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End-to-End Average BER in
Multihop Wireless Networks over Fading Channels

Eduardo Morgado, Inmaculada Mora-Jiménez, Juan J. Vinagre, Javier Ramos, and Antonio J. Caamaño

Abstract—This paper addresses the problem of finding an
analytical expression for the end-to-end Average Bit Error Rate
(ABER) in multihop Decode-and-Forward (DAF) routes within
the context of wireless networks. We provide an analytical
recursive expression for the most generic case of any number
of hops and any single-hop ABER for every hop in the route.
Then, we solve the recursive relationship in two scenarios to
obtain simple expressions for the end-to-end ABER, namely: (a)
The simplest case, where all the relay channels have identical
statistical behaviour; (b) The most general case, where every
relay channel has a different statistical behaviour. Along with
the theoretical proofs, we test our results against simulations.
We then use the previous results to obtain closed analytical
expressions for the end-to-end ABER considering DAF relays
over Nakagami-𝑚 fading channels and with various modulation
schemes. We compare these results with the corresponding
expressions for Amplify-and-Forward (AAF) and, after corrob-
orating the theoretical results with simulations, we conclude
that DAF strategy is more advantageous than the AAF over
Nakagami-𝑚 fading channels as both the number of relays and
𝑚-index increase.

Index Terms—Bit error rate, end-to-end performance, decode
and forward, amplify and forward, fading channel, multihop
wireless networks.

I. INTRODUCTION

MULTIHOP Wireless Networks (MHWN) have been the
focus of an intense research effort in recent times [1],

[2]. Their main advantages with respect to wireless direct
transmission between source and destination are, on the one
hand, the increase of coverage and battery life and, on the
other hand, the reduction in the interference level. In spite of
the increasing interest on MHWN, specially with the develop-
ment of the cooperative or collaborative wireless networks [3],
[4], the inherent complexity of these communication systems
makes it very difficult to evaluate their performance in a
general framework [5], [6]. In fact, to the best of our knowl-
edge, the theoretical comparison of the end-to-end Average
Bit Error Rate (ABER) between the Amplify-and-Forward
(AAF) approach (analog relaying) [7], [8] and the Decode-
and-Forward (DAF) strategy (digital relaying) [9]–[11] has just
been exactly solved for the particular case of routes with two
consecutive hops [12]. Following this line, in this paper we
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Fig. 1. Multihop route with 𝐻+1 nodes. The single-hop ABER from node
𝑖 to node 𝑖+1 is represented by 𝑃 (𝑖+1). The end-to-end ABER from node
0 to node 𝐻 is represented by 𝑃𝐻 .

analytically solve the theoretical calculation of the end-to-end
ABER in a scenario with an arbitrary number of consecutive
hops, suffering from multipath fading and using the DAF
strategy. Both the case of identical and distinct consecutive
channels in the route are solved, proving also the invariance of
the end-to-end ABER to the ordering of the distinct channels.
Using these results, we are able to compare the DAF and AAF
strategies for different wireless fading channels and different
modulations. These results allows us to analytically obtain the
diversity gain of DAF for routes with an arbitrary number of
hops.

The remaining of this paper is organized as follows. Section
II introduces the scenario under consideration and formulates
an analytical recursive expression for the most generic case,
i.e., any number of hops and any single-hop ABER in mul-
tihop DAF routes. This Section also provides the end-to-end
ABER for two opposed scenarios where all the relay channels
have, respectively, identical and different statistical behaviour.
Section III studies the effect of the fading channel and its
severity along with the modulation on the ABER for both
DAF and AAF strategies. Furthermore, we are able to provide
the analytic diversity gain for Nakagami-𝑚 channels. Finally,
Section IV summarizes the main results of the paper.

II. END-TO-END AVERAGE BER IN A MULTIHOP

WIRELESS NETWORK

A. Problem Statement

Let us consider a route with 𝐻+1 nodes in a MHWN with
DAF relaying strategy. Fig. 1 shows the considered scheme,
where the node labelled as 0 corresponds to the source node
and the node labelled as 𝐻 corresponds to the destination
node.

Considering this scenario and index ℎ ∈ {1, 2, . . . , 𝐻}, we
define 𝑃 (ℎ) as the single-hop ABER from node ℎ−1 to node
ℎ, and 𝑃ℎ as the end-to-end ABER from source node (node
0) to node ℎ. Taking into account these definitions, we can
express the probability of correct bit transmission from source
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node to node ℎ−1 as (1−𝑃ℎ−1), and the probability of correct
bit transmission from node ℎ− 1 to node ℎ as (1− 𝑃 (ℎ)).

Assuming statistical independence among the channels of
successive hops, the end-to-end error probability of a binary
symbol that experiences 𝐻 ≥ 1 successive transmissions, 𝑃𝐻 ,
can be recursively expressed as

𝑃𝐻 = (1− 𝑃𝐻−1)𝑃 (𝐻) + 𝑃𝐻−1(1 − 𝑃 (𝐻)) (1)

where the first term accounts for the joint probability of a
correct bit transmission from the source node up to the next-
to-last node in the whole transmission route and a wrong
last transmission, and the second term accounts for the joint
probability of a wrong bit transmission from the source node
up to the second last node and a correct last transmission. The
initial condition for (1) is given by 𝑃0 = 0.

Note that (1) takes into account that, in a multihop network,
a correct bit transmission from node 𝑖 to node 𝑗 (with 𝑗 ≥
𝑖 + 2) is equivalent to an even number of wrong single-hop
bit transmissions (bit value changes) between nodes 𝑖 and 𝑗.
Following the same reasoning, a wrong bit transmission from
node 𝑖 to node 𝑗 is equivalent to an odd number of wrong
single-hop bit transmission between both nodes. If Average
Symbol Error Rate (ASER) was to be analyzed and high-
order modulation schemes were to be used, there would be
multiple combinations of flawed retransmissions that would
provide error-free symbol transmissions. As a consequence,
although the analysis of the end-to-end ABER based on either
single-hop ABER or single-hop ASER are equivalent, from an
analytical point of view, the former approach is considerably
simpler than the latter.

B. Single-Hops with Identical Statistical Behaviour

In this section we study the simplest scenario in a multihop
network where all the single-hops in the route have the same
statistical behaviour, i.e., all the links are i.i.d with equal
average received Signal to Noise Ratio (SNR). Therefore,

𝑃 (ℎ) = 𝑃hop, ℎ ∈ {1, 2, . . . , 𝐻}. (2)

This simplification is frequently assumed in the literature [1],
[2] when the single-hop ABER is unknown and therefore 𝑃hop

is obtained according to the channel statistical distribution.
This simplification is also advantageous in order to achieve
a compact expression for the end-to-end ABER, 𝑃𝐻 , just
dependent on both 𝑃hop and number of hops 𝐻 .

