández et al.,
2019) parametrized with the Manhattan distance for numeric variables and simple-
matching for categorical variables.

• Restricted feasible set: Besides the base sGower distance, it includes actionability
restrictions over categorical features (see Eq. 3.12). These restrictions are combined
using the sum method (see Section 3.3). The actionability restrictions are multiplied
by the restriction value. The features not considered actionable are marital status,
race, relationship status, and sex. In individual counterfactuals, the age is also fixed.

The restriction value is initially set to a high value to ensure that no observation is
filtered out based on the sGower distance (e.g., the number of features). Then, on the
individual counterfactual extraction, we minimize the restriction function directly, which,
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as previously mentioned, is equivalent to iteratively reducing the restriction value until
no counterfactual is found.

As an illustrative example, consider the following observation: age=37, workclass=pri-
vate, education=masters, marital status=married, occupation=white collar, relationship=
wife, race=white, sex=female, capital gain=0.00, capital loss=0.00, hours per week=40.00,
and country=United States. The explanations for this observation using the base feasible
set are:

• Individual counterfactual (finite enumeration): the modified values are age=28 and
education=associates.

• Semifactual Explanation Set (rule-based): education=masters, occupation=white
collar, marital status=married.

• Counterfactual Explanation Set (rule-based): age ≤ 28.00 and hours per week ≤
40.00.

Figure 5.5 shows a summary of the most common restriction (semifactual) and change
(counterfactuals) patterns. Thus, we can visually determine the most common features
considered in the explanations. As an example, we explain the most common patterns for
counterfactual Explanation Sets (Figure 5.5 A) and semifactual Explanation Sets (Figure
5.5 B). The most common pattern in the counterfactual Explanation Sets appears in
the 18% of the explanations of the > $50k class. These counterfactual Explanation Sets
only have changes in the age and hours per week features. On the other hand, the most
common pattern in the semifactual Explanation Sets explanations indicates that in the
40% of cases, only the age and marital status have restrictions.

In the individual counterfactual explanations, there is little difference between the
number of feature changes for the two classes. Unlike Anchor explanations that are rule-
based, individual counterfactuals are represented by an observation. Therefore, counter-
factuals are not affected by too-specific regions (i.e., small regions of the feature space
belonging to a given class) that would result in low coverage Anchor explanations. Most
counterfactuals involve changes over age, which might suggest that this feature is very
relevant in the classification. The capital gain and hours per week are also relevant in the
base explanations, and their presence gets magnified in the restricted explanations.

Besides age, the features: race, sex, relationship, and marital status are also fixed in
the restricted explanations. In contrast with the feature age, these features only involve
changes in a few patterns that are not common. This does not imply that these features are
less relevant in the classification, and different restrictions might generate other patterns.
While changes over these features might not be helpful if the goal is to try to change the
outcome, they are useful in other tasks like detecting possible biases and assessing their
importance.
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Figure 5.5: Counterfactual and semifactual Explanation Sets, and individual counterfac-
tual change patterns. The patterns (rows) indicate the percentage of explanations sharing
the same structure. The presence of blue and orange squares indicates a change in that fea-
ture in counterfactual-based explanations and a restriction over that value in semifactual-
based explanations. Orange rows indicate that the pattern belongs to the ≤ $50k class, and
the blue color is related to the > $50k class.

In the semifactual Explanation Sets (see Figure 5.5 B) and E)), there is a high differ-
ence in the number of conditions between the patterns of the group ≤ $50k and the > $50k
group. The reason behind this difference is that the classes are slightly imbalanced. This
imbalance primarily affects the number of conditions and the coverage, as it promotes
more specific explanations that result in more conditions and lower coverage. In addition,
the actionability restrictions also decrease the average fidelity and coverage and increase
the number of conditions. Unlike the semifactual Explanation Sets, the number of con-
ditions is lower in the > $50k group in counterfactual Explanation Sets. However, this
does not contradict the previous findings since the counterfactuals for the > $50k group
belong to the ≤ $50k class and vice versa. Therefore, it supports the previous findings
that Anchor obtains better explanations for the majority class in imbalanced problems.

Table 5.1 compares the quality metrics for both counterfactual and semifactual Ex-
planation Sets. In the semifactual-based explanations, the average number of conditions
increases by 35.36% when adding the restrictions, and the coverage increases by 233.14%.
The coverage is calculated over the training feasible set, and consequently, it will increase
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if the restrictions result in a more homogeneous training feasible set. However, the stan-
dard deviation of the coverage also increased by 299.08%, which suggests that there are
several semifactual Explanation Sets with extreme coverage values (either very high or 0%
coverage). As previously seen in Figure 5.5, there is a high difference in quality between
the two classes. The fidelity remains similar, and valid semifactual Explanation Sets were
produced in most cases (i.e., f idelity > 0.90).

Regarding counterfactual Explanation Sets, the number of conditions increased by
27.87% when adding the restrictions, and the fidelity decreased by 23.20%. On the other
hand, the coverage increased by 1.88%. The only setting where most of the counterfactual
Explanation Sets were valid was for the class > $50k without restrictions. In the others,
less than half of the cases were valid explanations. This reveals a big difference in quality
between semifactual and counterfactual Explanation Sets. This difference is primarily the
effect of two factors:

• Counterfactual extraction method: This method might generate counterfactuals in
wiggly regions of the feature space (i.e., underrepresented for the counterfactual
class) because it is optimizing the restriction function, not for counterfactual Expla-
nation Sets quality. Consequently, the counterfactual Explanation Sets generated
there using Anchor will have low coverage or fidelity.

• Impact of restrictions: In the same way the restrictions help to achieve high coverage
in the semifactual Explanation Sets because of the homogeneity, it penalized the
counterfactual Explanation Sets.

