Show simple item record

Enhancement of the Advanced Fenton process (Fe0/H2O2) by ultrasound for the mineralization of Phenol

dc.contributor.authorSegura, Y.
dc.contributor.authorMartínez, F.
dc.contributor.authorMelero, J.M.
dc.contributor.authorMolina, R.
dc.contributor.authorChand, R
dc.contributor.authorBremner, D.H.
dc.date.accessioned2012-03-07T16:22:59Z
dc.date.available2012-03-07T16:22:59Z
dc.date.issued2012-02
dc.identifier.citationApplied Catalysis B: Environmental 113-114 (2012) 100-106es
dc.identifier.urihttp://hdl.handle.net/10115/6010
dc.description.abstractIn this study, a successful mineralization of phenol was achieved by means of coupling zero-valent iron (ZVI) particles, hydrogen peroxide and a short input of ultrasonic irradiation. This short Sono-Advanced Fenton process (AFP) provided a better performance of ZVI in a subsequent silent degradation stage, which involves neither extra cost of energy nor additional oxidant. The short input of ultrasound irradiation enhanced the activity of the Fe0/H2O2 system in terms of the TOC removal. Then, the TOC mineralization continued during the silent stage, even after the total consumption of hydrogen peroxide, reaching values of ca. 90% TOC conversions over 24 hours. This remarkable activity was attributed to the capacity of the ZVI/iron oxide composite formed during the degradation for the generation of oxidizing radical species and to the formation of another reactive oxidant species, such as the ferryl ion. The modification of the initial conditions of the sono-AFP system such as the ultrasonic irradiation time and the hydrogen peroxide dosage, showed significant variations in terms of TOC mineralization for the ongoing silent degradation stage. An appropriate selection of operation conditions will lead to an economical and highly efficient technology with eventual large-scale commercial applications for the degradation organic pollutants in aqueous effluents.es
dc.language.isoenges
dc.publisherELSEVIERes
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectUltrasoundes
dc.subjectHeterogeneous Fentones
dc.subjectZer-valent irones
dc.subjectHidrogen peroxidees
dc.titleEnhancement of the Advanced Fenton process (Fe0/H2O2) by ultrasound for the mineralization of Phenoles
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1016/j.apcatb.2011.11.024es
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subject.unesco23 Químicaes
dc.description.departamentoTecnología Química y Ambiental


Files in this item

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 EspañaExcept where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 España