Theorem 1: Let a bit be transmitted by regenerating nodes
from source node 0 to destination node 𝐻 through 𝐻 channels
with identical statistical behaviour and characterized by the
single-hop ABER 𝑃 (ℎ) = 𝑃hop, with ℎ ∈ {1, 2, . . . , 𝐻}.
Then, the probability that the received bit in node 𝐻 is
different from the transmitted bit by node 0 is given by

𝑃𝐻 =
1

2

(
1− (1− 2𝑃hop)

𝐻
)
, ∀𝐻 ≥ 1. (3)

Proof: See Appendix A.
Usually, the expression used to determine the end-to-end

ABER for routes with the same value of single-hop ABER
has been [2]

𝑃𝐻 = 1− (1− 𝑃hop)
𝐻
. (4)
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Fig. 2. End-to-end ABER for 𝐻 = 1, 10 and 100 statistically identical
relays. Continuous line corresponds to the exact value of 𝑃𝐻 given by (3),
and dashed line corresponds to its upper bound (4).

A comparison between (3) and (4) is shown in the log-
log representation of Fig. 2 for 𝐻 = 1 , 10 and 100. For
a fixed 𝑃hop, we can observe remarkable differences as 𝐻
increases. In fact, (4) is an upper-bound to the exact value
of 𝑃𝐻 because (4) simply accumulates the errors through the
relays, not taking into account that, in a DAF scheme, an even
number of wrong single-hop transmissions in the route results
in a correct end-to-end transmission.

On the other hand, for a fixed 𝐻 and 𝑃hop low enough, we
observe that (4) is an accurate approximation to (3). In this
case, Fig. 2 shows a linear behaviour for 𝑃𝐻 . In order to find a
simple approximation to (3) proving its linear behaviour when
𝑃hop is low enough, we may expand (3) as

𝑃𝐻 =

(
𝐻

1

)
𝑃hop − 2

(
𝐻

2

)
𝑃 2
hop + . . .+ (−2)𝐻−1

(
𝐻

𝐻

)
𝑃𝐻
hop.

(5)
Then, since 𝑃hop is low enough, (5) can be written retaining
only the leading term as

𝑃𝐻 ≈ 𝐻𝑃hop, (6)

and the linear behaviour of 𝑃𝐻 with regenerative relays is
analytically proved. Using (6) and defining 𝛿 ≡ log10 𝐻 and
𝛽 ≡ − log10 𝑃hop, the resulting end-to-end ABER can be
simply written as

𝑃𝐻 ≈ 10−(𝛽−𝛿). (7)

Additionally, from Fig. 2, note that there are remarkable
differences between (3) and (4) only when (𝛽 − 𝛿) ≤ 1 and
𝛿 > 0. This observation let us to conclude that a low enough
𝑃hop for a fixed 𝐻 > 1 is equivalent to (𝛽 − 𝛿) ≤ 1.

Since (3) is valid irrespective of the radio channel and the
bit error rate for any modulation, to check our theoretical
results through simulation, we will consider a Rayleigh fading
channel and a Binary Phase-Shift Keying (BPSK) modulation
scheme. Assuming the same statistical performance for all
links in the multihop route, and using the single-hop ABER for
BPSK given in [13, eq. (8.104)], the exact end-to-end ABER
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Fig. 3. End-to-end ABER for 𝐻 = 1 to 𝐻 = 10 with statistically identical
relays over Rayleigh fading channels using BPSK modulation. Theoretical
(8) and simulation results are plotted with continuous lines and circles,
respectively.

of the 𝐻-hop route can be written as

𝑃𝐻 =
1

2

(
1−

(
𝛾

1 + 𝛾

)𝐻/2
)

(8)

where the average single-hop SNR per bit is given by 𝛾 =
𝛼2𝐸𝑏/𝑁0, with 𝛼2 being the mean square value of the random
variable (r.v.) corresponding to the fading amplitude, 𝐸𝑏 the
mean energy of the transmitted bits and 𝑁0 the power spectral
density of thermal noise. Fig. 3 shows both the analytical
results according to (8) and the experimental results with 106

Monte Carlo simulations for each different pair of values of
𝐻 and 𝛾. Note that the experiments are consistent with the
theoretical results. Therefore, (3) represents the exact end-to-
end ABER of multihop routes with homogeneous channels.

In addition, we can use (3) to analyze the increase of the
end-to-end ABER with increasing number of hops. Moreover,
we can define the end-to-end SNR of a route as the SNR of
a single-hop with ABER equal to the end-to-end ABER of
the considered route. According to this, Fig. 4 corroborates
the linear increase of the end-to-end ABER and the linear
decrease of the end-to-end SNR with increasing number of
hops.

C. Single-Hops with Different Statistical Behaviour

To extend our results in the previous section, we now
consider the most general case of different statistical behaviour
for every single-hop.

Theorem 2: Let a bit be transmitted by regenerating nodes
from source node 0 to destination node 𝐻 through 𝐻 channels
with different statistical behaviour and characterized by the
single-hop ABER 𝑃 (ℎ), with ℎ ∈ {1, 2, . . . , 𝐻}. Then, the
probability that the received bit in node 𝐻 is different from
the transmitted bit by node 0 is given by

𝑃𝐻 =

𝐻∑
𝑖=1

⎛
⎝𝑃 (𝑖)

𝐻∏
𝑗=𝑖+1

(1− 2𝑃 (𝑗))

⎞
⎠ (9)
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Fig. 4. End-to-end ABER and end-to-end SNR for 𝐻 = 1 to 𝐻 = 100
with statistically identical relays over Rayleigh fading channels using BPSK
modulation. The single-hop average SNR per bit in every hop is 𝛾 = 20 dB.

Proof: See Appendix B.
Corollary 1: Let a bit be transmitted by regenerating nodes

from source node 0 to destination node 𝐻 , through 𝐻 channels
with different statistical behaviour and characterized by the
single-hop ABER 𝑃 (ℎ), with ℎ ∈ {1, 2, . . . , 𝐻}. Then, the
probability that the received bit in node 𝐻 is different from
the transmitted bit by node 0 does not depend on the order of
the single-hops.