Explanation type Label N. conditions Coverage (%) Fidelity (%)

S.F. Base ≤ $50k 2.19 (0.64) 15.25 (8.70) 98.30 (1.69)
> $50k 7.50 (2.34) 0.40 (0.70) 93.33 (10.47)

S.F. Restricted ≤ $50k 3.89 (1.47) 50.86 (37.73) 98.09 (3.37)
> $50k 6.64 (3.14) 1.15 (1.97) 92.85 (13.48)

C.S. Base ≤ $50k 7.14 (2.36) 1.03 (1.64) 83.00 (12.57)
> $50k 3.05 (1.34) 22.33 (13.83) 95.73 (3.89)

C.S. Restricted ≤ $50k 8.33 (2.33) 1.72 (2.72) 59.55 (32.35)
> $50k 6.95 (2.53) 20.2 (22.51) 83.45 (13.68)

Table 5.1: Explanation set quality metrics calculated for the semifactual and counterfactual
Explanation Sets explanations with the base and restricted feasible set. The mean and
standard deviation (in parenthesis) are calculated for each explanation type, restriction
setting, and label.

Next, we evaluate how the proposed methodology can enforce diversity over the coun-
terfactuals extracted from the base and restricted feasible sets. The penalization consid-
ered is the inverse of the base distance plus 1 to the previous counterfactuals using Eq.
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3.13. The average distances were recorded as 0.12, 0.20, and 0.13 for the factual, diverse,
and restricted diverse counterfactuals, respectively. The calculated average diversity was
0.42 for base diverse counterfactuals and 0.30 for restricted diverse counterfactuals. From
these results, it is evident that the method successfully enforces diversity in both diverse
counterfactual settings. While the restricted diverse counterfactuals are, on average, closer
to the factual sample than the base diverse ones, they have slightly lower diversity. This
phenomenon might be attributed to the higher cost associated with changing the class
using non-restricted features, which is supported by their average restriction function,
which is approximately 1.81 in both cases.

The representation for diverse counterfactual Explanation Sets is finite enumeration,
in particular, a set with two elements: the counterfactual and the diverse counterfactual.
Notice that more than one diverse counterfactual can enrich the explanation.

5.2. Counterfactual Explanation Sets in Random Forest

This section focuses on the extraction of counterfactual Explanation Sets in RF .
Specifically, it compares the proposed extraction methods, Anchor_ES and RF-OCSE ,
against several state-of-the-art alternatives. The evaluation is performed in 10 real datasets
using counterfactual and counterfactual Explanation Sets metrics. Another goal of this
experiment is to assess the performance difference between full (i.e., use model internals)
and black-box access. The fidelity is set to α = 0.90. Any “counterfactual Explanation
Set” with fidelity lower than α is considered a pseudo counterfactual Explanation Set. The
RF was implemented in Scikit-Learn (Pedregosa et al., 2011) with default parameters.
The code for Anchor_ES and RF-OCSE is available online2.

The chapter is structured as follows. Section 5.2.1 presents the datasets, metrics, and
methods used in the experiment. Sections 5.2.2 and 5.2.3 describe the counterfactual and
counterfactual Explanation Sets evaluations, respectively.

5.2.1. Experiments setup

Baselines. The performance of Anchor_ES and RF-OCSE is evaluated using several
metrics against state-of-the-art methods whose Python implementation is available online.
These methods are listed in Table 5.2. In these methods, only Anchor_ES, Forest-based
Tree (FBT ), LOcal Rule-based Explanations (LORE ), and RF-OCSE produce counter-
factual Explanation Sets. Specifically, they generate rule-based explanations. Regarding
the validity of the explanations, MACE , Minimum Observable (MO), and RF-OCSE can
always find counterfactuals (when they exist). In the FBT method, the explanations
are extracted using the same method as LORE . The parameters for Hot Start (HS ) in

2https://github.com/rrunix/libfastcrf

https://github.com/rrunix/libfastcrf
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Method Valid Set explanation Model access Parameters
RF-OCSE ✓ ✓ Full HS(n_features=3, perturb_size=2)
Anchor_ES ✓ Black-box
MACE 2 (Karimi et al., 2020) ✓ Full tolerance 10−5

LORE 3 ✓ Black-box Genetic neighborhood
Feature-Tweaking (FT )2 (Tolomei et al., 2017) Full
FBT 4 (Sagi & Rokach, 2020) ✓ ✓ Full
MO2 ✓ Black-box

Table 5.2: Methods considered in the counterfactuals and counterfactual Explanation Sets
evaluation. A ✓in the valid column indicates if the method guarantees that a counterfac-
tual is always found (if it exists). In the set explanation column, a ✓indicates that the
method produces counterfactual Explanation Sets. Model access indicates if the method
uses the model internals (full) or only makes predictions (black-box). Finally, any rele-
vant parameter is listed in the parameters column.

Dataset N. Features Feature types N. Instances
abalone 8 real, categorical 4177
adult 11 real, integer, binary, categorical 30718
banknote 4 real 1372
compas 5 integer, binary 5278
credit 14 real, integer, binary 29623
mammographic masses 5 integer 830
occupancy 5 real 2665
pima 8 real, integer 768
postoperative 8 integer, binary, categorical 86
seismic 15 integer, binary, categorical 2584

Table 5.3: Description of the datasets used in the experiments.

RF-OCSE have been empirically set on toy examples. Note that RF-OCSE with HS and
MO obtains the same explanations, so the distinction between them is only made when
it is relevant.

Datasets. Ten tabular datasets, listed in Table 5.3, are considered. These datasets
contain integer, categorical, ordinal, and real features. The datasets adult, compas, and
credit are preprocessed using the same approach as in MACE experiments (Karimi et al.,
2020). The categorical and binary variables are represented using numerical encoding,
and the continuous variables are standardized.

