Losartan and tempol treatments normalize the increased response to hydrogen peroxide in resistance arteries from hypertensive rats

Ana B. García-Redondoa, Ana M. Brionesa, María S. Avenda\~noa, Raquel Hernanzb, María J. Alonsob and Mercedes Salaicesa

Objective To analyse the role of angiotensin II, via AT\textsubscript{1} receptors, and oxidative stress in the mechanisms underlying the increased response to hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) of mesenteric resistance arteries from spontaneously hypertensive rats (SHRs).

Methods Arteries from normotensive and SHRs untreated or treated with the AT\textsubscript{1} receptor antagonist, losartan (15 mg/kg per day, 12 weeks), or with the superoxide dismutase analogue, tempol (1 mmol/l, 17 days), were used. Arteries were mounted in microvascular myographs for isometric tension recording; superoxide anion (O\textsubscript{2}'-) production was evaluated by dihydroethidium fluorescence, thromboxane A\textsubscript{2} production by enzyme immunoassay and plasma nitrite levels by the Griess method.

Results H\textsubscript{2}O\textsubscript{2} (1–100 \textmu mol/l) induced higher contractile responses in mesenteric resistance arteries from hypertensive than normotensive rats. In SHRs, losartan and tempol treatments induced the following effects: normalized the increased H\textsubscript{2}O\textsubscript{2} contractile responses observed; modified neither the inhibitory effects of the cyclooxygenase inhibitor, indomethacin [1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1-H-indole-3-acetic acid] (1 \textmu mol/l), and the thromboxane A\textsubscript{2}/prostaglandin H\textsubscript{2} receptor antagonist, SQ 29 548 (1 \textmu mol/l), on H\textsubscript{2}O\textsubscript{2} contraction, nor the increase in thromboxane A\textsubscript{2} production in response to H\textsubscript{2}O\textsubscript{2}; abolished the increased vascular O\textsubscript{2}'- production; increased both the potentiatory effect of the nitric oxide inhibitor, N\textsubscript{G}-nitro-L-arginine methyl ester (100 \textmu mol/l), on H\textsubscript{2}O\textsubscript{2} responses and the acetylcholine-induced relaxation. Moreover, losartan treatment abolished the effect of the O\textsubscript{2}'- scavenger, tiron (1 mmol/l), on H\textsubscript{2}O\textsubscript{2} responses and increased plasma nitrite levels.

Conclusion Nitric oxide removal by an excessive O\textsubscript{2}'- production, probably from an upregulated renin–angiotensin system, participates in the increased response to H\textsubscript{2}O\textsubscript{2} in mesenteric resistance arteries from SHRs.

Keywords: angiotensin II, hydrogen peroxide, hypertension, nitric oxide, resistance arteries

Abbreviations: Ang II, angiotensin II; COX, cyclooxygenase; H\textsubscript{2}O\textsubscript{2}, hydrogen peroxide; KHS, Krebs–Henseleit solution; MRAs, mesenteric resistance arteries; O\textsubscript{2}'-, superoxide anion; ROS, reactive oxygen species; SHR, spontaneously hypertensive rats; TX, thromboxane; VSMCs, vascular smooth muscle cells; WKY, Wistar Kyoto

aDepartamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid and bDepartamento de Ciencias de la Salud III, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain

Correspondence to Dr Ana Ma Briones, Departamento Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain

Tel: +34 91 497 53 99; fax: +34 91 497 53 02; e-mail: ana.briones@uam.es

Received 15 January 2009 Revised 24 March 2009 Accepted 14 April 2009

Introduction It is well known that reactive oxygen species (ROS) play an important role in the development of cardiovascular diseases, including hypertension. This is due, in large part, to excessive production of oxidants, decreased nitric oxide bioavailability and decreased antioxidant capacity in the vasculature [1]. Increased plasma levels of hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) have been described in hypertensive patients [2], and it has been suggested as a mediator of vascular structural and functional alterations observed in hypertension [1]. The main source of H\textsubscript{2}O\textsubscript{2} is the dismutation of superoxide anion (O\textsubscript{2}'-) by superoxide dismutase (SOD). However, H\textsubscript{2}O\textsubscript{2} can be produced directly by other cellular enzymes such as nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase [3] and xanthine oxidase [4]. Moreover, H\textsubscript{2}O\textsubscript{2} can produce O\textsubscript{2}'- by activation of NAD(P)H oxidase, thus creating a vicious circle associated with oxidative stress-induced vascular damage in hypertension [5,6]. H\textsubscript{2}O\textsubscript{2} is more stable than O\textsubscript{2}'-, easily diffuses across cellular membranes and is considered an important second messenger in smooth muscle cell signalling and hypertrophy, although its role in vascular tone is controversial [7]. We have previously described that in rat mesenteric resistance arteries (MRAs), H\textsubscript{2}O\textsubscript{2} induces a contractile response that is greater in vessels from hypertensive than normotensive rats [6]. This contractile response was mainly mediated by cyclooxygenase (COX)-1-derived thromboxane A\textsubscript{2} (TXA\textsubscript{2}) in arteries from normotensive