Proof: See Appendix C.
Corollary 1 allows us to study the extension of (8) to the

general case where the 𝐻 hops in the route can be classified
into 𝑁 kinds of single hops, each one characterized by its cor-
responding average SNR per bit, 𝛾𝑛 with 𝑛 ∈ {1, 2, . . . , 𝑁}.
Thus, assuming that 𝐻𝑛 is the number of single hops of the
𝑛− 𝑡ℎ type, i.e.

∑𝑁
𝑛=1 𝐻𝑛 = 𝐻 , we obtain from (9) the end-

to-end ABER considering BPSK modulation over Rayleigh
fading channels

𝑃𝐻 =
1

2
− 1

2

𝑁∏
𝑛=1

(
𝛾𝑛

1 + 𝛾𝑛

)𝐻𝑛/2

. (10)

Analogous to the analysis in the previous section, we
examine a case of interest in the high SNR region. For
end-to-end ABER values where (6) becomes valid, we can
carry out a simplified analysis of the correlation between
the end-to-end ABER with the ABER of the link with the
lowest average SNR. For example, in the extreme case of a
route with 𝐻 hops where there are 𝐻 − 1 hops with good
average SNR (with 𝑃Class 1, 𝛿Class 1 ≡ log10(𝐻 − 1) and
𝛽Class 1 ≡ − log10 𝑃Class 1) and only one hop with low average
SNR (with 𝑃Class 2 and 𝛽Class 2 ≡ − log10 𝑃Class 2), this worst
link is determinant in the calculation of the end-to-end ABER
when 𝛽Class 2 < (𝛽Class 1 − 𝛿Class 1) or, in an equivalent form,
when

𝑃Class 2

𝑃Class 1
> 𝐻 − 1. (11)

A general validation for the case where different channels
are involved in the consecutive hops in a route requires an
infinite number of different mixtures. Therefore, we select a
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Fig. 5. End-to-end ABER for routes with different relays over Rayleigh
fading channels using BPSK modulation. Theoretical (10) and simulation
results are plotted with continuous lines and circles, respectively. The first
line from the bottom represent the results for a route of 5 hops, with the first
hop characterized by the single-hop average SNR 𝛾1 = 𝛾 dB and the rest of
hops, from 𝑖 = 2 to 𝑖 = 5, characterized by 𝛾𝑖 = 𝛾+2𝑖− 1 dB. The higher
curves correspond to routes of 10 hops, with each route composed of two
classes of single-hop channels: Class 1, determined by 𝛾1 = 𝛾; and Class 2,
with 𝛾2 = 𝛾 − 5 dB. These eleven routes are respectively composed (from
bottom to top) of 10 − 𝑛 single-hops of Class 1 and 𝑛 single-hops of Class
2, where 𝑛 = {0, ..., 10}.

few representative examples for the validation of our theo-
retic results through simulation. Fig. 5 shows the theoretical
and simulation results of the end-to-end ABER for routes
composed of different single-hop average SNR per bit and
different number of hops with BPSK modulation and Rayleigh
fading channels. The first case to be considered is that of a
route with 5 hops, with the first hop characterized by the
single-hop average SNR 𝛾1 = 𝛾 dB and the remaining,
from 𝑖 = 2 to 𝑖 = 5, by 𝛾𝑖 = 𝛾 + 2𝑖 − 1 dB. The
second case corresponds to routes of 10 hops, with each route
composed of the aforementioned two classes of single-hop
channels: Class 1, determined by 𝛾1 = 𝛾; and Class 2, with
𝛾2 = 𝛾−5 dB. These eleven routes are respectively composed
of (10 − 𝑛) single-hops of Class 1 and 𝑛 single-hops of
Class 2, where 𝑛 = {0, ..., 10}. The consistency between
theory and simulation is complete in both cases. Thus, (9)
represents the exact end-to-end ABER of multihop routes with
heterogeneous channels.

III. ANALOG VERSUS DIGITAL RELAYING OVER FADING

CHANNELS

In order to determine whether it is preferable to use multi-
hop analog relaying (AAF) or perform a digital regeneration
of the original signal in each stage of the relaying (DAF) [1],
[12], [14], in this section we evaluate the end-to-end ABER of
both strategies in MHWN over Nakagami-𝑚 fading channels
using the theoretical results achieved in Section II-B.

Our motivation for considering the Nakagami-𝑚 distribu-
tion rests in its capability to model a wide range of multipath
fading channels through different values of the Nakagami
fading parameter 𝑚 [13]. Thus, the fading effect when there
is no direct line of sight (LOS) path is accurately modelled

by the Rayleigh distribution, which can be obtained as a
special case of Nakagami-𝑚 for 𝑚 = 1. Fading environments
less severe than those of Rayleigh fading are also considered
by Nakagami-𝑚 distribution when 𝑚 > 1, approximating
others such as the Rice fading (used to model the effect of
one strong direct LOS component and many random weaker
components). Additionally, the Nakagami-𝑚 distribution is
of interest because it can represent the best fit to land-
mobile and indoor mobile multipath propagation, scintillating
ionospheric radio links, and satellite-to-indoor and satellite-to-
outdoor radio wave propagation [15].

A. Nakagami-𝑚 Fading

In Section II we have proposed an analytical expression for
DAF relaying with an arbitrary number of relay-nodes and an
arbitrary single-hop ABER. Now, to compare DAF and AAF
strategies, we need an analytical expression for the end-to-end
ABER using AAF relaying. To the best of our knowledge, no
analytical expression for the general case of 𝐻-hops with AAF
relaying is available, and just the simplest case of two hops
(𝐻 = 2) for AAF with fading has been solved [14]. The only
further result, regarding the case of an arbitrary number of
hop and AAF, is the Lower Bound for the end-to-end ABER
[12]. We will use these and our results to evaluate the impact
of the modulation scheme in the end-to-end ABER with DAF
and AAF strategies.

We will proceed first with the AAF analysis. As in [13],
we resort to the approach based on the Moment Generating
Function (MGF) to obtain the analytic formulation of the end-
to-end ABER for MHWN with AAF relaying. We define the
MGF associated with a semi-definite positive r.v. 𝛾 as

𝑀𝛾(𝑠) =

∫ ∞

0

𝑝(𝛾)𝑒−𝑠𝛾𝑑𝛾 (12)

where 𝑝(𝛾) is the probability density function of r.v. 𝛾.
In the simplest case of two links with the same statistical be-

haviour, characterized by the average SNR (𝛾), the Nakagami-
𝑚 MGF can be written as [16, eq. (26)]

𝑀𝛾(𝑠,𝑚,𝐻 = 2) = 2𝐹1

(
𝑚, 2𝑚;𝑚+

1

2
;−𝑠

𝛾

4𝑚

)
(13)

where 2𝐹1 (𝑎, 𝑏; 𝑐, 𝑧) is the Gauss Hypergeometric function
[17, eq. (9.100)].