Metrics. Besides the base metrics specified previously (fidelity, coverage, and dis-
tance), we use the extraction time, the percentage of populated counterfactual Explana-
tion Sets (i.e., coverage > 0), and the stability (robustness) of the extraction method as
defined in (Alvarez-Melis & Jaakkola, 2018) (Eq. 2). The tolerance in the stability is
ϵ = 0.50. Lower values in the stability metric (Local Lipschitz estimates) indicate that

2https://github.com/amirhk/mace
3https://github.com/riccotti/lore
3https://github.com/sagyome/forest_based_tree

https://github.com/amirhk/mace
https://github.com/riccotti/lore
https://github.com/sagyome/forest_based_tree
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Dataset Method
Anchor_ES FBT FT LORE MACE MO RF-OCSE

abalone 84.76 100% 78.77 9% 90.76 95% 67.55 20% 7.02 83.42 0.00
adult 87.60 100% 30.44 36% 64.30 100% 37.50 19% 0.51 75.60 0.00
banknote 60.94 100% 23.58 31% NA 0% 20.65 30% 0.22 61.77 0.00
compas 49.79 100% 0.04 100% 54.24 85% 8.66 84% 0.00 0.58 0.00
credit 93.04 100% 90.14 12% 93.68 100% 60.79 21% 21.87 89.29 0.00
mammographic_mases 79.07 100% 8.12 82% 59.52 100% 8.05 88% 0.04 43.12 0.00
occupancy 65.78 100% 28.74 42% 71.22 30% 31.41 34% 0.66 65.29 0.00
pima 91.67 100% 66.41 15% 81.13 100% 47.17 28% 1.74 86.01 0.00
postoperative 48.69 100% 5.18 67% 39.58 73% 0.76 70% 0.00 40.20 0.00
seismic 86.73 100% 91.64 6% 94.31 30% 65.92 5% 3.68 77.56 0.00

Table 5.4: Relative counterfactual improvement of RF-OCSE over the alternatives. The
percentage of valid counterfactuals is in parentheses in those methods that do not always
generate valid counterfactuals by design. NA implies that the relative counterfactual im-
provement could not be calculated because there were no valid counterfactuals. The best
relative counterfactual improvement for each dataset is in bold.

the method is more robust. The distance is reported in terms of improvement of RF-
OCSE to the other approaches. Given the counterfactual generated by RF-OCSE , c, the
relative counterfactual improvement over other approaches is defined as follows (Karimi
et al., 2020):

rci(c, z, x̂) = 100 · (1 − d(c, x̂)/d(z, x̂)) (5.1)

where z is the counterfactual from the other approach, x̂ is the factual sample, and d is
the Gower distance. The metrics are only calculated over the valid counterfactuals.

5.2.2. Counterfactual evaluation

The average relative counterfactual improvement of RF-OCSE over the alternatives
for each method is reported in Table 5.4. RF-OCSE obtains slightly better results than
MACE . This is attributed to the choice of tolerance in MACE since it can approximate
the optimal counterfactual within an arbitrary tolerance. This tolerance parameter helps
reduce extraction time by requiring fewer iterations. On the other hand, RF-OCSE can
not make such a trade-off because it always extracts the optimal counterfactual.

RF-OCSE counterfactual distance to the factual sample is always equal or better than
MO , as the counterfactual obtained with MO is used as an approximation for the initial
counterfactual in RF-OCSE . The high difference in counterfactual distance obtained by
MO in the compas dataset with respect to the other datasets is because the number of
possible individuals is considerably less than in the other datasets. The compas dataset
consists of three binary variables (race, gender, and charge degree), an ordinal variable
with three levels based on the individual age, and the prior count, which is an integer
variable ranging from 0 to 37. However, roughly 90% of the observations are in the range
0 − 10. In this 90% of the dataset, there are 264 possible observations that translate to



76 Chapter 5. Experiments

231 real observations in the dataset.

Regarding the FT approach, the average improvement obtained by RF-OCSE is
64.87%, producing valid counterfactuals on 83.91% of the cases. FT method did not
produce a valid counterfactual in the banknote dataset because the counterfactuals could
not be derived from a single rule of the DT s in the RF . The average improvement ob-
tained over the LORE approach by RF-OCSE is 34.84 %, and its high variance might
imply that LORE highly depends on the data distribution. Further, the method only pro-
duced valid counterfactuals in 31.11% of the cases. Regarding Anchor_ES, it produced
a valid counterfactual in all cases, and RF-OCSE obtained an average improvement of
74.80% over it. Finally, the average improvement of RF-OCSE over FBT is 40.30%,
and its variance is the highest, while the percentage of valid counterfactuals is 34.45%.
This result indicates that having full access to the ML model can significantly reduce the
counterfactual distance and even provide optimality and validity guarantees.

The average counterfactual extraction times in seconds for each dataset and method
are reported in Table 5.4. Extraction times are an essential aspect of counterfactual
extraction methods because large extraction times are not acceptable in some applications
that are meant to be interactive. The time measures could be divided into three groups
based on their behavior. Methods in the first group have consistent extraction times
regardless of the dataset or the size of the RF . This is the case of LORE that took,
on average, from 15 to 17 seconds to extract an explanation in the experiments. In the
second group, the time is influenced by the size of the dataset, as seen in MO , which
took less than a second in most cases. The third group includes Anchor_ES, FBT , FT ,
MACE , and RF-OCSE (with both HS and MO as initialization strategies) and their time
depends on the size (complexity) of the RF .

RF-OCSE with HS obtained the best extraction time in all cases but one. In that case,
FBT obtained a better result, but only 36% of the extracted counterfactuals were valid.
The second best result was obtained by RF-OCSE with MO . The difference between
them was significant except in three cases that obtained the same extraction time. Thus,
we can confirm that the maximum distance parameter in the RF-OCSE method plays a
considerable role in the extraction time. Further, the time taken in the initial sampling
in HS is negligible compared with the time reduction in the extraction. Finally, similarly
to the conclusions drawn with the counterfactual distance, having full access to the ML
model gives a great advantage in extraction times.