To study the influence of the fading parameter 𝑚 on the end-
to-end ABER, we will consider the 4-Quadrature Amplitude
Modulation (4-QAM) scheme. Thus, for 4-QAM and 𝐻 = 2
hops, the corresponding end-to-end ABER can be obtained
through [13, eq. (8.111)] as

𝑃AAF
4−QAM(𝛾,𝑚,𝐻 = 2) ∼=

∼= 1

𝜋

∫ 𝜋/2

0

𝑀𝛾

(
1

sin2 𝜃
,𝑚,𝐻 = 2

)
𝑑𝜃 =

=
1

2
− 21−8𝑚𝜋3/2Γ(4𝑚)

Γ3(𝑚)

√
𝛾

𝑚
×

× 3𝐹2

(
𝑚+

1

2
, 2𝑚+

1

2
,
1

2
;𝑚+ 1,

3

2
;− 𝛾

4𝑚

)
(14)
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where Γ(⋅) is the Gamma function and

𝑝𝐹𝑞(𝑎1, 𝑎2, . . . , 𝑎𝑝; 𝑏1, 𝑏2, . . . , 𝑏𝑞; 𝑧) ≡
≡ 𝑝𝐹𝑞(𝑎1, 𝑎2, . . . , 𝑎𝑝; 𝑏1, 𝑏2, . . . , 𝑏𝑞; 𝑧)

Γ(𝑏1)Γ(𝑏2) ⋅ ⋅ ⋅Γ(𝑏𝑞) (15)

with 𝑝𝐹𝑞(𝑎1, 𝑎2, . . . , 𝑎𝑝; 𝑏1, 𝑏2, . . . , 𝑏𝑞; 𝑧) being the General-
ized Hypergeometric Function [17, Eq. (9.14.1)].

In the DAF case, using the MGF for the single-hop
Nakagami-𝑚 channel [13, p. 21]

𝑀DAF
𝛾 (𝑠,𝑚,𝐻 = 1) =

(
1 + 𝑠

𝛾

𝑚

)−𝑚

(16)

we can evaluate its single-hop ABER for 4-QAM modulation
through [13, eq. (8.111)]

𝑃DAF
4−QAM(𝛾,𝑚,𝐻 = 1) ∼=

∼= 1

𝜋

∫ 𝜋/2

0

𝑀𝛾

(
1

sin2 𝜃
,𝑚,𝐻 = 1

)
𝑑𝜃 =

=
( 𝛾

𝑚

)−𝑚 Γ(𝑚+ 1
2 )

2
√
𝜋

2𝐹1

(
𝑚,𝑚+

1

2
;𝑚+ 1;−𝑚

𝛾

)
.

(17)

Finally, to obtain the end-to-end ABER for a route of 𝐻 hops,
we insert (17) into (3)

𝑃DAF
4−QAM(𝛾,𝑚,𝐻) ∼=

∼= 1

2
− 1

2

(
1−

( 𝛾

𝑚

)−𝑚 Γ(𝑚+ 1
2 )√

𝜋
×

× 2𝐹1

(
𝑚,𝑚+

1

2
;𝑚+ 1;−𝑚

𝛾̄

))𝐻

. (18)

To complete our analysis, we will focus on a particular
case of the Nakagami-𝑚 fading channel and we will study
the influence of the modulation technique on the end-to-end
ABER for the AAF and DAF strategies and that particu-
lar channel. Specifically, for simplicity of the corresponding
MGF, we have chosen the Rayleigh fading model and the
Binary Differential Phase-Shift Keying (BDPSK) modulation
technique (associated to a differentially coherent detection,
instead of the ideal coherent detection of 4-QAM).

Starting with BDPSK modulation and AAF relaying with
𝐻 = 2 hops, we use [13, Eq. (8.201)] and (13) to get the
following expression for the end-to-end ABER

𝑃AAF
BDPSK(𝛾,𝑚 = 1, 𝐻 = 2) =

=
1

2
𝑀𝛾(𝑠 = 1,𝑚 = 1, 𝐻 = 2) =

1

2
2𝐹1

(
1, 2;

3

2
,−𝛾

4

)
.

(19)

For 4-QAM modulation, AAF relaying and the same num-
ber of 𝐻 = 2 hops, the end-to-end ABER is obtained from
(14) as

𝑃AAF
4−QAM(𝛾,𝑚 = 1, 𝐻 = 2) ∼=

∼= 1

2
− 3

32
𝜋
√
𝛾 2𝐹1

(
1

2
,
5

2
; 2,−𝛾

4

)
. (20)

Though no general expression for the end-to-end ABER for
an 𝐻-hop route with AAF relaying is known, Hasna [12] has
found an Upper Bound for the equivalent end-to-end SNR

with Rayleigh fading, leading to the following Lower Bound
for the MGF

𝑀LB
𝛾 (𝑠,𝑚 = 1, 𝐻) =

1

1 + 𝑠
[∑𝐻

ℎ=1
1
𝛾ℎ

]−1 (21)

where 𝛾ℎ is the average SNR per bit for the ℎ-th AAF relay.
Assuming all single-hops have identical statistical behaviour,
𝛾ℎ = 𝛾 with ℎ ∈ {1, . . . , 𝐻}, and using (21) we obtain
the following Lower Bound for the end-to-end ABER with
BDPSK modulation

𝑃AAF
BDPSK(𝛾,𝑚 = 1, 𝐻) ≥

≥ 1

2
𝑀LB

𝛾 (𝑠 = 1,𝑚 = 1, 𝐻) =
1

2

𝐻

𝐻 + 𝛾
(22)

and with 4-QAM, the Lower Bound for the end-to-end ABER
can be written as

𝑃AAF
4−QAM(𝛾,𝑚 = 1, 𝐻) ≥

≥ 1

𝜋

∫ 𝜋/2

0

1

1 + 1
sin2 𝜃

[∑𝐻
ℎ=1

1
𝛾

]−1 𝑑𝜃 =

=
𝐻

2
(
𝐻 + 𝛾 +

√
𝛾(𝐻 + 𝛾)

) . (23)

We proceed now with DAF relaying to obtain the analytical
expressions for the end-to-end ABER using (3). For this
purpose, we only need to replace 𝑃hop in (3) with the single-
hop ABER for BDPSK modulation [13, eq. (8.207)], obtaining
the final expression

𝑃DAF
BDPSK(𝛾,𝑚 = 1, 𝐻) =

1

2

(
1−

(
𝛾

1 + 𝛾

)𝐻
)

. (24)

Repeating the same procedure with the single-hop ABER for
4-QAM modulation [13, eq. (8.112)], we get

𝑃DAF
4−QAM(𝛾,𝑚 = 1, 𝐻) ∼= 1

2

(
1−

(
𝛾

1 + 𝛾

)𝐻/2
)

. (25)

Fig. 6 shows the end-to-end ABER (𝑃𝐻 ) (both theoretical
and simulation results) as a function of the single-hop average
SNR per bit (𝛾) for 𝐻 = 2 with BDPSK, 𝐻 = 2 with 4-QAM,
and 𝐻 = 100 with 4-QAM using both DAF and AAF relaying.
For 𝐻 = 2, note that DAF relaying barely outperforms AAF
for low SNR with both modulations. The difference is less
marked with the coherent 4-QAM receiver than with the non-
coherent DBPSK receiver. However, regardless the modulation
scheme, both DAF and AAF performance tend to equalise as
SNR increases. To have a comparison baseline for the general
case of an arbitrary number of hops, we also plot the Lower
Bound for the AAF relaying.

For 𝐻 = 100 and 4-QAM, the Lower Bound for 𝑃𝐻 with
AAF relaying suggests a potential gain of AAF over DAF.
However, simulation results for AAF (squares joined with
dotted line) dispel the illusion of any such gain. Nevertheless,
the gain obtained from DAF over AAF is minimal. The
experimental results for AAF with 𝐻 = 100 are consistent
with the results for AAF, and 𝐻 = 2 (either theoretical or
simulation results) and their respective lower bounds.
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Fig. 6. End-to-end ABER for routes over Rayleigh fading channels with
identical statistical behaviour. Three cases are presented: 𝐻 = 2 with BDPSK,
𝐻 = 2 with 4-QAM, and 𝐻 = 100 with 4-QAM. Continuous lines
correspond to 𝑃𝐻 for DAF relaying (24) and (25). Dashed lines correspond
to 𝑃𝐻 for AAF relaying (19) and (20). Dash-dotted lines correspond to the
Lower Bound of 𝑃𝐻 for AAF relaying (22) and (23). Simulation results for
both DAF (circles) and AAF (squares) strategies are shown. The dotted line
for the AAF simulations in the 𝐻 = 100 case is only shown as a visual aid.

As opposed to what happens in cooperative communica-
tions [18], we conclude that, in single-route (non-cooperative
communication) MHWN with Rayleigh fading channels, DAF
relaying provides a higher performance than AAF relaying.

Returning to the motivation of this section, determining
whether DAF or AAF are preferable for multihop relaying,
from the previous results for Rayleigh fading channels, it
would be apparent that DAF is only slightly more advanta-
geous. However, in the general case of Nakagami-𝑚 relay
channels (𝑚 > 1) and a number of relays higher than one, the
advantage of DAF over AAF becomes quite relevant.

In the upper half of Fig. 7, we show the end-to-end
ABER (theoretical and simulation, where the correctness of
the theoretical expressions is apparent from the comparison
with the simulation results) as a function of the SNR per bit
for 𝐻 = 2 with 4-QAM modulation, using both DAF and
AAF relaying, over Nakagami-𝑚 channels with 𝑚 ∈ {2, 3, 4}.
Analogous to the Rayleigh channel case, in Nakagami-𝑚
propagation channels the DAF relaying barely outperforms
AAF for low SNR values. However, as index 𝑚 increases,
for a fixed value of SNR, the difference in end-to-end ABER
between the DAF and AAF strategies increases.

However, the situation drastically changes as the number
of relays increases. In the lower half of Fig. 7 the end-to-end
ABER for both the DAF and AAF strategies with 𝐻 = 100 is
shown. In this case, the only possible comparison with AAF
is from simulation results (squares joined with dotted lines)
because of the lack of even a Lower Bound similar to (21)
and applicable for Nakagami-𝑚 channels. In this case, the
disparity in the performance of DAF and AAF is striking, and
it grows with the 𝑚-index. The difference between DAF and
AAF end-to-end ABER ranges from 2 orders of magnitude
(Nakagami-2) to 4 orders of magnitude in the Nakagami-4
fading case for 𝛾 = 20 dB. So, the DAF end-to-end ABER
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Fig. 7. End-to-end ABER for routes of 𝐻 = 2 hops (top) and 𝐻 =
100 (bottom) over Nakagami-𝑚 (with 𝑚 = 2, 3 and 4) fading channels
and 4-QAM modulation with identical statistical behaviour for all the hops.
Continuous lines correspond to the exact 𝑃𝐻 for DAF relaying (18). Short
dashed lines correspond to the exact 𝑃𝐻 for AAF relaying (14). Thick grey
lines correspond to the asymptotic expression of 𝑃𝐻 with the DAF strategy
(32) (for the sake of clarity, only the region of 𝛾 ≥ 10 dB is plotted).
Simulation results for different Nakagami-𝑚 channels for both DAF (circles)
and AAF (squares) strategies are shown. The dotted lines for AAF simulations
with 𝐻 = 100 are only shown as a visual aid.

decreases exponentially with a greater exponent than the AAF
end-to-end ABER, at least in the range of average SNR per
bit considered in these simulations. To answer whether this
behaviour is expected to hold in the asymptotic limit (𝛾 → ∞)
for a generic Nakagami-𝑚 channel, we analyze the asymptotic
behaviour of the end-to-end ABER for an arbitrary number of
relays in the following subsection.

B. Asymptotics of End-to-End ABER with Nakagami-𝑚 Fad-
ing

In order to verify whether the advantage of DAF over AAF
in Nakagami-𝑚 relay channels will hold in the whole range
of SNR, we analyze now the asymptotic behaviour of the end-
to-end ABER.

In the context of wireless communications, at high SNR, the
ABER is commonly expressed as a function of the average
SNR per bit 𝛾 as 𝑃 (𝛾) ∝ 𝛾−𝛼, where 𝛼 represents the
diversity gain [19], [20]. So, parameter 𝛼 corresponds to the
slope of the 𝑃 (𝛾) versus 𝛾, at high SNR, in a log-log scale.
Thus the following analysis is centered in the calculation of the
diversity gain with the use of AAF and DAF as a comparison
between both strategies.