Table 5.6 displays the average stability of the extraction methods. FBT emerges as
the most stable method, possibly due to the simplicity of the decision surface of the
approximated DT , which is supported by the high percentage of invalid counterfactuals
(as shown in Table 5.4). RF-OCSE and MACE rank second in stability, backing the
findings made in (Blanchart, 2021) that optimal counterfactual extractors possess high
stability. Conversely, Anchor_ES and LORE yielded significantly poorer results, likely
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Dataset Method
Anchor_ES FBT FT LORE MACE MO RF-OCSE (MO) RF-OCSE (HS )

abalone 29.76 0.90 0.90 16.56 83.09 0.68 0.17 0.12
adult 161.13 1.20 7.16 16.64 23.95 1.33 1.96 1.96
banknote 5.23 0.66 0.01 15.54 1.83 0.20 0.02 0.01
compas 89.50 0.19 1.08 16.03 11.27 0.79 0.05 0.00
credit 161.63 0.92 9.30 17.29 41.86 1.31 0.49 0.12
mammographic_mases 1.07 1.19 0.66 15.73 7.76 0.14 0.02 0.00
occupancy 8.97 0.97 0.02 15.55 2.26 0.38 0.02 0.01
pima 19.16 1.19 0.75 16.35 19.80 0.13 0.05 0.05
postoperative 3.46 0.30 0.05 16.34 6.44 0.01 0.01 0.00
seismic 129.41 0.27 0.08 16.90 13.68 0.07 0.26 0.26

Table 5.5: Average extraction time for each dataset and method in seconds. The best
extraction time for each dataset is in bold.

Method’s stability
Anchor_ES FBT FT LORE MACE MO RF-OCSE
11.15 (8.59) 1.17 (0.16) 4.75 (3.48) 19.88 (41.90) 1.31 (0.25) 1.73 (0.29) 1.29 (0.25)

Table 5.6: Average stability of the extraction method. The standard deviation is in paren-
thesis right to the mean. Lower stability metric values (Local Lipschitz estimates) are
desirable. The best stability is in bold.

because of the high variability in their sampling procedure, which affected the subsequent
counterfactual estimation.

A counterfactual example extracted by each method for a sample in the adult dataset
is shown in Table 5.7. The goal of the adult dataset is to predict if the income of an
individual is less or equal than $50k using demographic information such as age, work
hours per week, capital gain, and marital status. In this example, the individual earns
less than $50k, and the counterfactuals suggest possible changes to increase the income to
more than $50k. The generated counterfactuals sometimes contain impractical changes,
such as age changes. However, these changes are impractical because of the domain
information. For example, a system to evaluate if an individual can get a driver license
might suggest waiting until an individual has the minimum driving age.

5.2.3. Counterfactual Explanation Sets evaluation

In the counterfactual Explanation Sets experiments, reported in Table 5.8, the cov-
erage, the percentage of counterfactual Explanation Sets populated, the fidelity, and the
percentage of explanations that meet the fidelity requirement are listed for each dataset
and method.

The counterfactual Explanation Sets extracted by LORE provide the broadest cover-
age. However, this wide coverage comes at the expense of having, on average, low fidelity.
LORE only managed to produce valid explanations on 17.60% of the cases. Thus, while
providing good coverage, these explanations do not correctly identify rules on the dataset
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Feature Factual sample Methods
ANCHOR-ES FBT FT LORE MACE MO RF-OCSE

Age 25.00 39.0 34.00
CapitalGain 0.49 0.56 1.42 0.86 0.96 -0.15 0.96
CapitalLoss -0.22 -0.15
EducationLevel Doctorate
EducationNumber 14.00
HoursPerWeek 37.00 60.0 40
MaritalStatus Never-Married
NativeCountry United-States
Occupation Prof-specialty
Relationship Not-in-family
WorkClass Private

Table 5.7: Counterfactual example extracted from the adult dataset for each method. Only
the changes over the factual sample are shown. In this example, the counterfactuals ex-
tracted by FBT and LORE belong to the factual class and are invalid.

Method
Dataset Anchor_ES FBT LORE RF-OCSE

fidelity coverage fidelity coverage fidelity coverage fidelity coverage

abalone 52.05 (7.85%) 16.43 (99.95%) 66.72 (12.26%) 6.2 (91.55%) 52.30 (5.46%) 10.84 (87.02%) 100.00 0.00 (0.79%)
adult 62.90 (6.42%) 7.54 (70.80%) 70.97 (28.86%) 2.26 (71.87%) 30.35 (6.82%) 11.42 (94.02%) 100.00 0.02 (17.10%)
banknote 96.60 (90.31%) 10.02 (100.00%) 72.03 (13.70%) 10.36 (27.77%) 40.87 (20.19%) 26.19 (97.67%) 100.00 0.03 (6.41%)
compas 89.36 (59.40%) 23.28 (100.00%) 100.00 (98.69%) 0.85 (98.69%) 71.37 (17.20%) 24.14 (94.51%) 100.00 0.86 (98.94%)
credit 54.64 (17.62%) 4.16 (97.95%) 61.44 (10.52%) 1.21 (56.29%) 59.01 (3.48%) 8.03 (78.50%) 100.00 0.00 (0.81%)
mammographic_mases 81.24 (31.45%) 36.15 (100.00%) 88.34 (38.19%) 0.64 (50.24%) 78.36 (45.54%) 26.66 (93.86%) 100.00 0.18 (60.84%)
occupancy 87.29 (61.46%) 29.63 (99.55%) 80.42 (17.15%) 3.30 (32.50%) 40.25 (32.91%) 40.01 (97.26%) 100.00 0.44 (9.42%)
pima 91.14 (67.58%) 5.14 (99.87%) 62.17 (13.67%) 3.74 (60.42%) 51.28 (6.77%) 12.07 (93.75%) 100.00 0.00 (0.13%)
postoperative 78.87 (56.98%) 6.10 (100.00%) 100.00 (15.12%) 0.24 (16.28%) 63.46 (15.12%) 10.29 (73.26%) 100.00 0.41 (26.74%)
seismic 42.76 (19.58%) 7.15 (99.88%) 87.58 (18.15%) 0.25 (37.50%) 76.60 (22.69%) 3.52 (68.25%) 100.00 0.00 (2.67%)

Table 5.8: Evaluation of counterfactual Explanation Sets extracted by Anchor_ES, FBT,
LORE, and RF-OCSE. The results of fidelity and coverage are the average over the test
samples. The percentage of explanations meeting the fidelity restriction is next to the
average fidelity. The populated percentage is in parentheses, right to the coverage. The
best result for each dataset and metric is in bold.

that generate valid counterfactuals. A broader coverage should only be preferred when it
contains mostly valid counterfactuals. Otherwise, they do not add relevant information.