To obtain the diversity gain of both AAF and DAF strate-
gies, we will examine the asymptotic behaviour of their re-
spective end-to-end ABER using the closed-form expressions
derived above. The asymptotic expansion in (14) and (18)
for large enough SNR provides the diversity gain as the
lowest (non-zero) absolute value exponent of 𝛾. To get these
expansions, we will take into account the main terms of
the asymptotic expansion of the Generalized Hypergeometric
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Function. Using the method shown in [21], we obtain

𝑝𝐹𝑞(𝑎1, 𝑎2, . . . , 𝑎𝑝; 𝑏1, 𝑏2, . . . , 𝑏𝑞; 𝑧) ≈
≈ 𝜆1(−𝑧)−𝑎1 + 𝜆2(−𝑧)−𝑎2 + ⋅ ⋅ ⋅+ 𝜆𝑝(−𝑧)−𝑎𝑝 ;

∣𝑧∣ → ∞, ∀𝑎𝑖 ∕= 𝑎𝑗 , 𝑖 ∕= 𝑗 (26)

where 𝜆𝑖, with 𝑖 ∈ {1, 2, . . . , 𝑝} are constants defined as
follows:

𝜆𝑖 =

∏𝑞
𝑗=1 Γ(𝑏𝑗)

∏𝑝
𝑘 ∕=𝑖 Γ(𝑎𝑘 − 𝑎𝑖)∏𝑝

𝑛∕=𝑖 Γ(𝑎𝑛)
∏𝑞

𝑙=1 Γ(𝑏𝑙 − 𝑎𝑖)
+𝑂

(
1

𝑧

)
. (27)

Using (26), the asymptotic expansion of (14) is given by

𝑃AAF
4−QAM(𝛾,𝑚,𝐻 = 2) ≈ 1

2
− 21−8𝑚𝜋3/2Γ(4𝑚)

Γ3(𝑚)
×

×
(
𝜆1

( 𝛾

𝑚

)−𝑚

+ 𝜆2

( 𝛾

𝑚

)−2𝑚

+ 𝜆3

)
; 𝛾 → ∞ (28)

and, after rewriting (28), we get the asymptotic expansion of
(14) to the highest relevant power as

𝑃AAF
4−QAM(𝛾,𝑚,𝐻 = 2) ≈

≈ Γ(𝑚+ 1/2)

Γ(𝑚+ 2)
√
𝜋
(𝑚+ 1)

( 𝛾

𝑚

)−𝑚

+𝑂

(( 𝛾

𝑚

)−2𝑚
)
;

𝛾 → ∞. (29)

Thus, we have analytically proved that the diversity gain
of the 2−Hop AAF strategy with 4-QAM modulation in
Nakagami-𝑚 fading channels is 𝛼 = 𝑚.

As we mentioned in the previous section, there is no known
exact analytical result for the case of multihop (𝐻 > 2)
AAF in Nakagami-𝑚 channels. We must resort to the Lower
bound in the Rayleigh channel (Nakagami-1) and 4-QAM
modulation, and extract the asymptotic behaviour of the Lower
Bound of the end-to-end ABER (23).

𝑃AAF
4−QAM(𝛾,𝑚 = 1, 𝐻) ≳ 𝐻

4
𝛾−1 +𝑂

(
𝛾−2

)
; 𝛾 → ∞. (30)

Thus, for an arbitrary number of relays and Nakagami-𝑚
fading, with 𝑚 = 1 (Rayleigh), the diversity gain has an upper
bound of 𝛼 ≤ 1.

We now obtain the asymptotic behaviour of the arbitrary
number of relays suffering from Nakagami-𝑚 fading for the
DAF case. We start from the asymptotic expansion of the
Gaussian Hypergeometric Function [21]

2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) ∝ 1+
𝑎𝑏

𝑐
𝑧+

𝑎(1 + 𝑎)𝑏(1 + 𝑏)

2𝑐(1 + 𝑐)
𝑧2+𝑂

(
𝑧3
)

(31)

to obtain the asymptotic expansion of (18) as

𝑃DAF
4−QAM(𝛾,𝑚,𝐻) ≈

≈ 𝐻

2

Γ(𝑚+ 1/2)

Γ(𝑚+ 2)
√
𝜋
(𝑚+ 1)

( 𝛾

𝑚

)−𝑚

+𝑂

(( 𝛾

𝑚

)−2𝑚
)
;

𝛾 → ∞. (32)

From this expression, we conclude that the diversity gain of
the 𝐻−Hop DAF strategy is also 𝛼 = 𝑚. Fig. 7 shows the
asymptotic expression (32) for 𝑚 = 2, 3 and 4 with 𝐻 = 2
and 100. It can be observed the consistency of (18) and (32)
for high SNR. Moreover, the diversity gain 𝛼 = 𝑚 fits in with
the slope of the curve representing (32).

From (29), (30) and (32), we conclude that the same
asymptotic behavior of the end-to-end ABER for both the
AAF and DAF strategies can be found in a multihop route with
Nakagami-𝑚 fading. This analytical result is in accordance
with the intuition that, for large enough SNR, the performance
of both strategies are equal. However, for practical values of
SNR (from 5 to 25 dB) and from the results presented both in
Fig. 6 and Fig. 7, we can see that the DAF strategy is more
advantageous than AAF in terms of end-to-end ABER perfor-
mance. From an intuitive point of view, symbol regeneration
with AAF recovers the modulus of the symbol, but it does not
recover its phase. On the other hand, DAF regeneration tries
to recover both the original modulus and phase. Thus, relaying
at low SNR (responsible of a high variability of the phase) is
prone to generate more errors with AAF strategy than with
DAF.

It is interesting to address the case of the asymptotic
performance of many different Nakagami-𝑚 channels. In this
case, an intuitive estimate is that the link with the worst fading
(lowest 𝑚) will determine the asymptotic performance of the
end-to-end ABER. If we study the asymptotic limit where the
approximation (31) is valid, for a route with 𝐻 consecutive
different Nakagami-𝑚 channels, we can write the end-to-end
ABER as

𝑃 (𝐻) ≈
𝐻∑
𝑖=1

((
𝛾

𝑚𝑖

)−𝑚𝑖 Γ(𝑚𝑖 + 1/2))

Γ(𝑚𝑖 + 2)
√
𝜋
(𝑚𝑖 + 1)×

×
𝐻∏

𝑗=𝑖+1

(
1− 2

(
𝛾

𝑚𝑗

)−𝑚𝑗 Γ(𝑚𝑗 + 1/2))

Γ(𝑚𝑗 + 2)
√
𝜋
(𝑚𝑗 + 1)

)⎞⎠
(33)

where 𝑚𝑖 characterizes the 𝑖-th Nakagami-𝑚 fading channel
and 𝑖 = {1, . . . , 𝐻}. As we have proved in Section II-C,
𝑃 (𝐻) is invariant to the order of the channels, so we can
assume that 𝑚1 is the lowest Nakagami coefficient, 𝑚2 the
second lowest, etc... Then, the first order approximation of the
previous equation can be written as

𝑃 (𝐻) ≈

≈
(

𝛾

𝑚1

)−𝑚1 Γ(𝑚1 + 1/2))

Γ(𝑚1 + 2)
√
𝜋
(𝑚1 + 1) + 𝑂

((
𝛾

𝑚2

)−𝑚2
)

(34)

Thus, the asymptotic performance of the heterogeneous
Nakagami-𝑚 route is mainly determined by the diversity gain
(𝑚1) of the link suffering the worst fading, confirming that
our previous intuition was correct.