A broad coverage is only possible when a set of feature conditions applies to a signif-
icant portion of the individuals in the counterfactual class. However, this is not always
possible in complex datasets and ML models where the effect of the features depends on
the region of the feature space.

Regarding FBT , its coverage is lower than that of LORE , but it provides a better
fidelity. Nevertheless, only 26.31% of the cases met the fidelity requirement. The high
fidelity contrasts with the high number of invalid counterfactuals in Table 5.4. This
could be explained by the method producing a good approximation of the RF that is not
well-defined near the surface decision, which is where the counterfactuals are.

Anchor_ES obtained a coverage similar to LORE , but it produced significantly more
valid explanations. Specifically, the explanations satisfy the fidelity requirement in 41.86%
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of the cases. In addition, almost all counterfactual Explanation Sets are populated. Con-
sequently, it is a good alternative when full access to the ML model is not possible.

On the other hand, for RF-OCSE , the counterfactual Explanation Sets have low cover-
age, but they have the maximum fidelity, as they do not have non-counterfactual by design.
Despite having a low coverage, the counterfactuals extracted from the counterfactual set
have a high similarity with the samples in the dataset that satisfy the counterfactual set
using the proximity measure proposed in (Breiman, 2002). Thus, the proposed changes
are realistic (close to the data manifold). This is a consequence of constructing the coun-
terfactual set from the remaining rules in the conversion, as most counterfactuals from the
counterfactual set fall in the same leaves in the RF (they might differ in some leaves, but
the class is already determined). Besides, the counterfactual set is guaranteed to contain
the optimal counterfactual by design.

As a result of providing very specific counterfactual Explanation Sets, they are satisfied
by at least one sample of the dataset in 21.14% of the cases. Counterfactual Explanation
Sets that do not contain samples from the training set provide an additional possibility
for explainability. This property allows us to detect and explain relevant regions not
represented in the training set. In the case of highly populated datasets, these situations
should be rare. This is the case of the compas dataset, where most feature combinations
are covered.

The significant difference in coverage and percentage of counterfactual Explanation
Sets populated between RF-OCSE and the extracted from LORE is because it uses
local rules (they are built using local information), whereas RF-OCSE use global rules.
Anchor_ES and FBT also use global rules, but we skip them from the comparison because
of the low fidelity. Local rules only take into account splits relevant to the neighborhood.
In contrast, global rules, in addition to those splits relevant in the neighborhood, also
assert all the splits that were relevant for the classification. Thus, global rules provide
a context for the changes that allow better generalization and comparison with other
individuals. However, this context does not imply that a feature outside the bounds of
the rule will result in an invalid counterfactual. It only provides the context in which the
prediction was made.

An example of a counterfactual Explanation Set extracted by Anchor_ES, FBT ,
LORE , RF-OCSE is shown in Table 5.9. In the Anchor_ES, FBT , and LORE methods,
the explanations are pseudo counterfactual Explanation Sets because they did not meet
the fidelity requirement. RF-OCSE explanation has restrictions in most features, but this
does not make it difficult to understand the explanation as most conditions do not imply
changes. Besides, as previously mentioned, the observations within RF-OCSE counter-
factual Explanation Sets are similar using the proximity measure proposed in (Breiman,
2002). In contrast, Anchor_ES has many changes but with higher coverage. However, it
does not satisfy the fidelity requirement.



80 Chapter 5. Experiments

Feature Method
Anchor_ES FBT LORE RF-OCSE

Age 37 < age ≤ 48 ≤ 29.50 ≤ 26.00
CapitalGain 0.55 < x ≤

0.82
> 0.86 > 0.96

CapitalLoss ≤ −0.22 ≤ 4.38735
EducationLevel Masters, Doc-

torate, Assoc.,
...

Doctorate,
Prof-school,
Assoc., ...

Masters, Doc-
torate, Assoc.,
...

EducationNumber ≤ 13 > 10.50 > 13.50
HoursPerWeek > 45 > 27.50 ≤ 38.00
MaritalStatus All except

married and
divorced

NativeCountry
Occupation Other-service,

Priv-house-
serv, Prof-
specialty,
...

Relationship Husband Husband, Not-
in-family

All except
husband

WorkClass Gov. Gov., Private Gov., Private,
Self-emp-inc

Table 5.9: Example of counterfactual set extracted by RF-OCSE and pseudo counterfactual
set from LORE and FBT for the Adult dataset. The conditions that are not satisfied by
the factual sample are in bold. The factual sample is the same as in the example in Table
5.7.

The coverage in RF-OCSE can be improved by simplifying the ruleset that generates
the counterfactual Explanation Set. This simplification can be achieved using Algorithm
6. The threshold is set to 0.50, which ensures that the greedy-rule-selection retains the
rules necessary to achieve a fidelity of 100.00% (i.e., it can only contain counterfactuals).
However, if the probability threshold is less than 0.50, the method produces counter-
factual Explanation Sets whose fidelity is lower than 100.00% (i.e., it can contain non-
counterfactuals). Also, having a broader coverage increases the percentage of populated
counterfactual Explanation Sets.

In Table 5.10, the counterfactual Explanation Sets extracted through the simplification
of the rule selection are evaluated. The rule selection is made with different probability
thresholds in Algorithm 6. Additionally, a dynamic approach that decreases the proba-
bility threshold until the coverage exceeds 0 is considered.

The rule selection relaxation vastly increases in the best case (dynamic approach)
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Method
Dataset RF-OCSE_dynamic RF-OCSE_0.4 RF-OCSE_0.2

fidelity (%) coverage fidelity (%) coverage fidelity (%) coverage
abalone 88.42 0.63 (100.00%) 99.54 0.10 (14.92%) 93.98 0.28 (62.75%)
adult 96.83 0.86 (100.00%) 99.05 0.11 (58.19%) 97.87 0.77 (84.42%)
banknote 99.55 7.16 (100.00%) 99.99 1.81 (81.71%) 99.71 7.67 (98.76%)
compas 99.13 0.87 (100.00%) 99.85 0.86 (99.62%) 99.50 0.87 (99.85%)
credit 86.98 0.11 (100.00%) 96.89 0.00 (9.44%) 95.20 0.02 (46.44%)
m. mases 94.67 0.94 (100.00%) 99.89 0.26 (74.58%) 95.42 0.67 (89.88%)
occupancy 98.36 7.25 (100.00%) 99.61 2.09 (67.69%) 98.63 6.73 (92.35%)
pima 88.10 1.32 (100.00%) 98.57 0.02 (9.11%) 93.79 0.27 (56.90%)
post-op. 87.56 2.45 (100.00%) 100.00 0.69 (44.19%) 87.52 1.82 (86.05%)
seismic 77.77 0.12 (100.00%) 96.10 0.00 (10.91%) 89.42 0.02 (39.51%)

Table 5.10: Evaluation of the counterfactual Explanation Sets extracted by the rule se-
lection simplification in RF-OCSE. The number after RF-OCSE indicates the probability
threshold used in Algorithm 6, or if the approach is dynamic. The results of fidelity and
coverage are the average over the test samples. The percentage of populated Counterfac-
tual Explanation Sets is in parentheses, right to the coverage. The best result for each
dataset and metric is in bold.

the coverage from 0.19 to 2.71 while having a high fidelity. Also, the percentage of
populated counterfactual Explanation Sets is 100.00%. This increment in coverage is
notable from the threshold of 0.40, which suggests that many counterfactual Explanation
Sets have a very restrictive condition that significantly impacts their classification as
counterfactuals. The rule selection relaxation behaves similarly in all datasets except for
the seismic dataset. In this dataset, the fidelity in the dynamic approach is 77.77%, which
contrasts with the much higher fidelity values using the probability thresholds 0.20 and
0.40. This can be attributed to some counterfactual Explanation Sets not being realistic,
as the changes are not met by any sample in the dataset. However, this is not a problem of
the extraction method, but the decision surface of the ML model itself, as counterfactuals
by definition, live in the vicinity of the decision surface where the class flip happens.
This fact can be used to diagnose ML models by inspecting the decision surface through
counterfactual Explanation Sets.





Chapter 6

Conclusions

This thesis has focused on explanation techniques for Machine Learning (ML) models.
Explanation techniques aim to make the ML models and/or their predictions interpretable
by humans. Given the increasing integration of Artificial Intelligence into our society,
these techniques are more crucial than ever. They target a wide audience, from ML
experts and domain users developing these tools to non-technical individuals who may
not even realize they are using them. Recognizing the diverse backgrounds and objectives
of these users, we aim to empower them with tools to tailor the explanations to their
preferences and goals. With this in mind, we set at the beginning of this thesis the
following objectives:

O1) To provide a new explanation methodology unifying counterfactuals and semifactu-
als based on similarity measures, emphasizing their complementarity and a standard
methodology to define the feasible sets.

O2) To provide a taxonomy of current set-based representations in the literature for
counterfactuals and semifactuals.

O3) To develop an agnostic method to extract these new explanations based on Anchor,
a well-known agnostic explanation method.

O4) To develop a method to extract these new explanations from a Random Forest (RF )
leveraging on its internal structure and axis-parallel decision surface.

O5) To validate the proposed explanation methodology and compare the extraction me-
thods to alternatives in the literature.

The objectives O1 and O2 have been achieved through the Explanation Sets framework,
which encompasses counterfactuals and semifactuals under a single framework. It provides
users the tools for expressing restrictions over observations (feasible set) and considering
different notions of similarity for the outcomes. Furthermore, the framework extends
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these explanation techniques to tasks where a similarity in the output can be defined.
Explanation Sets also advocate for using sets of observations for explanations instead of
a single observation, a concept supported by the literature (Guidotti et al., 2018, 2019;
Ribeiro et al., 2018).

The extraction of Explanation Sets has been addressed from two perspectives: An-
chor_ES (Objective O3), a black-box agnostic method to extract counterfactual and
semifactual Explanation Sets, and Random Forest Optimal Counterfactual Set Extractor
(RF-OCSE ) (Objective O4), a full-access method to extract counterfactual Explanation
Sets from a RF . The new explanation methodology was successfully validated in two
case uses, and the proposed extraction methods were compared with alternatives in the
literature in counterfactual Explanation Set extraction (Objective O5).

From an academic perspective, we have tried to address the following research ques-
tions from Section 1.2:

Q1) Can a RF be converted into a Decision Tree (DT )? Is it a valid mechanism to
explain a RF?

Q2) From an explainability point of view, are sets of observations better than a single
observation?

Q3) How do different notions of similarity affect the extracted counterfactual and semi-
factual explanations?

Q4) Are full-access explanation techniques better than black-box techniques?