IV. CONCLUSIONS

In this work we have presented, from an statistical point
of view and with no approximations, an analytical expression
for the end-to-end ABER in MHWN with DAF relaying. This
equation is valid for an arbitrary number of relays, as well as
for any modulation and fading channel. We also have derived
simple expressions for the very general case of Nakagami-
𝑚 fading. We have derived closed analytical expressions for
the end-to-end ABER for both non-coherent (DBPSK) and
coherent (4-PSK) modulations (easily generalizable for any
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modulation scheme) for an arbitrary number of relays using
the DAF strategy and suffering from Nakagami-𝑚 fading. We
have also derived closed analytical expressions for the end-to-
end ABER for the aforementioned conditions for the case of a
single relay using the AAF strategy. Furthermore, to determine
the comparative performance of both strategies in the whole
SNR range, we have produced closed expressions for the
asymptotic behaviour of the systems characterized above. With
these results, we have shown analytically (and corroborated
through simulations) that DAF strategy is advantageous over
AAF in channels with both an increasing number of relays
and 𝑚-index, for working values of SNR.

In a future work, this closed and general formulation for
the end-to-end ABER will permit the analysis of a scenario
where the distance between source and destination is given
to obtain the optimal number of hops and the combination of
strategies (modulation and forwarding schemes) that it should
be used. This is a optimization problem subject to constraints
like total transmission power, interference or routing protocol.

APPENDIXES

A. Proof of Theorem 1

Let us consider the following recurrence relation to find the
end-to-end ABER after an arbitrary number of hops 𝐻 ≥ 1

𝑃𝐻 = (1 − 𝑃𝐻−1)𝑃 (𝐻) + 𝑃𝐻−1(1− 𝑃 (𝐻)) (35)

subject to the initial condition 𝑃0 = 0. Let us also assume that
the statistical characterization of the links provide the same
single-hop ABER for all links, i.e,

𝑃 (ℎ) = 𝑃hop, ∀ ℎ ∈ 1, ⋅ ⋅ ⋅ , 𝐻 (36)

where 𝑃hop is a positive constant in the interval (0, 0.5].
To solve (35) we will follow the approach found in [22],

similar to one of the procedures to solve linear ordinary
differential equations. Following [22], we first transform (35)
into an homogeneous linear recurrence relation. Thus, taking
into account that

𝑃𝐻−1 = (1− 𝑃𝐻−2)𝑃hop + 𝑃𝐻−2(1− 𝑃hop) (37)

and replacing (37) in (35), we have that

𝑃𝐻 − 2(1− 𝑃hop)𝑃𝐻−1 + (1− 2𝑃hop)𝑃𝐻−2 = 0. (38)

Next, the above recurrence relation is converted into the
polynomial in 𝑟

𝑟2 − 2(1− 𝑃hop)𝑟 + (1− 2𝑃hop) = 0 (39)

where the term 𝑃𝐻−𝑘 has been replaced by 𝑟2−𝑘 . Solving
this polynomial gives two values of 𝑟, 𝑟1 = 1 and 𝑟2 = 1 −
2𝑃hop, and the general solution can be expressed as a linear
combination of particular solutions

𝑃𝑘 = 𝑐1𝑟
𝑘
1 + 𝑐2𝑟

𝑘
2 =

= 𝑐1 + 𝑐2(1− 2𝑃hop)
𝑘 (40)

where 𝑐1 and 𝑐2 are constant real numbers, whose values are
determined by the initial condition.

Thus, for 𝑘 = 0 and 𝑘 = 1 we have that

𝑘 = 0 → 𝑃0 = 𝑐1 + 𝑐2

𝑘 = 1 → 𝑃1 = 𝑐1 + 𝑐2(1− 2𝑃hop). (41)

Solving this system, we obtain that 𝑐1 = 1/2 and 𝑐2 = −1/2,
and the general solution for 𝐻 hops can be expressed as

𝑃𝐻 =
1

2

(
1− (1− 2𝑃hop)

𝐻
)
, ∀ 𝐻 ≥ 0. (42)

B. Proof of Theorem 2

When the single-hop ABER cannot be considered equal
for all links, the linear recurrence relation given in (1) has
no constant coefficients and it cannot be solved using the
technique in the previous Appendix. Instead, to solve this vari-
able coefficient recurrence relation we will take the approach
provided by [23].

The first step is to rewrite the recurrence relation (1) in the
general form

𝑎(𝐻)𝑃𝐻 = 𝑏(𝐻)𝑃𝐻−1 + 𝑔(𝐻). (43)

Rearranging terms in (1), we get

𝑃𝐻 = (1− 2𝑃 (𝐻))𝑃𝐻−1 + 𝑃 (𝐻), ∀ 𝐻 ≥ 1 (44)

and, identifying coefficients in (43) and (44), we have that
𝑎(𝐻) = 1, 𝑏(𝐻) = 1−2𝑃 (𝐻), and 𝑔(𝐻) = 𝑃 (𝐻). To reduce
(44) to a summation and solve the recurrence, we multiply
both sides of (44) by the factor 𝐹 (𝐻), given by

𝐹 (𝐻) =

∏𝐻−1
𝑖=1 𝑎(𝑖)∏𝐻
𝑗=1 𝑏(𝑗)

=
1∏𝐻

𝑗=1(1− 2𝑃 (𝑗))
. (45)

This way, the recurrence (44) becomes

𝑦(𝐻) = 𝑦(𝐻 − 1) + 𝐹 (𝐻)𝑃 (𝐻) (46)

where 𝑦(𝐻) = 𝐹 (𝐻 + 1)(1 − 2𝑃 (𝐻 + 1))𝑃𝐻 . Rewriting
recurrence (46) as a sum

𝑦(𝐻) = 𝑦(0) +

𝐻∑
𝑖=1

𝐹 (𝑖)𝑃 (𝑖) (47)

allows us to express 𝑃𝐻 also as a sum

𝑃𝐻 =
𝑦(𝐻)