RF is among the most used ML algorithms. They require little data preprocessing, sup-
port categorical features, and perform well even with little to no hyperparameter tuning.
In contrast with their building block, DT , they are not considered interpretable. The
question of whether they are equivalent naturally arises. The conversion of a RF into a
DT is detailed in Chapter 4. However, because of the combinatory nature of the process,
it is not useful in real-world cases, less to provide an explanation, ruling out the inter-
pretability of decision trees. This interpretability is tied to complexity, and only simple
DT s are interpretable out-of-the-box. Nevertheless, this conversion opened opportunities
for other explanation methods, such as counterfactuals. Specifically, the partial conver-
sion of a RF into a DT enabled to extract the closest (optimal) counterfactual. Also,
the usage of the rule within the partially converted DT that this counterfactual satisfies
provides a set of counterfactuals.

Using sets of counterfactuals or semifactuals rather than a single observation is moti-
vated in Chapter 3, providing several representations already being used in the state of
the art as an example. The results from Chapter 5 also provide examples of why this
set representation is better. For instance, rule-based Explanation Sets with low coverage
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should be used with caution because they are defined in low-density regions of the model
that have not been tested. If we were considering only an observation, we would not have
this information.

Counterfactuals and semifactuals based on similarity measures are introduced in Chap-
ter 3, providing examples of their usefulness depending on the goal of the explanation.
They were validated in a real example in Chapter 5, which provided useful insights. The
usage of restrictive similarity measures leads to an imbalanced problem where the cur-
rent explanation extraction methods are not well-suited. We showed that the quality of
the explanations is much better for the majority class. Also, the restrictiveness of the
similarity should take into account the precision of the model.

Methods with full access obtained better results across all metrics and took less time
in the extraction process. The conclusion from the experiments in Chapter 5 is that
they should be preferred when possible. Further, since only a few types of ML models
are used in practice, this should not be much of a problem. Full-access methods such
as RF-OCSE and MACE can also guarantee optimality and the former fidelity. While
agnostic methods such as Anchor and Anchor_ES can provide statistical guarantees on
fidelity, the computing time was significantly higher in the experiments, and they did not
find satisfactory explanations in several cases.

The main contributions of this research, as well as the open questions and improvement
opportunities, are listed below. It also presents a list of publications in scientific journals
and international conferences that have resulted from this research.

6.1. Main contributions

The main contributions of this thesis focus on unifying and extending counterfactual
and semifactual explanation methods and methods to extract them. Two major contri-
butions have been made to these areas, leading to two scientific articles (Fernández et al.,
2020) and (Fernández et al., 2022). These contributions have been presented in Chapters
4 and 3, respectively.

The main conclusions of each of the two contributions are summarized below:

• The introduction of the proposed explanation framework, Explanation Sets, and
Anchor_ES, an agnostic approach to extract Explanation Sets.

• The development of RF-OCSE , an approach to extract counterfactual Explanation
Sets from RF with optimality guarantees.

Explanation Sets
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In Fernández et al. (2022), a new explanation framework called Explanation Sets
that unifies counterfactual and semifactual explanations was presented. Explanations
Sets are an example-based Explanaible ML technique to explain ML predictions. The
key idea is simple yet powerful: explain ML predictions using observations from a sub-
region of the feature space (neighborhood) and whose prediction compared with factual
prediction satisfies a criterion based on the user preferences (grouping measure). Besides,
a method to extract counterfactuals and semifactual Explanation Sets, called Anchor_ES,
was introduced.

This thesis further elaborates on the Explanation Sets framework, simplifying the def-
initions and restrictions, but the concept and results remain. Specifically, the restrictions
on the feature space originally imposed through a neighborhood (distance) are now spec-
ified through a feasible set. This feasible set is defined using a smaller than inequality
constraint. The main advantage of this definition is that symmetry is no longer required,
which significantly simplifies some restrictions relative to the factual sample (e.g., action-
ability). Further, fidelity, which was previously a desirable property, is now a requirement
in the Explanation Set definition. An Explanation Set is valid only if it satisfies a user-
defined fidelity.

The proposed explainability framework was evaluated on two use cases concerning
classification and regression tasks using the Anchor_ES extraction method. In the re-
gression task, several dissimilarities and similarities were considered. In this case study,
we show how converting the regression problem into a binary classification problem using
the grouping measure leads to an imbalanced classification problem. This fact is not a
limitation of the proposal, but most counterfactual and semifactual extraction methods
perform worse in imbalanced problems. Further, a large difference in explanation set
quality between the minority and majority classes should be expected because most ob-
servations of the feasible set belong to the majority class. This fact is also evidenced
in the classification case study, where the classes are slightly imbalanced. In particular,
when the restrictions result in a more homogeneous feasible set, this quality difference is
magnified.

Another interesting finding is that depending on the ML model and task, it might not
be possible to always extract a counterfactual explanation. This is because the output
of some models, such as DT or RF , is bounded, and they cannot predict values lower
or higher than those in the training set. Another reason is that the feasible set might
be highly restrictive. However, in such cases, the absence of counterfactuals is the best
explanation. It suggests that there does not exist a hypothetical scenario in which that
dissimilarity under the given feasible set is fulfilled.

Finally, we show that extracting counterfactual Explanation Sets by first extracting
a counterfactual and then extracting a semifactual set might not be the best approach.
This is because the counterfactual extraction method only optimizes for counterfactual
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quality, not counterfactual set quality. While it is possible to promote counterfactual
Explanation Sets quality in the counterfactual extraction method, the approach will be
similar to extracting counterfactual Explanation Sets directly. The counterfactual Expla-
nation Set extraction experiments further corroborated this point. In several instances,
Anchor_ES struggled to provide satisfactory explanations and showed considerable in-
stability. Nevertheless, the method did manage to achieve a compromise between fidelity
and coverage.

Random Forest Optimal Counterfactual Set Extractor (RF-OCSE)

In Fernández et al. (2020), we presented counterfactual sets and a method to extract
them from a RF called RF-OCSE . The counterfactual sets defined in this work laid
the foundation for Explanation Sets, and within this framework, they are counterfactual
Explanation Sets with fidelity α = 1 using a rule-based representation. RF-OCSE is a
counterfactual Explanation Set method based on the partial conversion of a RF into a
DT . The partial fusion enables the conversion of only the locality of the counterfactual by
filtering those rules whose distance is greater than the closest known counterfactual. The
optimal counterfactual set is generated by combining the remaining rules in the conversion
when the optimal counterfactual is found. This thesis proposes a new method to estimate
the initial counterfactual called Hot Start (HS ), where the closest counterfactual among
the previously extracted counterfactuals (other extractions) and the dataset augmented
with synthetic observations is considered.