𝐹 (𝐻 + 1)(1− 2𝑃 (𝐻 + 1))
=

=
𝑦(0) +

∑𝐻
𝑖=1 𝐹 (𝑖)𝑃 (𝑖)

𝐹 (𝐻 + 1)(1− 2𝑃 (𝐻 + 1))
(48)

where 𝑦(0) = 0 by the initial condition 𝑃0 = 0. According
to this and taking into account (45), after some rearrangement
we have that (48) can be expressed as

𝑃𝐻 =

𝐻∏
𝑘=1

(1− 2𝑃 (𝑘))

[
𝐻∑
𝑖=1

𝑃 (𝑖)∏𝑖
𝑗=1(1− 2𝑃 (𝑗))

]
=

=

𝐻∑
𝑖=1

⎛
⎝𝑃 (𝑖)

𝐻∏
𝑗=𝑖+1

(1− 2𝑃 (𝑗))

⎞
⎠ (49)

which is the solution to recurrence relation (44) with variable
coefficients.
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It can be shown that solution given by (49) reduces to that
provided by (42) when constant coefficients are considered.
Thus, assuming the same value 𝑃hop for the single-hop ABER
in all the 𝐻 links, we can express (49) as

𝑃𝐻 = 𝑃hop

𝐻∑
𝑖=1

𝐻∏
𝑗=𝑖+1

(1− 2𝑃hop) =

= 𝑃hop

𝐻∑
𝑖=1

(1− 2𝑃hop)
𝐻−𝑖 (50)

where the last sum is a geometric progression with common
ratio 𝑟 = 1 − 2𝑃hop. Since 0 < 𝑃hop ≤ 0.5, then ∣𝑟∣ < 1 and

the sum converges to 1−(1−2𝑃hop)
𝐻

2𝑃hop
. This way, we have that

𝑃𝐻 =
1− (1− 2𝑃hop)

𝐻

2
(51)

which is the same expression as the solution provided in the
previous Appendix in 42.

C. Proof of Corollary 1

Let us define vector P𝐻 as a row vector of 𝐻 elements,
where element in the 𝑖−𝑡ℎ position corresponds to the single-
hop ABER in the 𝑖− 𝑡ℎ hop. This is,

P𝐻 = [𝑃 (1), 𝑃 (2), ⋅ ⋅ ⋅ , 𝑃 (𝐻)] . (52)

We have proved in the previous Appendix that the end-to-
end ABER in a 𝐻-hop route can be expressed in terms of the
𝐻 single-hop ABER of the route as

𝑃𝐻 =
𝐻∑
𝑖=1

⎛
⎝𝑃 (𝑖)

𝐻∏
𝑗=𝑖+1

(1− 2𝑃 (𝑗))

⎞
⎠ . (53)

Expanding terms of (53) for different values of 𝐻 , it is easy
to check that (53) can be written as

𝑃𝐻 =

𝐻∑
𝑖=1

(−2)𝑖−1

𝐶𝐻
𝑖∑

𝑚=1

Λ𝐻
𝑖,𝑚 =

𝐻∑
𝑖=1

(−2)𝑖−1𝑆𝐻
𝑖 (54)

where 𝐶𝐻
𝑖 =

(
𝐻
𝑖

)
is the number of possible combinations of

𝑖 elements taken from vector P𝐻 ; Λ𝐻
𝑖,𝑚 denotes the product

of all terms involved in the 𝑚 − 𝑡ℎ combination, and 𝑆𝐻
𝑖 is

the sum of Λ𝐻
𝑖,𝑚 from 𝑚 = 1 to 𝑚 = 𝐶𝐻

𝑖 .

Now, we define P
′
𝐻 as a random permutation of elements

in P𝐻 , i.e.,

P
′
𝐻 = [𝑃 ′(1), 𝑃 ′(2), ⋅ ⋅ ⋅ , 𝑃 ′(𝐻)] . (55)

For example, for a route with 𝐻 = 4 hops where P𝐻 =
[𝑃 (1), 𝑃 (2), 𝑃 (3), 𝑃 (4)], a random permutation might pro-
vide vector P

′
𝐻 = [𝑃 (3), 𝑃 (1), 𝑃 (2), 𝑃 (4)]. For a general

case, with the new sequence of single-hop ABER 𝑃 ′(𝑖), with
𝑖 = 1, . . . , 𝐻 , the end-to-end ABER is given by

𝑃
′
𝐻 =

𝐻∑
𝑖=1

⎛
⎝𝑃 ′(𝑖)

𝐻∏
𝑗=𝑖+1

(1− 2𝑃 ′(𝑗))

⎞
⎠ =

=

𝐻∑
𝑖=1

(−2)𝑖−1

𝐶
′𝐻
𝑖∑

𝑚=1

Λ
′𝐻
𝑖,𝑚 =

𝐻∑
𝑖=1

(−2)𝑖−1𝑆
′𝐻
𝑖 (56)

where 𝐶
′𝐻
𝑖 =

(
𝐻
𝑖

)
is the number of possible combinations of

𝑖 elements taken from vector P
′
𝐻 ; Λ

′𝐻
𝑖,𝑚 denotes the product

of all terms involved in the 𝑚− 𝑡ℎ combination, and 𝑆
′𝐻
𝑖 is

the sum of Λ
′𝐻
𝑖,𝑚 from 𝑚 = 1 to 𝑚 = 𝐶

′𝐻
𝑖 .

According to [24], to prove that 𝑃𝐻 = 𝑃
′
𝐻 , it suffices to

demonstrate that 𝑆𝐻
𝑖 is an invariant sum under permutations

of elements in vector P𝐻 . Note that, depending of the new
sequence of single-hop ABER, the particular element Λ𝐻

𝑖,𝑚

in (54) can be different of element Λ
′𝐻
𝑖,𝑚 in (56). However,

note also that the sum of all the
(
𝐻
𝑖

)
combinations of 𝑖

elements in vector P𝐻 does not change when elements in
P𝐻 are rearranged to have P

′
𝐻 . Since 𝑆

′𝐻
𝑖 encompasses all

combinations of the same 𝐻 elements of P𝐻 (taking 𝑖 at a
time), we conclude that 𝑆𝐻

𝑖 = 𝑆
′𝐻
𝑖 and, therefore, the end-to-

end ABER given by (53) is invariant under permutations of
the single-hop ABER in the route.
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