The generated counterfactual sets were evaluated in terms of coverage, the percentage
of populated counterfactual sets, and fidelity. RF-OCSE is the only method supporting
set explanations that always produced valid explanations and used only a fraction of the
time taken by the alternatives. This time reduction is more evident when using the HS
method, significantly reducing the time in most cases. Thus, providing a good lower
bound in the counterfactual search plays a huge role in the time taken. The coverage is
lower than the alternatives, but the covered observations are similar under the proximity
measure, which makes the comparison easier and more meaningful. The ability to find
counterfactual sets that do not contain samples from the training set is not a limitation,
but it informs us that explanations on these regions should be taken with caution.

The counterfactual Explanation Sets from RF-OCSE can be relaxed to provide a
broader coverage while keeping a high fidelity. This relaxation is achieved by decreasing
the threshold in the rule selection algorithm. These relaxed counterfactual Explanation
Sets were evaluated in the same settings as counterfactual sets, achieving a better coverage
while keeping a high fidelity.
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6.2. Open questions and improvement opportunities

We have proposed a new methodology that extends and improves two of the most
common explanation techniques and methods to extract these explanations. Yet, many
challenges remain unresolved, both general and specific, in the different contributions. The
issues outlined below represent an opportunity not only for innovation in the academic
field but also to facilitate a seamless and safe integration of Artificial Intelligence within
our lives. A key point in this integration is the development of good-quality explainability
libraries with in-depth documentation and examples, which is often neglected in research.
However, it is what ultimately leads to the adoption of these technologies. The possible
improvements and extensions for each contribution are described below.

Explanation Sets

Future work will focus on developing new methods to extract Explanation Sets from
ML models. New extraction methods will focus on overcoming the limitations of the
current approaches in imbalanced problems that might occur due to a restrictive grouping
measure. Similarly to MACE, full-access methods that leverage the model internals will
be explored for the most common ML methods. End-to-end extraction approaches for
counterfactual Explanation Sets will likely improve the quality of the explanations because
they could be optimized throughout the process.

Another future area of work will be to study how different feasible sets affect the
resulting explanations. Specifically, a comparison between user-defined restrictions and
model-induced restrictions, as well as their possible use cases. In this regard, the effect of
high dimensionality and the uncertainty of the predictions in the explanation quality will
also be studied. Additionally, we will study new metrics to better estimate the quality of
Explanation Sets. In particular, a coverage measure that considers the observation to be
explained and weighs down distant observations, possibly also considering data manifold
closeness, will be considered.

Random Forest Optimal Counterfactual Set Extractor (RF-OCSE)

Future work will focus mainly on including new definitions of similarity and feasible
sets and enhancing performance. The applicability of the extraction method could be
improved by incorporating new similarity measures, enabling the extraction of both semi-
factuals and counterfactuals. To achieve this, new definitions of the worst and best-case
rules in the partial fusion should be considered. Moreover, we plan to explore new restric-
tion functions. A significant challenge in this endeavor is quickly calculating the minimum
(for optimization) and maximum (to verify feasible set membership) restriction for all the
observations in a rule. Additionally, strategies to optimize Explanation Set quality in the
search process, rather than the best observation, will be investigated.

Regarding the performance, the method may convert a RF to a local DT in high-
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density areas to achieve zero-cost Explanation Sets using the full conversion method in a
region of the input space. Explanation Sets could be efficiently extracted from the result-
ing DT by selecting the rule that satisfies the semifactual or counterfactual. Finally, the
extraction method could be extended to support Gradient Boosting models by modifying
the probability estimation method to be a weighted sum of the individual DT s.

6.3. List of publications

Published scientific articles:

• Fernández, R. R., De Diego, I. M., Aceña, V., Fernández-Isabel, A., & Moguerza,
J. M. (2020). Random forest explainability using counterfactual sets. Information
Fusion, 63, 196-207.

• Fernández, R. R., de Diego, I. M., Moguerza, J. M., & Herrera, F. (2022). Expla-
nation sets: A general framework for machine learning explainability. Information
Sciences, 617, 464-481.

International conferences contributions:

• Fernández, R. R., de Diego, I. M., Aceña, V., Moguerza, J. M., & Fernández-Isabel,
A. (2019). Relevance metric for counterfactuals selection in decision trees. In Intel-
ligent Data Engineering and Automated Learning–IDEAL 2019: 20th International
Conference, Manchester, UK, November 14–16, 2019, Proceedings, Part I 20 (pp.
85-93). Springer International Publishing.





Appendix A

Explanation Set existence in Random Forest
outside the label domain

Proposition 1. Given a dissimilarity m like Equation 3.7, a counterfactual Explanation
Set can not be defined in a Random Forest regressor for a factual sample whose prediction
is equal to the maximum value of the label in the training set.

Proof. Let X be the training set and Y the associated labels. The prediction in a Random
Forest regressor is the average of the individual Decision Trees, whose predictions are
also an average, in this case, of the labels of the instances that fall in that leaf. Let
ymax = max(Y) be the maximum value of the set of labels Y. Let Y ′ ⊆ Y be a subset of Y.
It is straightforward to see that ymax ≥ mean(Y ′), and thus, ymax is greater or equal to the
prediction of the individual Decision Trees. Consequently, the Random Forest regressor
can not make a prediction higher than ymax because it is an average of the Decision Trees.
Since an Explanation Set requires at least one element that meets the grouping measure by
definition, a counterfactual Explanation Set with the dissimilarity m can not be generated
for an observation whose prediction is ymax.

□
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